ZEROS OF FUNCTIONS IN WEIGHTED BERGMAN SPACES
Joel H. Shapiro

1. INTRODUCTION

Throughout this paper, A denotes the open disc in the complex plane, and p is a
finite, positive Borel measure on the half-open interval [0, 1), giving nonzero mass
to each interval [r, 1) for 0 <r < 1. In other words, p places no mass at the point
1, but has 1 in its closed support. We denote the rotation-invariant extension of u
to A by pA: this is the unique finite (positive) Borel measure on A such that

S fdu A = 5{2%; Sj; f(reit)dt} dp(r)

for each f continuous on the closed unit disc.
For 0 < p < =, the Bevgman space Aﬁ is the collection of functions f holo-
morphic in A such that ||f||§ = S |f|pduA < e, This paper deals with the zero sets

of functions in AP . For f holomorphic in £ and not = 0, the zero sef of f in L,
denoted by Z(f) &)r by Zg(f) when we wish to emphasize the domain of f) is the se-
quence of zeros of f in £, ordered by increasing moduli, and repeated according to
multiplicity. If f € Aﬁ then we call Z(f) an Aﬁ—zero set.

We are going to show that for 0 <p < « there is an AE zero set not conlained
in any A?L zevo sel for q > p; and that Ai has a disjoint paiv of zevo sets whose
union is not a zevo setf. Both these results have recently been obtained by Charles
Horowitz [7] for the case du(r) = (1 - r)®dr (@ > -1), and the first one has been
proved for the Hardy spaces of balls and polydiscs in C™ by J. Miles [10] and W.
Rudin [11]. While Horowitz and Miles employ infinite products to produce the re-
quired zero sets explicitly, Rudin constructs gap series with prescribed growth
properties and leaves the zeros to fend for themselves. Rudin’s idea plays the
fundamental role in this paper: we will see that it provides a simple and flexible
means for “constructing” the desired zero sets in Bergman spaces.

In particular, our results have relevance to operator theory. It is known that on
Hilbert space every injective subnormal unilateral weighted shift not similar to the
standard unweighted one is unitarily equivalent to the operator of multiplication by z
on some Aﬁ (the standard unweighted shift is unitarily equivalent to multiplication
by z on the Hardy space HZ%) [2; Theorem 8], [13; Proposition 25, page 84]. It fol-
lows quickly from this and the existence of two disjoint Aﬁ zero sets whose union

lies in no zero set that every such weighted shift has a pair of nontrivial invariant
subspaces with trivial intersection.

It is well known that all these results fail in the Hardy spaces HP, which can be
regarded as the limiting case where p has unit mass at fl} . Since a sequence
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(z,) is an HP zero set if and only if 27 (1 - |z, |) < e [1; Theorem 2.3, page 18], it
follows that all HP spaces have the same zero sets, and the union of two HP zero
sets is again one. In addition, it follows from Beurling’s theorem [5; Chapter 7] and
the factorization theory for HP spaces [1; Section 2.4] and [5; Chapter 5] that any
two nontrivial invariant subspaces of the standard unweighted unilateral shift have
nontrivial intersection.

The arguments used here work equally well in annuli, where they yield informa-
tion about invariant subspaces of bilateral weighted shifts, and even give results
about Bergman spaces of rather general plane domains.

The paper is organized as follows. In the next section we state a general result
(Theorem 2.1) from which all else follows. We show how this result yields the de-
sired Aﬁ zero sets, prove a version in several variables, and discuss unilateral

weighted shifts. The result itself is proved in Section 3. The fourth section con-
tains an extension of the main theorem to annuli, applications to bilateral weighted
shifts, and results on zero sets of Bergman spaces in more general domains. Some
further remarks and open problems are recorded in the final section.

The author wishes to thank the Department of Mathematics at the University of
Wisconsin—Madison for its hospitality while this paper was being written.

2. MAIN RESULT AND FIRST APPLICATIONS

Recall that p is a finite positive Borel measure on [0, 1) with 1 in its closed
support, and A is the rotation-invariant extension of u to the open unit disc A.
We are actually going to deal with spaces more general than A‘B .

