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ZEROS OF RANDOM FUNCTIONS
IN BERGMAN SPACES

by Joel H. SHAPIRO (*)

1. Introduction.

Let H be a finite, positive, rotation invariant Borel measure on the open
unit disc A of the complex plane, and suppose that a gives positive mass to
each annulus r < \z\ < 1. For 0 < p < oo the weighted Bergman space A^
is the collection of functions / holomorphic in A with

n/ii?= fi/r^< ^.

Let A^ = U A;, so A^ <= A^. For / holomorphic in A, let Z(f)
q>p

denote the zero set of /, with each zero counted according to its multiplicity.
If / belongs to some class g of holomorphic functions we frequently refer to
Z(/) as an ^-zero set.

Recently we showed [7] that for each such u and p there exists f in A^
such that:

(a) Z(/) 15 contained in no A^ zero set, and

(b) Z(/-hl) uZ(/—l) lies in no A^2^ zero set, hence in no A^ zero set.

These results continued the work of Charles Horowitz [2] and Walter
Rudin [4]. Horowitz considered the special measures

d[i(z)=(l^\z\rdxdy (a>-l),

(*) Research partially supported by the National science Foundation.
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and used infinite products to construct the desired functions; while Rudin got
similar results for Hardy spaces on the unit ball and polydisc in C" by means
of an ingenious « multiplier argument ». The proof in [7] used Rudin's idea,
with the desired function / constructed as a gap series.

The point of this paper is that Rudin's method (which we will describe in
the next section) also works very naturally in the context of random power
series. We show that a Gaussian power series which almost surely lies in
A^\A^ must almost surely have properties (a) and (b) listed above.

More precisely, let {Q^ be a sequence of independent complex Gaussian
random variables with mean zero and variance one [3; Ch. 9, sec. 3, p. 118].
Suppose (a^ is a sequence of complex numbers with

(1-1) limsup laj^" ^ 1,
n-»oo

and consider the random power series

(1.2) f(z) = f ^z\
n=0

Since almost surely |̂ | = 0 (^/iogn) [3; Ch. XI, sec. 4, p. 121, Prop. 3],
condition (1.1) insures that with probability one the series (1.2) converges
uniformly on compact subsets of A to a holomorphic function. The quantity
which controls the random behavior of / is its variance cAz), defined for
z e A by

(1.3) ^(z)==^{|/(z)|2}=SJ^|2|z|2n.

The main result of this paper is the following.

THEOREM 1. - Suppose f is defined by formulas (1.1) and (1.2). Then

(a) the following are equivalent :

(i) Of€U(^) but ^L^(H).

(ii) With probability one : fe A^ but f A^ .

(iii) With probability one : fe A^ but Z(f) is not contained in any A{^
zero set.
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(b) If any (hence all) of the above conditions hold, then with probability one :
Z(/+l) and Z( /—l) are A^ zero sets, but their union is not even an A^2^
zero set.

The most important of these results are (fc), and the implication (i) -> (in)
of (a) : these imply the corresponding results in [7]. For their proof we require
only the most basic facts about Gaussian random variables. The other non-
trivial implication in (a) is (ii) -> (i), which follows from a beautiful result of
X. Fernique concerning moments of vector valued Gaussian random
variables. These matters, Rudin's multiplier argument, and some other
preliminaries are reviewed in section 2. Theorem 1 is proved in the third
section, and the paper closes with some remarks and open problems.

I want to thank my colleague Joel Zinn of Michigan State University for
several interesting discussions, and especially for pointing out Fernique's
theorem to me.

2. Preliminaries.

(a) Rudin's multiplier argument. As exploited in both this paper and [7],
Rudin's idea is this : if the zero set of / e A^\A^ is contained in some A^
zero set, then fh e A^ for some h holomorphic in A. Since h decreases
the growth of /, it must have relatively small values where / is large.
Assuming (without loss of generality) that h(Q) = 1, we obtain from the sub-
harmonicity of h :

i r2"
(2.1) 0 == log |^(0)| ^ — log \h (re1^ dQ

271 Jo

for 0 ^ r < 1, which forces h on the circle |z| = r to balance out any small
values with appropriate large ones. Therefore if / e A^ does not get into A^
because it has large values on substantial portions of certain circles
\z\ = r^(r^ -^ 1 — ) , then we should expect that no h holomorphic in A can
multiply / into A^ . We will show in the next section that any Gaussian
series (1.2) which almost surely lies in A^\A^ will almost surely be such an /.
This complements the work in [7] where such fs were constructed as gap
series.

