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SUMMARY

This paper explores the potential of a newly developed conjugate �lter oscillation reduction (CFOR)
scheme for shock-capturing under the in�uence of natural high-frequency oscillations. The conjugate
low- and high-pass �lters are constructed based on the principle of the discrete singular convolution
(DSC), a local spectral method. The accuracy and resolution of the DSC basic algorithm are accessed
with a one-dimensional advection equation. Two Euler systems, the advection of an isotropic vortex
�ow and the interaction of shock–entropy wave are utilized to demonstrate the utility of the CFOR
scheme. Computational accuracy and order of approximation are examined and compared with the
literature. Some of the best numerical results are obtained for the shock–entropy wave interaction.
Numerical experiments indicate that the CFOR scheme is stable, conservative and reliable for the
numerical simulation of hyperbolic conservation laws. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical di�culties of the non-linear hyperbolic conservation laws are of long standing
and well known. Despite many e�orts in the past several decades, attaining solutions that
are free of spurious oscillations for compressible Euler equations involving steep gradient
at discontinuities still remains a major problem in computational �uid dynamics (CFD). In
particular, to construct a high-accuracy and high-resolution solution for a system involving
the interaction of shock–turbulent boundary layer is a severe challenge due to its natural
high-frequency components. Traditional schemes such as upwind, Riemann solver, approx-
imate Riemann solver, random choice method and arti�cial viscosity method, are usually
of low order in nature. More sophisticated approaches, such as total variation diminishing
(TVD), essentially non-oscillatory (ENO) [1], weighted essentially non-oscillatory (WENO),
characteristic-based-split (CBS) [2] and discontinuous Galerkin schemes [3] are proposed.
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Generally, these shock-capturing schemes are shown to be very successful in many applica-
tions.
Recently, it has been pointed out [4] that the use of a sixth-order accurate shock-capturing

scheme in the entire computational domain leads to a signi�cant damping of turbulent �uc-
tuations. Garnier et al. [5] found that in the framework of freely decaying turbulence, the
numerical dissipation of high-order accurate shock-capturing schemes masks the e�ect of a
subgrid-scale model. Therefore, alternative approaches are of pressing desirable for many
practical applications. The use of �lters is one of important alternative approaches which
can overcome the problem of excessive numerical dissipation in many sophisticated shock-
capturing schemes. Engquist et al. [6] proposed a set of non-linear �lters which discriminate
and suppress the dispersive wiggles in the basic solution. Recently, Garnier et al. [7] have
reported the use of the non-linear dissipation components in some high-order shock-capturing
schemes, such as the ENO and WENO, as �lters. With appropriate sensors, these ENO=WENO
�lters are shown to e�ectively improve the resolution of density waves, entropy waves and
stochastic turbulent �uctuations. Indeed, in the case of direct simulation of turbulence, typical
successful numerical approaches are compact schemes [8] or spectral methods for their ca-
pability of resolving multiscale features in turbulent �uctuations. However, spectral methods
are notorious for their Gibbs’ oscillations near the discontinuity, while compact schemes that
are commonly used for shock capturing are of third- or at most �fth-order. Therefore, it is
highly desirable to have methods that are of (arbitrary) high accuracy for resolving high-
frequency waves and stochastic turbulent �uctuations, and are capable of shock capturing
without excessive numerical dissipation.
Conjugate �lter oscillation reduction (CFOR) [9, 10] is one of such schemes newly devel-

oped for solving practical problems. The CFOR scheme is constructed based on the discrete
singular convolution (DSC) algorithm [11–13] for the numerical computation of singular con-
volutions. The theoretical foundation of the DSC algorithm is the theory of distributions and
the theory of wavelet analyses. In its appropriate form, the DSC algorithm is a local spec-
tral method. It provides a uni�ed approach to conventional local and global methods and
has controllable accuracy for the numerical solution of di�erential equations. The essential
idea in the CFOR scheme is to use conjugate (DSC) low-pass �lters to remove spurious
oscillations generated by conjugate (DSC) high-pass �lters which are implemented for the
numerical approximation of di�erentiation operators. Conjugate �lters are constructed by us-
ing DSC kernels and are optimal in the sense that they have similar degrees of regularity,
accuracy, frequency bandwidth and computational supports. Such a feature makes the DSC
low-pass �lter di�er from Ghosal’s dealiasing �lters [14] in the sense that one could con-
tinuously adjust the ‘degree’ of the conjugation, and also di�er from Fedioun’s interpolation
�lter [15] in the sense that there is no ripples in the passband of the low-pass �lters. The
CFOR scheme has been successfully applied to shock-capturing in association with Burgers’
equation, one- and two-dimensional (2D) Euler systems including the Sod and Lax problems,
and a Mach 3 �ow past a wind tunnel with a step. The most promising feature of the CFOR
scheme is that, the approach has a controllable order of approximation for shock-capturing
under speci�c situations. The objective of the present work is to explore the utility and limita-
tion of the CFOR scheme in dealing with the problem of shock–high-frequency entropy wave
interaction, which is very challenging because conventional methods encounter the di�culty
of either insu�cient accuracy or excessive numerical damping. It is believed that a better
understanding of the CFOR scheme is of importance to the development of high-accuracy
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and low-dissipation schemes for the numerical solution of more challenging problems, such
as shock–turbulence interaction.
This paper is organized as follows. A brief retrospection is given to the DSC algorithm and