Call a function ¢ on (-, m) admissible if it is strictly positive, convex, in-
creasing, unbounded, and

1) (a) sup ¢(t +1)/¢(t) < o (-0 <t < 0);
2.1
(b) lim ¢(t) = 0 (t = -).

For ¢ admissible, let A‘ﬁ denote the collection of functions f holomorphic in A
such that Sq)(loglfl)duA < o, In particular, AE = Aﬂ for ¢(t) = ePt (0 <p < ).
Suppose ¢ is admissible, and let &(t) = ¢(log|t|). Then & is continuous on the

real line, increases to « on the positive axis, and vanishes at the origin (by 2.1b).
The monotonicity of ¢ and (2.1a) quickly yield constants p > 0 and M > 1 such that

¢(t) < MePt for t > 0, and &(2t) < M&(t) for all t. The first inequality shows that

Aﬁ is contained in some AE , while the second yields a sort of subadditivity for &:

(2.2) d(s +t) < M[a(s) +o(t)] (all s, t).

In particular, A‘ﬂ is a vector space under pointwise operations. We can now state
the main result of the paper.

THEOREM 2.1. Suppose ¢ and Y are admissible functions with

Lm Y(t)/¢(t) = = (t —+).
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Then theve is a function { € Aﬁ such that for any positive integev n, any bounded
holomovphic function b on A, and any holomorphic function h on A,

(m + o) ¢ AYD,

wheve Y _(t) = (t/n).

This result with ¢ and y slightly more general was proved by Rudin [10] for
Hardy spaces of balls and polydiscs in ck (k> 1). Our proof is an adaptation of
his, and will be given in the next section, after the promised applications to Aﬂ
zero sets.

COROLLARY 2.2. For ¢ and Y as in Theovem 2.1, thevre is a funclion f in
Aﬁ such that Z(f - c) € Z(g) for any complex number ¢ and any g € A'ﬁ.

Proof, The function f in the conclusion of Theorem 2.1 does the job. If not,
then for some complex number c and some g € Aj, the quotient h = g/(f - ¢) is
holomorphic in A. Hence (f - c)h € A’ﬁ, contradicting the conclusion of Theorem
1.1with n=1 and b = c.

Thus no level set of f lies in any A”[f zero set. In particular, Z(f) is an A‘E

zero set that is not contained in any A¥ zero set. Specializing to the case
o(t) = ePt, and ¢(t) = (2 + p2 ?) eP*, we have ¢ and Y obeying the hypotheses of the
corollary, and A}f c AE for every q > p. Thus for 0 < p <, there is an Aﬂ zevo

set not contained in any Ag zevo set for q > p. (Cf. [11], where all of these com-

ments were recorded for Hardy spaces on the unit ball of ck).

COROLLARY 2.3. Suppose ¢ is admissible and ¢$(2t)/d(t) — © as t — +w,
Then there exist two disjoint A}, zero sets whose union is contained in no Aﬁ zevo
set,

Proof. Let y(t) = ¢(2t). Then ¢ and ¢ satisfy the hypotheses of Theorem 2.1,

so there exists f € A such that (2 - 1)h ¢ A%2 = A for any h holomorphic on A.
Clearly, Z; = Z(f + 1) and Z, = Z(f - 1) are disjoint Aﬁ zero sets; we claim that
their union Z is contained in no Aj zero set. Suppose otherwise; that is, Z C Z(g)
for some g € Aﬁ . Then since Z = Z(f2 - 1), we have h = g/(f2 - 1) holomorphic in
A. Hence (f¢ - 1)h € Aﬁ , contrary to the choice of f.

Note that if ¢(2t)/¢(t) is bounded then Aﬁ is an algebra, hence the union of each
pair of Aﬁ zero sets is again a zero set. The function ¢(t) = log (et + 1) furnishes
an example where this happens; here the algebra Aﬂ can be regarded as an “area
analogue” of the Nevanlinna class.