(b) Gaussian random variables. The reference for all of this material is [3;
Ch. XI, sec. 1-4]. From now on (^)o3 denotes a sequence of independent
complex Gaussian random variables with mean zero and variance one,
defined on a probability space (Q,8-,Pr). In particular, (y is an orthonor-
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mal sequence in L^Q.g.Pr), and for each Borel subset B of the complex
plane :

Pr{^ e B} = 1 ^W)/2 dx d y .
^ J J B

, e B } =

From this it follows quickly that for 0 ^ ^ < oo,

Pr{|U > ?i} = ̂ 2

[3; Ch. XI, sec. 4, p. 121, formula (3.1)]. A crucial property of the sequence KJ
is that if (aj is a complex sequence with ||a||j = £|aJ2 < oo, and if
Z = £^, then the random variable Z/\\a\\^ has the same distribution as
^. In particular :

(2.2) Pr{|Z| > ^\\a\\,} = e-^\

and for 0 < p < .'oo :

(2.3) ^{|Z|^ = q(^{|Z|2})^2 = q||^||^,

where Cp is independent of (^), and ^ denotes integration with respect to
Pr. These are the only properties of (Q that we require for the main part of
the proof of Theorem 1.

We remark in passing that the statement «/ has property Q with
probability one » (or « almost surely ») means that there exists E e g with
Pr {E} = 1 such that / has property Q for every co e E. We do not require
{coeO : / has property Q} to belong to g. Similar remarks apply to
statements like « with probability ^ 8, / has property Q ».

(c) Interchanging measure and probability. Some form of the next result
occurs frequently in applications of probability to analysis.

LEMMA A [3; Ch. V, sec. 4, p. 42]. - Suppose (Q,g,P) and (T,93,w) are
probability spaces, and E e g (x) 33 (product sigma-algebra). Define the usual
cross-sections;

E" = [t e T : (oy) e E} (co e 0)
E, = { c o e Q :(ov)eE} (t eT),

and suppose 0 ^ 9 , r| ^ 1. // P{EJ ^ T| for [m] a.e. t in T, then

(1-9)T1
P{coeQ ^(E") ^ 9r|} ^

1-9T1
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Proof. - Let A = {co e Q : m(EW) ^ 9r|}. Then by FubinFs theorem :

r| ^ P{E,}dm(t)
JT

m(E(o)dP{w)
Jn

= 4- m(Ea)dP{w)
JA Jn\A

^P(A)+6r|[l-P(A)],

and the result follows upon solving for P(A).

(d) Fernique's Theorem. For fe A^ let ||/|| = ||/||̂  if p ^ 1, and ||/||̂
if 0 < p < 1. Then ||. || is a norm on A^ if p ^ 1, and a « p-norm » if
0 < p < 1 (that is, \\af\\ = [am/H when 0 < p < 1). It is not difficult to
use the subharmonicity of 1/1^ to check that for each z e A the linear
functional of « evaluation at z »

/-/(z) (/eA£)

is continuous on A^ (0 < p < oo). From this it follows that A^, in the
metric induced by ||.||, is complete, i.e., it is a Banach space when p ^ 1 and
a « p-Banach space » when 0 < p < 1. Even when 0 < p < 1 there are
enough continuous linear functionals to separate points (the point evalua-
tions, for example), and the Borel structure induced on A^ by the « norm »
topology coincides with the one induced by the topology of uniform
convergence on compact subsets of A (since the closed unit ball of A^ is
closed in this weaker topology).

From these considerations it follows routinely that if (u^) is a sequence in
A^ for which the Gaussian series Z = S^i^ converges almost surely in A{;,
then, even when 0 < p < 1, Z is an A^-valued Gaussian random variable
in the following sense : if Z' and Z" are independent and similar to Z, then
so are (Z' + Z")A/2 and (Z'-Z")^.