the CFOR scheme in Section 2. Section 3 is devoted to the numerical experiments of a 1D
advection equation and two Euler systems. The last example is designed to test the capability
of resolving shock from high-frequency entropy waves. A conclusion ends the paper.

2. THE DSC ALGORITHM AND CFOR SCHEME

2.1. DSC �lters

Singular convolutions occur commonly in science and engineering. Discrete singular convo-
lution (DSC) is an e�ective approach for the numerical realization of singular convolutions.
There are many detailed descriptions about the discrete singular convolution in the literature
[11–13]. The introduction in Reference [11] is recommended for its theoretical underpinning
and approximation philosophy. For the sake of integrity and convenience, a brief review of
the DSC algorithm is given before describing the CFOR scheme.
In the context of distribution theory, a singular convolution can be de�ned by

F(t)= (T ∗ �)(t)=
∫ ∞

−∞
T (t − x)�(x) dx (1)

where T is a singular kernel and �(x) is an element of the space of test functions. Interesting
examples include singular kernels of Hilbert (and Abel) type and delta type. The former plays
an important role in the theory of analytical functions, processing of analytical signals, theory
of linear responses and Radon transform. Since delta type kernels are the key element in the
approximation theory and the numerical solution of di�erential equations, we focus on the
singular kernels of delta type

T (x)= �(q)(x) (q=0; 1; 2; : : :) (2)

where superscript (q) denotes the qth-order ‘derivative’ of the delta distribution, �(x), with
respect to x, which should be understood as generalized derivatives of distributions. When
q=0, the kernel, T (x)= �(x), is important for the interpolation of surfaces and curves, in-
cluding applications to the design of engineering structures. For hyperbolic conservation laws
and Euler systems, two special cases, q=0 and 1 are involved, whereas for the full Navier–
Stokes equations, the case of q=2 will be also invoked. Because of its singular nature, the
singular convolution of Equation (1) cannot be directly used for numerical computations. In
addition, the restriction to the test function is too strict for most practical applications. To
avoid the di�culty of using singular expressions directly in numerical computations, we con-
sider a discrete singular convolution which provides appropriate approximations to the original
distribution

f(q)(x)≈∑
k
�(q)� (x − xk)f(xk) (3)

where �(q)� (x − xk) are approximations to �(q)(x − xk) and are designed for being used in
(discrete) summations. Here, {xk} is an appropriate set of discrete points centred around the
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point x and � is the grid spacing. Depending on the mathematical properties of the kernel, ��,
the restriction on the f(xk) can be relaxed to include many common-occurring functions. A
variety of candidates are available for �� in the literature. Among these examples, Shannon’s
delta kernel is of particular interesting

��(x)= sin(�x)=�x (4)

Shannon’s kernels are a delta sequence and thus provide approximations to the delta distri-
bution

lim
�→0

¡
sin(�x=�)

�x
; �(x)¿= �(0) (5)

Shannon’s kernel has been widely used in information theory, signal and image processing
because the Fourier transform of Shannon’s kernel is an ideal low-pass �lter. However, the
usefulness of Shannon’s kernel is limited by the fact that it has a slow-decaying oscillatory
tail proportional to 1=x in the co-ordinate domain. For signal processing, Shannon’s kernel is
an in�nite impulse response (IIR) low-pass �lter. Therefore, when truncated in computational
applications, its Fourier transform contains evident oscillations. A cure to this problem is to
regularize Shannon’s kernel with a Gaussian

��;�(x)=
sin(�x=�)

�x
e−x2=2�2 ; �¿0 (6)

Since e−x2=2�2 is a Schwartz class function, it makes regularized Shannon’s kernel applicable
to tempered distributions. Moreover, as the regularized kernels decay very fast in the space
domain, they can be utilized as �nite impulse response (FIR) low-pass �lters. Their oscillation
in the Fourier domain is dramatically reduced and e�ectively controlled.
For sequences of the delta type, an interpolating algorithm sampling at the Nyquist fre-

quency, �=�, has an advantage over a non-interpolating discretization. Therefore, on a uniform
grid, the regularized Shannon’s kernel is discretized as