Corollary 2.3 has an application to operator theory. A bounded (linear) opera-

tor T on complex separable Hilbert space H is called a weighted shift if there are
an orthonormal basis (e;) and a bounded scalar sequence (wy) such that

Te, = Wy e€pnt) for all n.
If the index n runs over the nonnegative integers, T is called unilateral, while if n

runs over all integers, T is bilateral. Clearly T is injective (one-to-one) if and
only if no w, vanishes.
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Weighted shifts are closely connected with analytic function theory (for an ex-
cellent survey of this, see [13]); in particular, the Bergman spaces A;21 are related
to subnormal weighted shifts. Recall that a bounded operator on Hilbert space H is
subnormal if it is the restriction to H of a normal operator N on a larger Hilbert
space which contains H as a closed N-invariant subspace. In our situation, the
operator M, of multiplication by the independent variable z, (M, f)(z) = zf(z), is a
normal operator on the Hilbert space L2(up), and Aﬁ is a closed subspace [2;
Theorem 1, page 473] invariant under M, . Thus M, is a subnormal operator on
Alzl , and an easy calculation [13; page 84] shows that it is unitarily equivalent to the
unilateral weighted shift with weight sequence

(2.3) w, = Bln+1)/8(n), Bm)? = S r2ndu(r), n=0, 1,2 .

The “unweighted” shift w, =1 (n > 0) has a similar description: it is unitarily
equivalent to M, on the Hardy space H .

It turns out that these examples exhaust all possibilities: every injective, sub-
normal unilateral weighted shift not similar to the unweighted one is unitarily equi-
valent to M, on some Aﬁ [2; page 481, Theorem 8], [4; pp. 895-896].

COROLLARY 2.4. If an injective subnovrmal unilateval weighted shift is not
sitmilayr to the unweighted one, then it has a paiv of nontrivial closed invariant sub-
spaces with trivial intersection.

Proof. According to the previous remarks, we need only prove the result for
M, on Ai. By Corollary 2.2 there exist disjoint Ai zero sets Z; and Z, whose
intersection Z contains no Aﬁ zero set. Then S; = {t e Aﬁ: Z(f) D Zj} is a non-
trivial, closed, M, -invariant subspace (j = 1, 2), and

S, NS, = {f e Af: Z2(®) >z} = {0},

which completes the proof.

We close this section with an application to Bergman spaces in several complex
variables, using the following notation to aid the discussion. For two points
z=(zy, =+, z) and w =(w, ---, wy) in CK, let zw be the coordinatewise product
zw = (2w}, 2, W5, *+, 2, Wy). Denote the open unit polydisc (Cartesian product of
k open unit discs) in CX by AK, the closed unit polydisec (product of k closed unit
discs) by AK, and the k-torus (product of k unit circles) by TX. A domain £ c Ck

is called a complete Reinhardt domain if wz € @ whenever z € Q and w € Ak
These are the domains naturally associated with convergence of power series in k
complex variables [6; Section 2.4, page 34].

For £ a domain in C¥ and ¢ an admissible function, let A%(Q) denote the col-
lection of functions f holomorphic on £ such that 5 ¢(log]f|)dV < e, where V is
2k-dimensional Lebesgue measure on §2.

COROLLARY 2.5, Suppose § is a bounded, complete Reinhardt domain in ck.
Then Theovem 2.1, Covollary 2.2, and Corollary 2.3 all vremain tvue when A is ve-

placed by 2 and A] , A/ noand Aj arve veplaced by A¢(Q.), AT n(Q), and A‘P(Q),
y 1
respectively.
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Pyoof. Define P: Ck— C by P(z) =z, and Q: C — CK by
Q(z,) = (z;, 0,0, -+, 0).

Then P(2) is a bounded open disc in the plane centered at the origin; without loss of
generality, we may assume it is the open unit disc A. Then VP-! is a finite, posi-
tive, rotation-invariant Borel measure on A which gives positive mass to every non-
void open subset. Thus VP-1 =4 A, the rotation-invariant extension of a finite,
positive Borel measure g on [0, 1) which has 1 in its closed support.