Thus X. Fernique's Theorem [1] (or more precisely when 0 < p < 1,
its proof) applies to Z, and shows that the tail distribution Pr{||Z|| > ?i}
decays exponentially as ^ -> oo. In particular,

(14) ^{W} < oo,

which yields the following characterization of Gaussian Taylor series which
a.s. belong to A^.



1()4 JOEL H. SHAPIRO

LEMMA B. - Suppose f and CT^ are given by (1.!)-(!.3). Then f e A^
almost surely if and only if a. e L^). p

Proo/ - For any / given by (1.1) and (1.2), we have from (2.3) and
Fubini's Theorem :

f r
a^ = C^ ^{I/I^U = C;^{||/||̂ .

^ j

Thus a^eL^n) implies ^{||/|[^ < oo, hence ||/||̂  < oo a.s. Conversely,
suppose ||/||̂  < oo a.s. We claim / is an A^-valued Gaussian random
variable. Indeed, the fact that the integral means

(2.5) M^(/;r)- ( 2 n Wre^dQ
271 Jo

increase with r [6; Theorem 17.6, p. 363], along with the, monotone
convergence theorem, show that the Taylor series (1.2) of / is a.s. Abel
summable to / in A^. Thus by [3; Theorem 1, Ch. II, p. 11] (whose proof
works even when 0 < p < 1), the series converges a.s. in A^ to /; hence /
is Gaussian. From (2.4) we see ^{||/||^} < oo, hence by the calculations at
the beginning of this proof, a^ e L^). This completes the proof.

(e) Two technical lemmas. We close this section with two lemmas needed
to deduce Theorem 1 from the essential probabilistic arguments, which will
be isolated in Proposition 2 of the next section.

LEMMA C. - Given [i as usual, and 0 < p < oo, there exists a finite
positive rotation invariant Borel measure v whose closed support is {\z\ ^ 1},
and such that A^ = A^.

Proof. - For / holomorphic in A the integral mean Mj; (/; r) defined
by (2.5) increases with r, so if / e A^ then

(2-6) 27iM^(/;r)< ||/||^(r)-1

where

U(r) = n { z : r ^ |z| < 1}.

Our standing hypotheses on the measure ^ insure that ^(r) > 0 for each
0 < r < 1, and ^(r) [ 0 as r f 1. In particular [i is a bounded, strictly
positive, measurable function on [0,1), hence the measure

dv(z) = d[i(z) + H(|z|) dx dy/n
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has closed support equal to {|z| ^ 1}, and dominates ^. Since (2.6) insures
that

f 1/l^v ^ 2||/||^
JA

we see that A^ = A^, as desired.

LEMMA D. — Suppose y 15 a finite positive Borel measure on the interval
[0,1) which is either (i) purely atomic, or (ii) continuous with closed support
equal to [0,1]. The for 0 < a < 1 :

(2.7) y^l)"" ^y(r) < oo.
Jo

Proo/ - (i) Suppose y is purely atomic, say with mass y^ at r^

(n = 1,2,...), and no mass anywhere else. Let p^ == ^ y^. Then the
k^n ,

integral in (2.7) is just the series ^p^y,,, whose convergence for 0 < y < 1
is a standard exercise in advanced calculus (see [5; Ch. 3, pp. 79-80, problem
12(fc)] for the special case a = 1/2).

(ii) If y is continuous with closed support = [0,1], then the function

y(r) == y([r,l]) (0 ^ r < 1)

is continuous and strictly decreasing on [0,1). The integral in (2.7) can then
be interpreted as the Riemann-Stieltjes integral

f1
v^'^vM

Jo

which, after making the change of variable x = v'^r) (composition
inverse), and paying due respect to the singularity at r = 1, becomes [5;
Theorem 6.19, p. 132]

f1

x " dx < oo .
Jo

This completes the proof.

3. Proof of the Main Theorem.

We isolate the essential part of Theorem 1 in the following proposition,
which we state in somewhat more generality than actually required. The
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following notations help the exposition. As in the proof of Lemma C, let

H(r) = u { z e A :r ^ [z| < 1}.