��;�(x − xk)=
sin[(�=�)(x − xk)]

�=�(x − xk)
e−(x−xk )

2=2�2 (7)

The regularized kernel ��;�(x) corresponds to a family of FIR low-pass �lters, each with a
di�erent compact support, according to �=�, in the co-ordinate domain. Its qth-order derivative
is given by analytical di�erentiation

�(q)�;�(x − xk)=
(
d
dx

)(q) sin[(�=�)(x − xk)]
�=�(x − xk)

e−(x−xk )
2=2�2 (8)

In this work, �(q)�;�(x); (q=0; 1; : : :) are referred as a family of ‘conjugate �lters’, as they are
derived from one generating function and consequently have a similar degree of regularity,
smoothness, time–frequency localization, e�ective support and bandwidth.
In application, optimal results are usually obtained if the window size � varies as a function

of the central frequency �=�, such that r=�=� is a parameter chosen in computations. Both
interpolation and di�erentiation are realized by the following convolution algorithm:

f(q)(x)≈
k=W∑

k=−W
�(q)�;�(x − xk)f(xk) (q=0; 1; 2; : : :) (9)
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where 2W + 1 is the computational bandwidth, or e�ective kernel support, which is usually
smaller than the entire computational domain, [a,b]. Expressions of �(q)�;�(x) with q=0; 1 are
given as

��;�(x)=



sin(�x=�)exp(−x2=2�2)

�x=�
(x �=0)

1 (x=0)
(10)

�(1)�;�(x)=




cos(�x=�)exp(−x2=2�2)
x

− sin(�x=�)exp(−x2=2�2)
�x2�

−sin(�x=�)exp(−x2=2�2)
��2=�

(x �=0)

0 (x=0)

(11)

Expressions of higher-order derivatives for ��;�(x) can be found elsewhere [13]. Rigorous
mathematical analysis of the algorithm in Sobolev spaces is accounted in Reference [16].

2.2. The CFOR scheme

Consider 2D Euler equations for gas dynamics having the conservation form of

Ut + F(U )x +G(U )y=0 (12)

with

U =




�
�u
�v
E


; F(U )=




�u

�u2 + p
�uv

u(E + p)


; G(U )=




�v
�uv

�v2 + p
v(E + p)


 (13)

where, �; u; v; p and E denote the density, the velocities in x- and y-directions, the pressure
and the total energy per unit mass E=�(e+(u2 + v2)=2), respectively. Here, e is the speci�c
internal energy. For an ideal gas with constant speci�c heat ratio (�=1:4) considered here,
one has e=p=(�− 1)�.
Let denote the grid point (i�x; j�y) as (xi; yj) and the spatial discretizations of F(U ) and

G(U ) at the point (xi; yj) as F(Ui; j) and G(Ui; j). Their spatial derivatives F(U )x and G(U )y
are approximated by the DSC high-pass �lters according to Equation (3), i.e.

F(Ui; j)x =
i+W∑

k=i−W
�(1)�;�x

(xi − xk)F(Uk; j) (14)

G(Ui; j)y =
j+W∑

k=j−W
�(1)�;�y

(yj − yk)G(Ui; k) (15)

Here we assume a uniform mesh in both x- and y-direction with the grid intervals being �x

and �y, respectively. The accuracy of the DSC algorithm is controllable [13].
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Although there is no rigorous proof about whether the standard fourth-order Runge–Kutta
(RK-4) scheme is TVD, it is still one of the most widely used temporal schemes for hyperbolic
conservation laws. The RK-4 is adopted in the present work and it takes the following form
in our problems:

k1 =−F(U n
i; j)x −G(U n

i; j)y (16)

k2 =−F
(
U n

i; j +
�t
2

k1

)
x
−G

(
U n

i; j +
�t
2

k1

)
y

(17)

k3 =−F
(
U n

i; j +
�t
2

k2

)
x
−G

(
U n

i; j +
�t
2

k2

)
y

(18)

k4 =−F(U n
i; j +�tk3)x −G(U n

i; j +�tk3)y (19)

U n+1
i; j =U n

i; j +
�t
6
[k1 + 2k2 + 2k3 + k4] (20)