Thus Theorem 2.1 produces an f € Aﬁ such that (f® +b)h ¢ Aﬁn for any inte-

ger n > 0, and for any b and h holomorphic on A, with b bounded. We claim that
F =f o P plays the same role on Q. The standard change-of-measure formula [3;

page 163, Theorem C] shows that S ¢(log|F|)dv = jcp(log]fl)dpa < %, s0
F € A?(Q).
Suppose that for some n > 0, and for B and H holomorphic in 2, with B

bounded, we have G = (F*+ B)H € A”bn(ﬂ). Then letting g, b, and h be G 0 Q,
B o Q, and H o Q, respectively, we have g = (f® + b) h, where b and h are holo-
morphic on A, and b is bounded. But the next lemma is going to show that the

function g o P(z) =G(z;, 0, 0, -+, 0) is in Alpn(\Q), S0 g € A;ﬁln by the change-of-

measure formula, contrary to the choice of b. This proves the analogue of Theorem
2.1 for R, once we have stated and proved the missing lemma. The analogues of
Corollary 2.2 and Corollary 2.3 follow as before.

LEMMA. Suppose § is a bounded, complete Reinhavdt domain, ¢ is an admis-
sible function, G € A¥(Q), and g(z) =G(z,, 0, 0, ---, 0) (z € Q). Then g € A%(Q).

Proof. For each £ € © the function w(z, £) = ¢(log | F(z£) I) is an n-subhar-

monic function of z (i.e., subharmonic in each variable separately) in a neighbor-
hood of A", since F(z£) is analytic in z and ¢ is convex. Thus

W(z) = 5 w(z, £ dv(t)
Q

is n-subharmonic on A?. Now the rotation-invariance of £ shows that
W(Zl’ - Zn) = W('le’ fe lznl) (z € An),

so the maximum principle applied in each variable separately shows that W in-
creases as the modulus of each variable increases. In particular,

W(r, 0,0, ---,0 <W(r, r, -, r) (0<r<1);
that is,

S ¢(log|g(re) ) av(e) < S ¢(log|G(re)|)av(e) for 0 <r <1.
Q Q

The change of variable z = r{ and the monotone convergence theorem show that this
last inequality persists even when r = 1, which is the desired result.

Finally, we remark that when 92 is smooth enough we can replace the measure
V by the surface area measure o, and give the above arguments for suitably defined
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Hardy spaces. In this case the induced measure ocP-! lives on the closed unit disc,
so it is the rotation-invariant extension of a measure p on the closed unit interval.
The proof we have just given still works, provided p {1} = 0. For example, this will
be the case when € is the unit ball in CK (the situation considered in [11]), but ot
when © = AKX, We leave the details to the reader.

3. PROOF OF THEOREM 2.1
Recall that ¢ and ¥ are admissible functions for which

(3.1) lim  Y(t)/¢(t) = .
t—+o

Let &(t) = ¢(log|t|), and ¥, (t) = ¥,,(log|t|) = ¢(n-1log|t]|). Observe that the “sub-
additive” property (2.2) of & yields

(3.2) B, +t,+--+t) < 2 My,
k=1
(n=1, 2, --).

LEMMA. Thevre exist sequences (t,) and (ay) of positive numbers incveasing to
w, and (ny) of positive integers increasing to <, and (ry) and (p,) with

where M > 1 depends only on ¢, and not on the numbers t;, t,, -+, t,

0<r, <p; <r,<p,<:- —1

such that if u,(z) = akznk and Ry = {r, < |z| < py}, then for k > 2 the following
conditions hold:

k-1
(a) he> 40 a; and t >t => WO/ > kMK
j=1
(b) S(I)(uk) dpp = 1/k2MK;
(3.3) (c) S Blu)dpp > 1/2k2ME;
Rk
(d) lug| > ti on Ry
k-1
(e) I“kl < I“k-1|/5 on _U1 R;.
i

Deduction of Theorem 2.1. Assuming the lemma, we are going to show that the
series

-]

(3.4) f(z) = 27 uy(z)

1
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defines a holomorphic function with the desired properties.