For b holomorphic in A and 0 ^ r < 1 , let

M,(b;r)=max{|fc(z)|:|z| = r}

and write

b^e19) = fc(n?19).

From now on, / always represents a Gaussian power series as given by (1.1)
and (1.2), with a^ given by (1.3). We also assume that the measure u has
total mass 1, so 0 < n(r) ^ 1.

PROPOSITION 2. — Suppose that

^f^W" n(3.1) hm sup —————— > 0.
r-i- -logn(r)

Then the following holds with probability one : for each positive integer N,
every b holomorphic in A with

limsup M^(b,r)[t(r)^P < 1,
r-»-l -

and every h holomorphic in A, we have

(/^^Af.

Remark. — For part (a) of Theorem 1 we need only the case N = 1,
b =. 0, while for part (b) we require N = 2, b = — 1. However, these
special cases are no easier to prove than the general proposition, which gives
some further information regarding remark (i), section 5 of [7].

Proof. - Let T denote the unit circle {|z| = 1}, m normalized Lebesgue
measure on T, and u^ the unique finite positive Borel measure on [0,1)
such that

f 9^= \ \\: g(rt)dm(t)\d^(r)
JA Jro,i) UT )JA */[0,1) UT

for each g <= Co([0,l)).

Fix k > 0. We are going to show that the desired result holds with
probability at least k/(k 4-1); hence with probability one, since k is
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arbitrary. In this regard the reader should note that although the set
{(0 : /N ^ A^} is a tail event, the set we are interested in :

{co : (f^-{-b)h t A^ for all h, b as in the Proposition}

is not (in fact it is not even clear that it is an event), so the zero-one law does not
apply.

According to the hypothesis (3.1) there is a positive number 8 and a
positive sequence r^-> 1 — such that

^N^)^ -Slog^rJ.

Let ^-1 = a^)H(r,)^, so

(3.2) 0 < ̂  < —————— ̂  0.
- 8 log p(r^)

For each positive integer n, (2.2) insures that for all t e T we have

(3.3) Pr{|/M| > ^a^(^)} = e-^ = TI,,

where T^ -> 1 because ^ -> 0. Let

E(n) = {((o.QeQxT : |/(r̂ )| > ̂ a^(^)}.

Then using the notation of Lemma A, equation (3.3) asserts that
Pr{E,(n)} = T|̂  for every t in T; hence Lemma A, with 6 = r|^, shows
that with probability at least

^T1,(1-T1;.)
Pn i -.k+lk + 1I n i - Tir1

we have m{EW(n)} ^ ^+1 (w = 1,2,...). Since ?„ -^ fe/^+1) as n -> oo,
it follows that with probability ^ ^c/(fc+l) :

(3.4) ^E^n)} ^ n^1 for infinitely many n.

Let F = {coeO : (3.4) holds}; then Pr{F} ^ ^+1). We are going to
show that for each co e F ;

C^+^Ar

whenever h, b, N are as in the hypothesis of the proposition. This will
complete the proof.

To this end, fix (0 e F and fc, N, and h. Suppose, as we may, that
h(0) = 1, and choose 0 < e < 1 so that

lim sup M^(fc; r)^(r)^P < e.
r-»l -
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Letting R^ = [r^ ^ \z\ < 1} we have :

f KP + b)h\^ d^=\ \ \ [(/N + ̂ Ar dm} d^ (r)
JR^ J[^,l) UT J

^ [ exp L/N) f log K/^AI^} ̂ i^
^i) I JT J

by the arithmetic-geometric mean inequality. Let I(r) denote the integral

inside the braces. Then using (2.1) and the fact that log \g^\ dm increases

with r for any holomorphic function g on A [6; Theorems 17.3 and 17.5,
pp. 362-363] we obtain for ^ ^ r < 1 :

IM ^ log [/N + b,\ dm
IT

M^
-I,^ log |/^ + b,J dm

•/ T

^ f logii/^-M^.JE^H)
Since co e F, this yields for infinitely many n :

I(r) ^ f log lE^a^rjr - M,(^rJ|^m
JE»

^ miE^n)} log [H(rJ-^ - en^)-^]
^ ^+1 log [(1 -e)^^)-^] (by (3.4))

whenever r^ ^ r < 1. Thus, infinitely often :

f IC^+^r^ f exp{(p/N)I(r)}^(r)
JR" '^'^ f e + i^(l-e)^^)1-^^1.