The approximation of F(U )x and G(U )y by using the DSC high-pass �lters in Equations
(14) and (15), together with the RK-4 scheme (16)–(20), provides a basic scheme for the
numerical integration of the Euler system, Equation (12). No additional e�ort is required if the
problem under consideration does not involve discontinuity. Otherwise, an additional �ltering
can be implemented to suppress spurious oscillations.
The conjugation, resolution and variation of these �lters can be e�ectively justi�ed with

Fourier analysis, which has been widely used to quantify compact schemes [8] and some gen-
eral numerical schemes for hyperbolic equations [17]. The frequency responses of conjugate
low- and high-pass �lters [18] are illustrated in Figure 1. As aforementioned, the conju-
gate �lters are constructed from the same generating function (7). It can be seen that below
0:7�=�, all the conjugate �lters are highly accurate. However, in the high-frequency region, the
frequency responses of both the low-pass �lter and �rst-order high-pass �lter are serious un-
der estimating, whereas the frequency response of the second-order high-pass �lter is over
estimating. The error in the high-frequency response is harmless for numerical problems in-
volving only low frequency components. However, in the case of shock and discontinuity, the
solution contains much high-frequency component, the error in the high-frequency response
will be accumulated and ampli�ed during the time integration, and leads to spurious oscil-
lations. This observation motivates us to use the conjugate low-pass �lter to appropriately
eliminate most of the high-frequency response produced by the conjugate high-pass �lters.
As a result, the solution generated by conjugate �lters is reliable for the frequency below the
e�ective bandwidth of the �lters. The e�ective bandwidth or frequency cut-o� is controlled by
the choice of the DSC parameter r=�=�, for a given �. The CFOR scheme is implemented
via the following two-step procedure:

Û n+1
i; j =H (U n

i; j) (21)

U n+1
i; j = L(Û n+1

i; j ) (22)
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Figure 1. Frequency responses of the conjugate DSC �lters (in the unit of �=�), The maximum
amplitude of the �lters is normalized to the unit.

where H (U n
i; j) is the high-pass �ltering process numerically de�ned by Runge–Kutta scheme

(16)–(20). Here, L is the DSC low-pass �ltering as shown in Equation (3) with q=0. This
interpolative low-pass �lter is implemented through prediction (in which the variables on
the grid are interpolated to the middle points of the cells) and restoration (in which the
variables on the grid are restored from their values at the middle points of the cells) [10].
Such prediction–restoration is carried out in each dimension. In either direction, this can be
expressed by

U n
i+1=2 =

−1∑
k=−W

U n
i+k+1��;�

((
k +

1
2

)
�
)
+

W∑
k=1

U n
i+k��;�

((
k − 1

2

)
�
)

for prediction (23)

U n
i =

−1∑
k=−W

U n
i+k+1=2��;�

((
k +

1
2

)
�
)
+

W∑
k=1

U n
i+k−1=2��;�

((
k − 1

2

)
�
)

for restoration (24)

In the above two-step procedure (21)–(22), the second step, i.e. low-pass conjugate �ltering
(22) is controlled (turned on or turned o�) by a sensor. To construct sensors, we de�ned a
high-frequency measure M . Upon the increment �M exceeding a prescribed threshold �, the
low-pass �ltering process is carried out and L(Û n+1

i; j ) is the solution U n+1
i; j at the new time

step n + 1; otherwise, no low-pass �lter will be exerted to Û n+1
i; j and the latter is admitted

as the solution U n+1
i; j at the n+ 1 time step. The high-frequency measure M is de�ned via a

multiscale wavelet transform of a set of discrete function values at time tn as

‖Mn‖=∑
m
‖Mn

m‖ (25)
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where ‖Mn
m‖ is given by a convolution with a wavelet  mj of scale m

‖Mn
m‖=

∑
k

∣∣∣∣∣∑j  mj(xk)un(xj)

∣∣∣∣∣ (26)

Such a de�nition can be further illustrated by one of its special case—the TVD sensor, which
by de�nition, is

‖Mn‖=∑
i
|un

i+1 − un
i | (27)

and can be recognized as the convolution with the Haar wavelet of a single scale. This TVD
sensor seems to be the simplest one among a number of sensors which can be used in the
present scheme. The choice of the threshold � for the high-frequency measure �M = ‖Mn+1‖−
‖Mn‖ depends on the nature of the problem under study and is in the range from 0.001 to
0.002.
The separation of the basic spatial discretization (the high-pass �ltering) and the post-

processing (low-pass �ltering) in the proposed shock-capturing scheme makes it possible to
focus on the design of a set of versatile and e�cient �lters. Such an approach has a few
advantages. First, the basic DSC algorithm is a local method but it can be as accurate as a
spectral method, as is shown in the next section. Therefore, the CFOR scheme has controllable
accuracy via the choice of �lter parameters. Secondly, the �ltering is adaptive and is applied
at most once per iteration circle, comparing with pointwise treatment at each grid point in
many other schemes. Therefore, there is a potential increase in the computational e�ciency by
a mature CFOR code. Finally, the implementation of the conjugate low-pass �lter and �lter
parameters are easily controlled. Hence, a physical high-frequency wave can be e�ectively
distinguished from the shock induced spurious oscillations in the present approach.

