Herzog Competition
 2004

1. Let n be a positive integer. Prove that the sum of the digits of 1981^{n} is at least 19 .
2. Let A be a square matrix with real entries such that $A^{3}=A+I$. Show that $\operatorname{det} A>0$.
3. You have a chess board of size 10×10. Prove that there are no more than 2^{50} ways to tile the board with dominoes (i.e., rectangles of size 2×2).
4. Let f be a real continuous function on $[-1,1]$ such that $|f(t)| \leq 1$ for $t \in[-1,1], \int_{-1}^{1} f(t) d t=1$, and $\int_{-1}^{1} f^{2}(t) d t=1$. Show that
(a) $\int_{-1}^{1} f^{3}(t) d t \geq 0$;
(b) $\int_{-1}^{1} f^{3}(t) d t \geq 1 / 3$.
5. A part of a square of size 1×1 is painted in red. It is known that no two red points of the square are at the distance ε (where $\varepsilon>0$). Prove that
(a) the area of the red part of the square is at most $\frac{1}{3}(1+\varepsilon)^{2}$.
(b) the area of the red part of the square is at most $\frac{2}{7}(1+\sqrt{3} \varepsilon)^{2}$.
