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INTRODUCTION

describe, mostly without proofs, some results on the boundary
havior of harmonic functions in classes modeled on the space D of
nctions harmenic in the open unit disc with finite Dirichlet in-
gral. Detailed proofs will appear elsewhere [6].
For our purposes, D is best regarded as the space of Puisson
tegrals of functions f square integrable on the unit circle 7,
th the additional restriction:

S inl|fon]? < =, (1)

-

are f(n) is the wnth Fourier coefficient of f. Such f are somewhat
re regular than "typical® L? functions, but still not necessarily
ntinuous, or even bounded. We study how the additicnal regularity
f affects the boundary behavior of its harmonic extension u.
This type of problem was congidered by Salem and Zygmund
1, who showed that the Fourier series of each f ¢ LTy satisfy-

g {1) converges at each point of I, with the possible exception of
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Harmonic Extensions of 7.7 Potentials

t of logarithmic capacity zero. This implies that each u € D
a2 radial limit at each point of T, with the possible exception
uch 2 set. 1In fact, the same is true for nontangential limits.
Our contribution is to show that if larger classes of
ptional sets—intermediate between "log-capacity zerce" and
sure zero"-—are allowed, then the functions in D will converge
in regions that meet the unit circle tangentially. We describe
precise relationship between the curvature of the approach
on and the size of the exceptional sets for convergence within
e regions. In particular, we show that each w ¢ D has at
st every £ ¢ T & limit as 2 - { through an approach region
ng exponential contact with T at Z.
To make these matters precise, consider the following

ons in the open unit disc U. If ¢ > 0 and ¥ 2 1, let

L. (8 -¢
sxn( 5 )
LR AN

szﬁ( 5 )E ] .

@y.o{®) has order of contact Yy with T at e®¥, while &, .(¥)

Y
@, (#) =<retb e J:1 -pr > ¢

e if ¥ > 0, let

€. @) =creif e Ul - p > exp[}c

exponential contact. wNote that the regions @, (¥) are the
1 nontangential approach regions.

We say a function u defined in U has @.~limit I at el? if
+ L as 3 » e'¥ within @y .(%,) for every ¢ > 0. A similar
nition applies to &y~limits. We can state the classical results
his language: if f ¢ 52(T) and u is the Poisson integral of fF,
#“ has an @,~limit at almost every point of . If, in addition,
tisfies (1), then u has an &;-limit at every point of 7, with
possible exception of a set of logarithmic capacity zero. OQur

its for the space D can be stated as follows.
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eorem 1. Suppose 1 ¢ D. Then
(a} U has an &,-limit at almost every point of T.

(b} If, in addition, 0 < 8 < 1/2 and v = (1 - 28)"%, then U has
an @y-limit at every point of T, with the possible exception

of a set of {, ,-capacity zero.

Here the capacity e, » 1s the analogue for the unit circle
the corresponding Bessel capacity on F” (see (5], for example).
coincides with the classical capacity 01_25 discussed by Kahane

d Salem in [3; Chapter 3, p. 33}. In particular, Cis2,z is the
garithmic capacity, so when £ = 1/2, our result coincides with
e previcusly mentioned one of Salem and Zygmund.

The correct setting for this work is a more general one,
tivated by the fact that D = P[X * [°], where P is the Poisson
tegral for the unit disc,

K(B) = is:m

8 é'l/z
)

N 2: (inf " l)~l/22in8'

4 * denotes the convelution on T. We prove a generalization of
gorem 1 valid for the classes PIE * L¥] where 1 2 p < ®and X is
positive, integrable, even function on [-7, ] that is decreasing
(0, #1. BAs a by-product of cur work, we answer a guestion of

5. Shapiro and A. L. Shields concerning the zeros of holomorphic
nctions in classes P[K * 7). fhese results are stated in detail
the next section.

Az the reader has probably guessed, our tangential conver-~
nce thecrems follow from weak-type estimates on maximal functions
sociated with our approach regions. For p > 1, we use Hansson's
rong-type capacity inequality [2] to cbtain strong-type maximal
timates, which are in turn crucial to the proof of part {(b) of
gorem 1 and its generalizations. We state these results pre-

sely in Secs. 3 and 4. In Sec. 5 we show how the strong-type
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imal estimates enter intc the proof of Theorem 1, part {b); and

jec. & we discuss Carleson measures for the classes P[E * Lp].