3. RESULTS AND DISCUSSIONS

In this section, we justify the di�erentiation accuracy of the DSC algorithm with a linear
advection equation. Then, we examine the utility and explore limitation of the proposed CFOR
scheme by using two other benchmark numerical problems, the 2D advection of an isentropic
vortex [1, 12] and the interaction of shock and entropy wave [1]. The �rst Euler system is
designed to quantitatively access the phase and amplitude errors [5] of the CFOR scheme in
handling 2D Euler problems. To maintain a small error in both the phase and amplitude is
particularly desirable for a scheme to handle shock–entropy wave interaction and many other
aerodynamic problems. Moreover, extensive numerical data are available for this problem and
a comparison with many other shock-capturing schemes, such as the ENO and WENO, is
readily possible. The second problem is a standard test for the numerical ability of treating
the interaction of high-frequency entropy wave and shock. It is a severe challenge for most
existing shock-capturing methods due to its highly oscillatory nature. Numerical results can
be objectively evaluated by a quantitative criterion obtained from a linear analysis. Parameters
W =32 and r=3:2 are used for all the high-pass �ltering and low-pass prediction. For the
low-pass restoration, r=3:2 is used in the evolution of isentropic vortex, while r values of
1.9–2.1 are used in the interaction of shock and high-frequency entropy waves.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1319–1338



SHOCK CAPTURE WITH NATURAL HIGH FREQUENCY OSCILLATIONS 1327

Table I. L2 error for solving the 1D advection equation (N =400).

r k =1 k =2 k =3 k =4 k =5

3.2 1.93E-13 7.38E-12 4.42E-9 3.08E-6 8.24E-4
4.2 8.85E-13 5.64E-12 3.84E-11 1.67E-10 1.28E-7

3.1. Linear advection equation

The linear equation we considered here is

@u
@t
+

@u
@x
=0 (28)

whose initial condition is denoted by u0 = u(x; 0).
To closely observe the magnitude response of the numerical scheme to particular compo-

nents, we choose the initial condition of the form

u0 = (sin(2�kx)− 1)e−(x−x0)2=(2�2) (29)

which is the linear combination of two Gaussian waves; one is centred around the zero
wavenumber while another is modulated by a sine wave whose frequency is adjustable. We
choose �=1:0 so that the tails of Gaussian envelopes decay to near zero at the ends of
our computation domain of [10 × 10]. The equation is integrated up to t=20 with the time
increment of �t=10−4 for all cases. For the periodic boundary condition we employed, the
exact solution at any time can be obtained easily and the L2 error against the exact solution
is listed in Table I for k values from 1 to 5.
It is apparent that the error grows signi�cantly with the increase of the wavenumber k,

which determines the location of the sine wave in the frequency representation, as shown
in Figure 2. The derivation of the DSC di�erentiation operator from the ideal di�erentiation
operator at those locations in turn determines the spatial di�erentiation error. Therefore, it is
not surprising that errors for k=1 are as small as 10−13 while errors for k=5 are much
larger. The increase of r from 3.2 to 4.2 results in a dramatic improvement on the accuracy
of the DSC di�erentiation operator, as indicated by the right shifting of four square markers
in the �gure and by the change in the error for the cases of k=3; 4 and 5. In the succeeding
computations, however, we still take r=3:2 in the derivative approximation, since the e�ective
frequency range is also limited by the low-pass �lters in practical computations. The typical
value of r for low-pass �lters ranges between 1.9 and 2.1, as mentioned at the beginning of
this section. Moreover, Yang et al. demonstrated [18] that the further increase in r would
lead to the decrease of accuracy for low components.
It is also necessary to investigate the computational cost of the DSC scheme since it

employs a much wider stencil than the usual �nite di�erence and �nite volume methods. To
this end, we choose a conservative centred fourth-order scheme (C4) of Reference [7], where
it was used as the basic scheme of a new shock-capturing method. The C4 scheme takes the
following form in computing the numerical �ux at point i + 1

2

f(u)i+1=2 =
1
12
(−ui+2 + 7ui+1 + 7ui − ui−1) (30)
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Figure 2. Frequency responses of the DSC di�erential operator for the �rst-order derivative and
initial conditions with di�erent frequency k. Left: r=3:2; Right: r=4:2. Four cases k =2; 3; 4; 5
are plotted in each �gure. Four square markers in each plot denote the locations beyond which
the magnitude di�erence between the DSC �lter and the ideal �lter will exceed 10−13, 10−10,

10−7, and 10−4, from the left to right, respectively.

