Mathematics is the champion of biomolecular data challenges

Zixuan Cang, Duc Nguyen, Bao Wang, Chengzhang Wang, Menglun Wang, Guo-Wei Wei, Kedi Wu, and Zhixiong Zhao Department of Mathematics, Michigan State University

Feature functional theory (FFT)

Goal: To prediction microscopic and macroscopic relationships in biomolecular data
Basic assumptions:
Representability assumption: there exists a microscopic feature vector that can uniquely characterize, and distinguish one molecule from another

$$
\mathbf{v}_{i}=\left(\mathbf{x}_{i} ; \mathbf{o}_{i}\right)=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n} ; o_{i 1}, o_{i 2}, \ldots, o_{i l}\right)
$$

microscopic features; macroscopic features
Similarity assumption: molecules with similar microscopic eatures have similar macroscopic features.
Feature-function relationship assumption: the macroscopic features, i.e., solvation and binding free energies, of molecule A are functionals of microscopic feature vectors:

$$
\Delta G_{\mathrm{A}}=f_{\mathrm{A}}\left(\mathbf{x}_{\mathrm{A}}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)
$$

Microscopic featurestional theory (FFI)

- Geometric: atomic surface areas, volume \& curvatures
- Topological: Betti numbers
- Graph theory: discrete Laplacian, rigidity \& flexibility

Electrostatic: atomic charges, dipoles, quadrupoles \& reaction filed energies (Poisson-Boltzmann equation)
, van der Waals: Lennard-Jones potentials
Macroscopic features:

- Protein-ligand binding affinities
- Protein mutation energy changes (stability changes)
- Drug partition coefficients

Drug solvation free energies

- Protein-DNA/RNA binding energies
- Protein-protein binding affinities

Blind binding affinity prediction of PDBBind v2007 core set of 195 protein-ligand complexes

Physical modeling

Explicit solvent models (Molecular dynamics, QM/MM, MC) aAtomistic modeling of both solvent and solute molecules. -Accurate but time consuming and subjects to force field errors.

Integral equation models (Ornstein-Zernike, Percus-Yevick and hypernetted-chain equations, RISM, LDFT, etc.) -Continuous function modeling of solvent molecules, while atomistic modeling of the solute.
astill accurate but less time consuming.
Implicit solvent models (Image charge, Generalized Born, Poisson-Boltzmann, Polarizable Continuum) aDielectric continuum modeling of solvent molecules, while atomistic modeling of the solute.
aA good trade off between accuracy and efficiency.
Variational multiscale models (nonpolar, polar and QM) aCouple polar and nonpolar components by variational surfaces. USelf-consistent surface, charge, polarization and energy.

Blind prediction of mutation energies of 2648 dataset Mutation process

Mutation induced disease

Acknowledgement:
This work was supported in part by NSF, NIH, MSU and MBI.
http://users.math.msu.edu/users/wei/