To verify its convergence, fix k > 1 and observe that on R, we have from (3.3e)

that [uk+j| < Iukl/sj for j =1, 2, ---; hence
o

(3.5) 2 fugl < Jwl/4 on Ry, k=12, ..
j=1

Thus the series (3.4) converges uniformly on compact subsets of A to a holomorphic
function f.

To see that f ¢ A® , use (3.2) and (3.3c) to obtain:
m m m
5@(2 uk>duA < S 20 MR (u )dup < 2 k2,
2 2 2
Thus by Fatou’s lemma and the pointwise convergence of 27 uy on A;

S‘P(f)dHA < Sfb(ul)d,uA+E k™% < o,
2

Hence f € Aﬁ .

The rest of the proof hinges on the fact that on Ry the function f is large, and
essentially the same as its kth term u; . To make this precise, we write

k-1 o0
f=S,+ux+ Ty, where Sy = 21 uj and Ty = Ek+1 uj, k=2,3, ---. Thenon
R, we see from (3.5) that [Ty | < |u,|/4, while from (3.3a,d),

k-1

Skl < 20 ay] <t /8 < luy /4.
1
Thus
(3.6) lu|/2 < |f] < 3lue|/2 on Ry  (k=2,3,...).
To complete the proof, we introduce the notations
s
L(g; 1) = ‘211; S log|g(reif)| do

-7
and

My (g o) = = (rei6)]) do
nlg 1) = o 5_7; n(log|g(reif)|)

for g holomorphic in A, 0 <r <1, and 1 admissible.
Fix b and h holomorphic in A with b bounded, and let g = (f* + b)h. We want
to show that g ¢ Atn; that is, S Mwn(g; r)du(r) = S\I'n(g) dpp ==, Let
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B= sup |b(t)|, and A= inf L(h; r). Then A > -, since L(h; r) is a convex
I z | <1 r> r)
function of log r. Since ty 1 «, we can choose K so large that (tx/4)" > B. Fix
k > K and ri <r <py. Then letting C denote a positive constant, independent of r
but possibly varying from line to line, we apply Jensen’s convexity theorem to obtain

My (g; 1) 2 Yoillg 0} = ¢ {LE+b; r) + Lb; 1)}
> ¥ufL+b 1) +A} > ¢y {LE+1; 0},

where the last inequality follows from the boundedness of ¥(t + 1)/y/(t). Now (3.6)
and (3.3d) yield the following estimates, valid on the annulus R :

[+ b| > [£[* - B > (Ju|/2)™ - (6, /9™ > (Jup[/2)™ - (Juy [/D™ > (Juy /9"
For r; <r < p, this inequality yields

Y ILE" +b; 1)} > ¢ {L{(u, /9" 1)} > cy, {nL(u; r)}

= CI,D{L(uk; 1‘)} = CM¢(uk§ r),

where the last line follows because |uk(re19 )| does not depend on 6. Putting all of
this together, we get My, (g; r) > CMyluy; r) for ry <r <py; hence
n

S ¥ (g)dup > C S T(uy) du A -
Ry Ry
But (3.3a,d) implies that ¥(u,) > kMkfb(uk) on R, . Together with the previous in-
equality, this yields S ¥ (g)dup > ckMk S ®(uy) dup > C/2k for all k > K.
Rk R
k
0 > ]
Thus ‘S‘ T (g)dpp > Ek=K S ¥ (g)dpa > Ek=K C/2k = », which completes the
A R

deduction of the theorem from the lemma.