Table II. Comparison of the DSC and C4 schemes for solving the 1D advection equation (k =1).

Scheme N L2 error CPU

C4 400 4.85E-2 1.8
1000 1.27E-3 4.4
2000 7.94E-5 9.0
20000 9.95E-9 113.0

DSC 400 1.93E-13 13.2

The results for the C4 scheme are tabulated in Table II. It is seen that an extra �ne mesh and
thus a much larger CPU time are required for the C4 scheme to achieve comparable accuracy
of the DSC algorithm with a much coarser mesh. Therefore, for a given grid system, using
high order schemes such as the DSC can signi�cantly reduce the computational cost.

3.2. Isentropic vortex

To quantitatively analyse the performance of the proposed CFOR scheme, the advection of
an isotropic vortex in a free stream is computed. As the exact solution of the problem is
available, it is an excellent benchmark for accessing the accuracy and stability of shock-
capturing schemes and has been previously considered by many researchers [1, 7].
Consider a mean �ow of (�∞; u∞; v∞; P∞; T∞)= (1; 1; 1; 1; 1) with a periodic boundary con-

dition in both directions. At t0, the �ow is perturbed by an isentropic vortex (u′; v′; T ′) centred
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at (x0; y0), having the form of

u′ =− 	
2�
(y − y0)e�(1−r 2) (31)

v′ =
	
2�
(x − x0)e�(1−r 2) (32)

T ′ =− (�− 1)	
2

16���2
e2�(1−r 2) (33)

Here, r=
√
(x − x0)2 + (y − y0)2 is the distance to the vortex centre; 	 is the strength of the

vortex and � is a parameter determining the gradient of the solution, and is unity in this study.
Note that for an isentropic �ow, relations p=�� (�=1:4) and T =p=� are valid. Therefore,
the perturbation in � is required to be

�=(T∞ + T ′)1=(�−1) =
[
1− (�− 1)	2

16���2
e2�(1−r 2)

]1=(�−1)
(34)

For a comparison with the existing literature [7], the computational domain is chosen as
[0; 10] × [0; 10] with the centre of the vortex being initially located at (x0; y0)= (5; 5), the
geometrical centre of the computational domain. Two experiments are performed in this study
with �=1 and 	=0:5. One is to examine the accuracy of the CFOR scheme and to compare
with the available literature. The other is to investigate the stability and performance of the
CFOR scheme for long-time integrations. For the �rst experiment, we compute the density
pro�le up to t=2 using �ve sets of meshes (N =Nx=Ny=20; 40; 80; 160; 320) which are
selected by Garnier et al. [7]. In the present computations, the CFL number is chosen as 0:5
for a comparison with previous results [7].
Two error measures, L1 and L2, are used in this study. They are de�ned [7] by

L1 =
1

(N + 1)2
N∑
i=0

N∑
j=0

|fi; j − �fi; j| (35)

L2 =
1

(N + 1)

√
N∑
i=0

N∑
j=0

|fi; j − �fi; j|2 (36)

where f is the numerical result and �f the exact solution (Note that they are not the standard
de�nitions). The CFOR errors for the density with respect to the exact solution are listed in
Tables III and IV. Highly accurate results are obtained, as shown by the tables. Obviously,
the proposed scheme is much more accurate than any other scheme listed in the tables, which
are reported by Garnier et al. [7]. Remarkably, the CFOR scheme is from 4 to 5 orders more
accurate than other schemes when N =80.
As the spatial discretization of the CFOR scheme is extremely accurate, some of the present

results computed at CFL=0:5 might be limited by the CFL number, which was optimized
according to various schemes given in Reference [7]. This is indeed the case. The CFOR
results computed at CFL=0:01 are generally more accurate than those obtained at CFL=0:5
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(d) t=100

Figure 3. Density pro�les in horizontal cutting at four times. Solid line is the exact pro�le and
circle dots denote the numerical results.