NGENTIAL CONVERGENCE THEQREMS

xrefer to work in the upper half-space R:+1 of (n + 1)~-dimensiocnal
-ldean space, instead of the unit disc; so A" replaces the unit
:le as the boundary. We write L¥ for LP(R™) and denocte points
i by (@, y) withx € B® and y > 0. P will denote the Poisson
:igral for R2+1, with {Py :y > 0} the corresponding Poisson

iels on F". * will denote convolution on R™.

intial Spaces and Dirichlet-Type Spaces

wse X is a kerne] on E"; that is, K is positive, integrable,
ally symmetric, and X{x) decreases as Exi increases. For
p < ®, let

Ly ={k »F:F e L7}

ste the space of LP potentials associated with X, and let

he corresponding space of harmonic extensions to R:+l. Every h;
hus ar analogue of the Dirichlet space D of Sec. 1. In parti-
x, it follows from Plancherel's theorem that h; consists of the
onic extensions of functions §F € L satisfying the additional

itions
/}?'ﬁéz?(h)i‘zlf(M!sz w {2)

e ™ denotes the Fourier transform on LZ.

To avoid trivialities, we always assume that ¥ £ LY, where
1

- p .
+ g = 1. Thus LE, and therefore hk, always contains unbounded

tions.
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sroach Regions

v {x, y) € BT, let

K,y ix) = PlKl{x, y) = P, * K{&)
i set

riy) =y () =k 077 v > 0.

rx, € " and B > 0, define

Qry) = Qf gy = {we, vy € RIYY sz - x| < Branl.

e

us M{xy) is the region in R:*l with spherical cross section of
dius Br{y)} at height y above R". Since ¥ ¢ L7, we know that

y) = 0 as y » 0%, so {{x,) approaches 7™ only at the point z

ts "vertex"). Morecver, standard estimates of Poisson integrals
ow that y 'r(y) - 0 as y > 0%, so the boundary of f{z;)} actually
proaches R" tangentially at x;.

n+l
ligh

We define 95 limits of functions defined on exactly

in the last section.

pacity

llowing Meyvers [3], if 1 < p < @, we define the (K, pl-capacity of
subset & of E” as follows. Let Ty ,(£) denote those nonnegative

¢ 17 for which kK * F > 1 everywhare on £. Note that since X and F
@ both positive, the convolution X * F make sense {(possibly +«)
every point of R™.

The capacity of £ is
Cy, &y = int{|F]} : F e 7, ()],

-

ere denotes the LY norm.

B
It is easy to check that fop is subadditive and monotone

creasing on the subsets of E", and that a subset F has capacity

ro if and only if K * F £ « on E for some nonnegative F in LF

, Sec. 2Z].
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This last comment shows that the members of the potential

ze L§ are defined and finite at Cy pwaimost every point of R".

1 Results

tan now state our main results on tangential convergence. In
- follows, 1 < p < o, p"l + g”l =1, K £ Lq, e L;, and
Plf1.

srem 2. There is a set E of Lebesgue measure zero such that u

Qp limit flz) at = for every x € R\E.

i

srem 3. If, in addition, p » 1 and ¥ H * & where H and § are

> kernels, then there is a set E with Oy P

(Y = 0 such that u

Qg limit f{x) at x Ffor each x e R'\E.

Thus Theorem 3 shows precisely how the degree of tangential

rergence influences the size of the exceptional set.

iples: Bessel Potentials

most important class of kernels are the Bessel kernels X = oy

.ned fer ¢ < o € » by

g, Ay = 1+ N, 4 e BN
corresponding capacities Ea4)make sense for ap < » and are
-ed Bessel capacitjes. Observe that Gy * 93 = Ja4a- Properties

‘hese kernels are worked out in detail in {for example) Mevers
Sec. 7, p. 279]. fThe analogous kernels for the unit circle are

ones considered in Xahane and Salem [3, Chapter 37]:

o8y = isin

eia—l .
3 ~Ednl s peein

0 <o <1, and

! . .
$,(8) = -log|sin %g ~Y(lnl + 1) et
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y * 07, we have the following asymptotic estimates on the radius
i = vy y), defined in "Approach Regions™ of Sec. 2:
yl-ta@mE if ap < n
7, ) ~ § (-log gy s ap =n, p > 2 (3)
1 (~log y) /" ifa=n,p=1
re pt o+ q'l = 1. By analogy with the work of Sec. 1, we define

roach regions for ¢ > 0: for v > 1,
GYH’J: {(xr y} € R§+l 1y > el - xﬂgY}r
le if v > 0, then
Ey,e= {ix, y) ¢ BI" y > explelx - 21770},

n estimate (3) shows that the regions Qg Eessentially coincide

h the classes of regions:

Gy, 3f ap < 1, where v = n/n - oapl,

By,c if op = w and p > 1, where v = nlg - 1},

&, ifo=nand p = 1.

s

s Theorems 2 and 3 have the following corollaries, which gener-

~ P
ze Theorem 1. Here f € Li where op < %, so u = P[f] € hy;; and

@."

refers to Lebesgue measure on R".

nllary 1.