Proof of lemma. The lemma follows from a simple measure-theoretic result
proved in [11; pp. 59-60}: given a > 0, theve exists a sequence (c ) of positive
numbers such that

(a) S ®(c, z™dup = a;

(b) c. T oo;
(3.7)
(e) lim cnzn = 0 uniformly on compact subsets of A;
n

(d) lim ®(c z"dup = @  foreach t>0.
h —eo {Icnzn|>t}
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We prove the lemma by induction. Choose any positive numbers t;, a;, n;; and
any 0 <r; <p; <1. Suppose k > 2, and suppose the five sequences have been suc-
cessfully chosen for all indices less than or equal to k - 1. There is no difficulty in
choosing t, to satisfy (3.3a). Let a = 1/k2MKk in (3.7), and choose ¢, T = accord-

ingly. By (3.7c,d) we can choose n, so large that, letting a; = Cpy » We have
"k nk-1
(3.8) la,z ] < fak_ir1 175, r; <lz| <Py
D 2k . .
and ®(arz Ydpp > 1/2k“M*. Define ry by the equation

{ 'aankl>tk}
{]az"®| > t,.} = {|z] >r,}, and observe that ry > py_; by (3.3a) and (3.8).
Finally, choose r, <p;, <1 so that ®(a, z"H) du A(z) > 1/2k2 MK,

{ri <|z|<pil}
The proof of the lemma, and hence of the theorem, is now complete.

4., OTHER DOMAINS, BILATERAL SHIFTS

Let p be a finite positive Borel measure on the interval (a, 1) with 0 <a < 1.
We assume that yu has the endpoints a and 1 in its closed support. If a =0 we
further assume that ¢ has moments of all negative orders:

(4.1) 5 r?du(r) <, n<0.

Let R = R, be the annulus {a < |z] <1}, let pr be the rotation-invariant exten-
sion of ¢ to R, and for each admissible function ¢ let A‘ﬂ (R) be the collection of

functions f holomorphic in R such that S(f)(loglfl) dpp <. Note that (4.1) and the

growth condition ¢(t) = O(eP!) insure that the functions z™ belong to Aﬁ(Ra) for all
integers n (positive and negative), even when a = 0.

In this section we are going to extend Corollaries 2.2 and 2.3 to rather general
plane domains, and prove an analogue of Corollary 2.4 for bilateral weighted shifts.
Everything depends on the following observation: the proof of Theovem 2.1 goes
thvough unchanged when the unit disc A is veplaced by the annulus R, . In fact the
only property of A that we used, other than its circular symmetry about the origin,
was the convexity of L(g; r) for g holomorphic in A. But this holds as well for g
holomorphic in R, and a <r <1 [1; page 10, “Remark”.], so we have:

THEOREM 4.1. For 0 <a <1, Theorem 2.1 as well as Corollaries 2.2 and

2.3 remain true if Aqb, A‘ﬁ and A;'l:

The function £ can still be taken to be holomorphic on the open unit disc.

1 ave veplaced by their counterparis on R, .

The analogue of Corollary 2.4 is a result about bilateral weighted shifts. It is
not too difficult to see that the operator M, of multiplication by z on Aﬁ R,) is
unitarily equivalent to the bilateral weighted shift with weight sequence given by

(2.3), where now n runs through agll integers. Clearly, M _ is subnormal on Ai(Ra).

zZ

Two other subnormal bilateral shifts come to mind. The first is M, on LZ(T),
where T is the unit circle with normalized Lebesgue measure. In this case M, is
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the unweighted shift: w, = 1 for all n. The second is M, on HZ(Ra), the Hilbert
space of functions f holomorphic on R, for which

m
053§ s § leefzan+ {7 fe,eit)fzas <o
a<r1<r2<l -

It turns out that every injective bilateral subnormal weighted shift is unitarily equi-
valent to one of the above operators M, [13; Proposition 27, pp. 87-88], and is in-

vertible if and only if it is not equivalent to M, on Aﬁ (Ry).

Now a subspace that is invariant under both an invertible operator and its in-
verse is called doubly invaviant. A version of Beurling’s theorem for HP spaces of
annuli (see [12; Section 11 and 12] or [14]) shows that each pair of nontrivial doubly
invariant subspaces of M, on H2(R,) (a > 0) has nontrivial intersection. For M,
on L2(T) this is no longer the case, and the analogue of Corollary 2.3 for Aﬁ(Ra)
shows that it also fails on that space. In summary:

COROLLARY 4.2. If cm invertible, injective, subnovmal bilateval weighted shift
is not similar to M, on H2(R,) (a > 0) then it has a paiv of nontrivial, closed,
doubly invaviant subspaces with tvivial intevsection.