as shown in Tables III and IV. Note that the accuracy of the CFOR scheme increases dramat-
ically when the mesh is re�ned from 40 grid points to 80 grid points, with the numerically
computed approximation order being more than 15. Therefore, the CFOR scheme has the
feature of spectral-like methods. Obvious, due to its extremely high accuracy, the CFOR can
be used for large scale simulations without resorting to a very large mesh as required by low
order schemes.
Our next numerical experiment concerns the performance of the CFOR scheme for the

long-time integration, which poses a severe challenge to the stability and conservation of
the discretization scheme [1]. The solution of � is sampled at t=2; 10; 50 and 100, with
the grid spacing of �x=�y=0:125 and CFL=0:5. In Figure 3, we show the horizontal line
cut through the centre of the vortex for the density �. Obviously, there is no visual deviation
between the computed result and the exact one. Errors listed in Table V further con�rm that
the present scheme is accuracy, free of excessive dissipation and reliable.
Since there is no presence of shock in this case, the low-pass �lter originally designed

to suppress dispersive wiggles might appear useless. In this experiment, it is found that the
DSC algorithm on its own can already provide excellent results if the integration time is
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Table V. Errors for the density at di�erent times (CFL=0:5, N =80).

Time 2 10 50 100

L1 4.56E-9 1.77E-8 4.27E-8 8.90E-8
L2 1.47E-8 4.95E-8 1.44E-7 3.01E-7

su�ciently small. Thus, the conjugate low-pass �lter does not need to be activated during an
initial time period. However, as the time progresses, errors would accumulate rapidly and the
computation could become unstable if the low-pass �lter were not used to e�ectively control
the dramatical non-linear growth of the errors. Therefore, the CFOR scheme is very robust
for the treatment of this problem. As shown in Table V and Figure 3 (t=100), the long
time simulation results are very stable. The vortex core is well conserved and the accuracy
is extremely high. These results indicate that the CFOR scheme is highly accurate, stable
and conservative for the long-time integration of Euler systems. It is a potential approach for
the numerical integration of hyperbolic conservation laws. Its ability for shock-capturing is
examined in the next subsection.

3.3. Interaction of shock and high-frequency entropy wave

The interaction of shock and high-frequency entropy wave is a standard test problem [1] for
benchmarking potential high-order shock-capturing methods. The problem is signi�cant due to
its relevant to the interaction of shock and turbulence. A Mach 3 right-moving shock interacts
with a small amplitude entropy wave. The computation domain is taken as [0; 5] and the �ow
�eld is initialized with

(�; u; p)=

{
(3:85714; 2:629369; 10:33333); x60:5

(e−
 sin(�x); 0; 1:0); x¿0:5
(37)

where 
 and � are the amplitude and the wavenumber of the entropy wave before the shock.
The amplitude and wavenumber of ampli�ed wave after the shock can be obtained from a
linear analysis [19]. In our numerical experiments, we vary the wavenumber of the pre-shock
entropy wave while keep its amplitude unchanged. As a result, the amplitude of the post-shock
entropy wave will also be a constant, i.e. 0.08690716 and the corresponding amplitude of the
pre-shock entropy wave is 
=0:01.
In this problem, a large-amplitude high-frequency entropy wave is mixed with spurious

oscillations. It is di�cult to distinguish them clearly in numerical simulations. Potential
methods designed for suppressing the spurious oscillation might also smear the high-frequency
post-shock entropy wave. As the wavenumber � increases, the problem becomes extremely
challenging [1]. Low-order shock-capturing schemes and even some popular high-order
schemes encounter the di�culty in preserving the amplitude of the entropy wave due to
excessive dissipation with a given mesh size. Therefore, a success shock capturing method
should be able to suppress Gibbs’ oscillation, capture the shock and preserve the entropy
wave.
The computational domain is deployed with 800 grid points, and such a mesh is used in all

the numerical tests except for further speci�ed. First, we consider the case of �=13. This is
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a good test case for a basic scheme as there are 20 grid points per entropy wavelength, which
is su�cient for describing the wave if there is no shock. Such a case was found being slightly
di�cult for the �fth order WENO scheme [1]. A signi�cant amplitude damping occurs and
the mesh of N =1200 has to be used to maintain the amplitude of the entropy wave [1]. The
result of the CFOR scheme is depicted in Figure 4(a). It is seen that the generated entropy
wave spans fully over the strip bounded by two solid lines, showing excellent agreement with
the linear analysis. The shock is exactly captured with a small frequency mismatch located
at the shock front. Such a mismatch also occurs to the ENO and WENO schemes [1] due to
the nature of discontinuity. The performance of the CFOR scheme is really remarkable for
this case.
Next, we double the wavenumber, i.e. �=26. The number of supporting grid points per