Recalling the definition of r|^ :

i - n^1 = i - e-^^ ^ (^+I)TC^,
so

H(^)1-11^1 ^ [H^]^^^
^ {^(rj17108^-^^^ (by 3.2)
^ ^-5(k+l )n
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Thus for each co e F :

limsup \(f^+b)h\P^d[i ^ (l-e)^-5^1)71 > 0n-00 JR^

hence (/N+fc)^ ^ A^. This completes the proof.

Deduction of Theorem 1. - In part {a) the equivalence (i) -> (ii) is
immediate from Lemma B (section 2), and the implication (iii) -> (ii) is trivial.
So it remains to show that (i) implies both (iii) and (b). In view of Lemma B it is
enough to show that if a^ t L^ (n), then with probability one : Z(f) is not
contained in any A^ zero set, and Z(/+l) uZ(f-l) is not contained in
any A^2^ zero set.

So suppose o^ t L^n). We will show in a moment that this implies

(3.5) lim sup (^(^(r)1^ = oo

for each q > p, which yields :

,. ^(r)H(r)^hm sup —————— = oo
r-i- -logn(r)

for each q > p . Thus Proposition 2 (with ^ replacing p) guarantees that
for each q > p it is almost sure that

(/^^Af^

for every h holomorphic in A, b constant, and N=1,2 , . . . . Since a
countable intersection of sets of probability one again has probability one, it
follows upon quoting the above result for a sequence q^ [ p that almost
surely: C/^+fc)/! ̂  A^ for all fc, h, N as above.

Taking N = 1 , ^ = 0 we see from the discussion of section 2 (a) that a.s.
Z(/) is contained in no A^ zero set, which proves (iii). Taking N = 2 and
b = — 1 we see that a.s.

z^^za^i) uz(/-i)
lies in no A^2^ zero set, which proves (b).

It remains only to prove that (3.5) holds for each q > p . Suppose not.
Then for some q > p :

(3.6) a^(r)=0(H(r)-^) (r ^ 1 -).
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Fix p < s < q. We will show that a ^ e L5^), contrary to the hypothesis
on Oy . By Lemma C we may assume that the measure H has {|z| ^ 1} as
its closed support, hence the closed support of Hi is the interval [0,1]. Thus
Hi = Yi + Y 2 » where y^ is purely atomic and y^ is continuous with closed
support [0,1]. By (3.6) we have

a/r)=0(y,[r,l)-^) ( r ^ l -)

for f = 1,2; hence by Lemma D,

fl0f(r)sdy,(r)<co (i == 1,2),
Jo

hence o^ e L^n) : a contradiction. This completes the proof of Theorem 1.

4. Concluding Remarks.

Lemma B suggests that Proposition 2 should be capable of improvement.

CONJECTURE. — Iff is not a.s. in A^ (hence by the zero-one law, a.s. not in
A^), then a.s. (j^+b)h t A^ /or flH fc, h, N a5 in the statement of
Proposition 2.

The arithmetic-geometric mean inequality seems to give away too much
to get this result : In the case N = 1, b =. 0, Fernique's inequality might be
a possibility. It is not difficult to check that if fh e A^ a.s. for some fixed
holomorphic h in A, then fh is an A^-valued Gaussian random variable.
Then Fernique's inequality, the rotational symmetry of or^(z), and the
monotonicity of M^(/i,r) yield :

0) >S{\\fh\\p,}

= (^m}d\i
= jwiw^
=C^ ja^^i

= C ^ f ^(rYM^(h;r)d^(r)
Jo

^C^|a?^,
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hence / e A^ a.s. But this merely shows that :

/ i A^ a.s. => V/i holomorphic in A; fh^ A^ a.s.

whereas the desired result is :

/ ^ A^ a.s. ==> a.s. : fh ̂  A^ Wi holomorphic in A.
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