Theorem 4.1 also gives information about zero sets in Bergman spaces of plane
domains other than discs and annuli. X € is a plane domain and 0 < p < %, then the
Bergman space AP(Q) is the space of functions f holomorphic on € such that

S IflpdA < 9, where dA is planar Lebesque measure. Call a component I'y of
Q

the boundary of  free if it lies in an open subset of the plane which intersects no

other boundary component, and nonirivial if it is not a single point.

COROLLARY 4.3. Suppose Q is a plane domain with a nontvivial free boundary
component. Then for 0 < p < «,

(a) there is an AP(Q) zero set not contained in any AUQ) zevo set for q > p,
and

(b) theve ave two disjoint AP() zero sets whose union is contained in no AP(S)
zero sel,

Proof. Let S denote the Riemann sphere, let I' be the nontrivial free boundary
component of £, and let 24 =S\I. Then Q, is a simply connected domain con-
formally equivalent to the unit disc A; and under any such equivalence I' corre-
sponds to the unit circle T in the sense that whenever a sequence in §); eventually
leaves every compact subset, its image in A does the same.

Let U be a one-to-one conformal map taking ; onto A, and let V be its in-
verse. Then U(R2) is a subdomain of A which, because I is free, contains an an-
nulus R =R, for some 0 <a < 1. Let du(r) =rdr on the interval a <r <1, so
AL (R) = AP(R).

Proof of (a). Theorem 4.1 provides an f € AP(R) kolomorphic orn A, with

fh ¢ A1(R) for any q > p and h holomorphic in R. We claim that Z = Zg(f o U) is
the desired zero set.

Since the derivative U' is holomorphic in the simply connected domain £, and
never vanishes there, 1t has a holomorphic 1/pth root, which we denote by (U' )l /p.
Let F(z) = £f(U(z))U"'(z)2/ P, z € Qy (recall that f is holomorphic on A). Then the
change of variable w = U(z) yields
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S |F|PdA__<_S |F]PdA=S |f|PdA§S |f|[PdA +7a% max [f(w)| < =.
Q Qg A R

w|<La

so F € AP(Q) and Z(F) = Z.

Now suppose Z lies in an A9(Q) zero set for some q > p. Then there exists H
holomorphic on € such that HF = G € AY(Q). Let g(w) = G(V(w))V'(w)2/9 for
w € U(R). Then the change of variable z = V(w) yields

S

glaa < | fgleaa = | |g[eaa <=,
R u() Q

so g € A9(R). But the equation HF = G yields
(HoV) f(V')'Z/p =(HoV)(FoV)=GoV = g(‘VA')'Z/‘1

on U(R), hence on R. In particular, if h = (H o V) (v')-2/P*2/4  then g =fh on R,
with h holomorphic on R and g € A%(R). But this contradicts the choice of f; hence
7 cannot be contained in any A9(R) zero set and the proof of (a) is complete.

Pyroof of (b). The idea is the same as before. Choose f € AP(R) by Theorem
4.1 so that (f2 - 1)h ¢ AP(R) for any h holomorphic on R, and so that f is holo-
morphic on A. Let f; =f+1, f, =f - 1, and Z; = Zg(f; o U) for j =1, 2. We claim
that Z, and Z, are disjoint AP(Q) zero sets whose union Z contains no AP(Q) zero
set. Clearly, Z; and Z, are disjoint, and if we let Fj = (f;j o U) (UM2/P on Qo
(j = 1, 2), then as before F, and F, € AP(R), and Z; = Z(F;) (j = 1, 2). Thus Z; and
Z, are AP(Q) zero sets.

Suppose Z = Z; U Z, = Zp(F} F2) is contained in an AP(Q) zero set. Then
there exists H holomorphic on £ suchthat F; F,H=G € AP(Q). Letting
g =(G o V)(V)2/P, we have g € AP(R), and on U(S2) we have g = (f% - 1) h, where
h=(V")-2/P (H o V) is holomorphic on U(£2), hence on R. This contradicts the
choice of f, shows that Z lies in no AP(®) zero set, and completes the proof of the
corollary.