generated entropy wavelength is 10. It is a quite di�cult case for low-order shock-capturing
schemes and no available result is reported in the literature, to our knowledge. The CFOR
result is plotted in Figure 4(b). Obviously, the compressed entropy wave is excellently resolved
in the post-shock regime. There is no visible trace of excessive dissipation as the amplitude
of the entropy wave reaches its full strength in the whole post-shock regime. As expected, the
frequency mismatch near the shock front becomes more obvious because there is an enlarged
di�erence in the wave frequencies before and after the shock.
We further increase the wavenumber � to 39 and plot the CFOR result in Figure 4(c). It is

interesting to note that the compressed entropy wave peaks span to its full amplitude for only
about half of its extrema over the post-shock regime. Analysis indicates that the presence
of the under developed peaks is not due to excessive dissipation. Instead, it is due to the
insu�cient resolution in the plot. With a total of 800 grid points in the domain, there is less
than 7 grid points per wavelength. Such a grid is not large enough to fully resolve all the
extrema in the compressed entropy wave. This explains the suppressed extrema in the plot.
Obviously, it is extremely di�cult to capture shock on such a grid for any potential scheme.
However, the CFOR scheme performs extremely well as shown in Figure 4(d), which is
obtained by interpolating the CFOR result in Figure 4(c) to a denser grid (N =1600). The
interpolation is carried out by using the DSC interpolation scheme, i.e. the conjugate low-pass
�lter as given in Equation (3) with q=0. Apparently, the quality of this result is comparable
with the case of �=26. This con�rms that the CFOR scheme works well for shock-capturing
under a very small ratio of grid points and wavelength.
Finally, we consider two large wavenumbers, �=52 and 65, to further test the performance

of the CFOR scheme. A mesh of 800 grid points means a ratio of less than 5 grid points
per wavelength, which is too few for simultaneous shock capturing and high-frequency wave
resolving. The CFOR scheme generates some small amplitude damping for �=52 (which is
not shown). Therefore, we increase the mesh size to N =1600 for these computations. With
this mesh, there are 10 grid points in each generated wavelength for �=52. The resolution
in the post-shock regime is excellent as shown in Figure 4(e). As shown in Figure 4(f),
results for �=65 are also very good. However, there is a visible amplitude damping in the
generated entropy waves. We noticed that the conjugate low-pass �lter is activated more
often in this computation than in previous cases. With the increase of wavenumber �, the
r should also be increased to broaden the e�ective bandwidth so that high-frequency wave
shall not su�er from too much numerical damping. Obviously, the present scheme is capable
of distinguishing the spurious oscillations from the high-frequency oscillation of the entropy
wave, so as to attain high resolution for normal physical properties and capture the shock. It is
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Figure 4. Shock–entropy wave interaction: (a) �=13, N =800; (b) �=26, N =800;
(c) �=39, N =800, before the interpolation; (d) �=39, N =800, after the

interpolation; (e) �=52, N =1600 and (f) �=65, N =1600.
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Figure 4. Continued.
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believed that the potential of the proposed CFOR scheme has been su�ciently demonstrated
by these experiments.

4. CONCLUSION

The potential utility of a newly developed conjugate �lter oscillation reduction (CFOR) scheme
[9, 10] for the treatment of shock and high-frequency wave interaction is explored. The CFOR
scheme is constructed based on the discrete singular convolution (DSC) algorithm, which
is a practical approach for the numerical realization of singular convolutions. The essential
idea of the CFOR scheme is to employ a conjugate low-pass �lter to e�ectively remove
the high-frequency errors (spurious oscillations) created by a set of high-pass �lters, which
are employed to discretize the spatial derivatives in the hyperbolic conservation laws or par-
tial di�erential equations. The conjugate low-pass and high-pass �lters are nearly optimal
for shock-capturing and spurious oscillation suppressing in the sense that they are generated
from the same expression and consequently have a similar order of regularity, approximation,
e�ective frequency band and compact support.
The performance of the proposed scheme is examined by using an advection equation and

two benchmark Euler systems. The accuracy and resolution of the DSC based algorithm is
justi�ed with the 1D advection equation. The �rst Euler system, free evolution of a 2D isen-
tropic vortex [1, 7], has an exact solution and its long-time evolution is a non-trivial task. The
CFOR scheme provides higher-order accuracy for solving the problem and its performance is
compared with many other schemes in the literature [1, 7]. The other Euler system, the shock–
entropy wave interaction, is a di�cult case due to its natural high-frequency oscillations in
the compressed entropy wave, which is easily damped by the excessive numerical dissipation
in most existing shock-capturing schemes. The problem becomes a severe challenge as the
wavenumber increases. It is demonstrated that the CFOR provides some of the best solution
ever available for this problem. The application of the CFOR scheme to more complicated
problems and the adaptive optimization of the control parameters for conjugate �lters are
under consideration.
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