Herzog Competition 2004

- 1. Let n be a positive integer. Prove that the sum of the digits of 1981^n is at least 19.
- **2.** Let A be a square matrix with real entries such that $A^3 = A + I$. Show that det A > 0.
- 3. You have a chess board of size 10×10 . Prove that there are no more than 2^{50} ways to tile the board with dominoes (i.e., rectangles of size 2×2).
- 4. Let f be a real continuous function on [-1, 1] such that |f(t)| ≤ 1 for t ∈ [-1, 1], ∫¹₋₁ f(t) dt = 1, and ∫¹₋₁ f²(t) dt = 1. Show that
 (a) ∫¹₋₁ f³(t) dt ≥ 0;
 (b) ∫¹₋₁ f³(t) dt ≥ 1/3.
- 5. A part of a square of size 1×1 is painted in red. It is known that no two red points of the square are at the distance ε (where $\varepsilon > 0$). Prove that
 - (a) the area of the red part of the square is at most $\frac{1}{3}(1+\varepsilon)^2$.
 - (b) the area of the red part of the square is at most $\frac{2}{7} \left(1 + \sqrt{3}\varepsilon\right)^2$.