5. SOME REMARKS AND PROBLEMS
In this section we use the following notations. For g holomorphic in A, let

T

Mg(g; r) =§17; [f(rei®)|Pdé (0 <p <), and My(g; r) = lm|a<x lg(z)|. The let-
- z r

ter C is used as in Section 3: it denotes a positive constant which may increase

with successive appearances in a proof, but never depends on r. Finally, if @ and B

are complex-valued functions on some set, then @ ~ 8 means that both a/B and B/«

are bounded on that set.

(i). The function b need not be bounded. The proof of Theorem 2.1 goes through
virtually without change if we merely require of b that My(b; r) = o(M(f; 1)),
r — 17 . It would be of interest to have better results in this direction. For exam-

ple, does the conclusion of Theorem 2.1 still hold if we only require b € A‘ﬁ?

(ii). The space AL,. This is the special case du(r) = (1 - r)®dr (@ > -1) con-
sidered by Horowitz in [7]. For these spaces we can write down an explicit function
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f that works in Theorem 2.1 (with ¢(t) = ePt, ¥(t) = ePt, g > p), and illustrates the
point made in (i) above.
PROPOSITION 5.1. For a > -1 and 0 <p <q <, choose X >0 so that
o0
p <(a+1)/x <q. Then the function f(z) = Ek:O Ak 52K 4o 4 Ab, but

/
(™ +b)h ¢ AG "

Jor any inleger n > 0 any h holomovphic in A, and any b holomorphic in N with
M (b; r) = o(1 - 1)~ ) r— 1-.

Proof. Let ry = e"‘/zk, so as k — © we have r, — 1-, and

k
(5.1) (1-r) ~ -logr, =2/2K,

k
Let uy(z) = 22k 22" .| Then fairly straightforward estimates [6; Sec. 8.5, pp. 96-97]
show that

(5.2) [t(z)| ~ |ulz)] ~ (1 - |z]|)2

for |z| =r, (k=1,2, ). Since M p{f; r) increases with r [1; Theorem 1.5,
page 9] and lukl is rotat10n—1nvar1ant we have from (5.1) and (5.2) that for
rp Sr <o,

Mp(6 ©) < MO(5 1) < CMD(uy; 1) = CMoluy; 1y)° < C(1 - )™ < crek,

r

Moreover, by (5.1), S (1-1)%dr ~ (1 -1y ;)% ~ 27(¥F 1)k 54 Jetting
-1

A = My(f; rg), we have

S Mo 1) (1 - 1)%r < A+ Z) M (€ rk)5 (1-r)%dr

Tr-1
<A+c X ale-larD]k £ o
k=1

the last sum being finite because @ +1 > Ap. Thus f € Ag .
To show that (f*+b)h ¢ A%y/n , we proceed as in the proof of Theorem 2.1 to
show that if g = (" +Db)h, then for r_; <r <1y,

g;*r;(g, r) > CMi(f 1y, ;) > C2Mk,

where the last inequality follows from (5.1) and (5.2). Then a calculation like the one
we just performed shows that
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o0 rk
S Mg(g; 1) (1 - r)%dr > E}l Mglg; r)_,) ‘S‘ (1-r)%dr
= TRl

>c 5 olra-(at+1)]k _ w,
k=1

where now the sum diverges because @ +1 <q. Thus g ¢ A?y , and the proof is
complete.

(iii). Move geneval domains. It would be of interest to see whether Corollaries
4.2 and 4.3 hold in any plane domain (or for that matter any domain of holomorphy in
ck) for which the corresponding Bergman spaces are nontrivial.

(iv). Subsets of zevo sets. In addition to proving Corollaries 2.2 and 2.3 for the

spaces AL, Horowitz showed in [7] that any subset of an AL zevo set is again a

zevo set. We do not know whether this result holds for all AE , and the methods of

this paper give no information about the problem.

Horowitz [8] has also used his methods to show that every AL, functionis a
product of two Agp functions. Is this true for AE as well?
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