(a) If op < n and p > 1, then U has Quu,_ .py~limit f(x) at a.e.

x in R™,

(b) Ifuap =mnand p > 1, then u has &,,-y~limit f(x) at a.e.

£ in RB™.

(c) If o =wnand p = 1, then U has &,~limit f(x) at g.e. x in R".

cllary 2. Suppose in addition to the hypotheses above, that

p<®, ap <n, and 0 = T + ¥, where 17 and X are positive



3 Harmonic Extensions of L7 Potentials

wbers. Then u has @uu,.7pm~limit f(x) at each x € R with the

ssible exception of a set of B, , capacity zero.

rark. If we return to the unit circle and the case p = 2, then
noted earlier, the capacity B, , corresponds to the classical
racity Cleu of Kahane and Salem {3, Chapter 3] for 0 < a < 1/2,
:h the understanding that ¢, is logarithmic capacity. Note that
¢ index in Kahane and Salem's capacity refers to the exponent

sociated with the kernel, while the index 0 of the Bessel capacity

Jers to the exponent associated with the Fourier transform of the

cnel.

>lication to Zeros of hi Functions

> next result generalizes one proved by H. S. Shapirce and A. L.
ields in the case n = 1, p = 2 for special kernels and holomorphic
wtions {8, Theorem 3], and it answers a guestion posed by them

, p. 2247,

sorem 4. Suppose 1 < p < « and suppose (yj)? is a sequence of
sitive numbers with EZP;JJyJ} = «, Then there exists a seguence
;)1 in R™ such that no nontrivial function in the class hi
1ishes at each point (xj, yj} of Ef+l.

sof . The hypothesis on {yj) ensures that we can choose open

lls By of radius thgyj) such that each point of E” lies in
finitely many 5;. Let x; be the center of B; and set

I

(;r y5) €K . If x € B", then x belongs to some sequence

. Bjyp «-- of balls; hence z;, %, ... all belong to §} {z). So
u € kg vanishes at each z;, then it has Qﬁ iimit zero at each x
¢ which it has an 95 limit. By Theorem 2 this happens for almost

sry  in R". Since y is the Poisson integral of its boundary

1ction, this implies u ¥ 0, which completes the proof.
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TANGENTIAL MAXIMAL FUNCTIONS: WEAK-TYPE INEQUALITIES

1 is a complex valued function defined on Rﬁ+1, define for

Sp <wand B > 0:

My, olzg) = sup{fule, )| : @, y) € Qf's(xo}}.

= P[f] we will also write this as My pef (g) . Our fundamental
timate on this tangential maximal function comes from a direct
aparison with the following ¥ -variant of the Hardy-~Littlewood

¢imal function. For F € .Y and zy € BT, let

i/p

1 P
v F N F1% dm ‘
Pt (Zp) s nzBr(xD)}JCAzw[ |

'xe By{xy) is the ball of radius » in B", centered at x,, and m is
resgue measure on F", Clearly Mp is subadditive, and by the

tal Hardy-Littlewood maximal theorem, it is of weak type (7, p).

have:

ma. Suppose I £ p < ® and B > 0. Then there exists

cA(K, p, BY » O such that if f =K * F for F € L?, then
My p s flTg) < AMpF(zg)

Cevery xg ¢ R

This lemma immediately gives the following weak-type esti-

e, which by standard arguments vields Theorem 2.

crem 5. For each 1 < p < @ and § > 0 there exists

A, p, B) < = such that for every { =K * ¥ with F € 7.

AlF) L\

mlz € R comy o f(x) > A} <

every A > 0.

Thecrem 5 is "best possible” in the following sense.

p.z 18 not of weak type {r, r} for any » < p. Moreover, if { is
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region in R}™' that approaches E™ only at 0, and {(x,) = & + x4,

n the {Q-maximal function
M,fixg) = supl{lulz, y)|: (&, y) € Qxzy)}
= P[fl} is of weak type (P, p) on Lf only if there is a "slab"
RI*L,
5 = {{xr y) € R:+1:y < y{)}t
.a B » 0 such that
QNS Cay g0 N5,

We remaxk that the lemma is a consequence of the following
volution ineguality, whose proof is fairly straightforward. If
_p < @, then there exists 4 = 4(n, p} < « such that if F ¢ ¥

"X is a nonnegative, radial decrsasing function on R", then
K P | < amFeg (e - ™ K]+ k]
“all x and x4y in RE".

The lemma follows from this inegquality upon replacing & by

and taking the supremum of both sides for |x - xg| < ry ¥} and
- 0.

TRONG-TYPE ESTIMATES

01 < p < w we have the following improvement of Theorem 5.

orem 6. Suppose 1L < p <= and 8 > 0. Then there exists
= A{K, p, B) < w guch that if f = K * F for F € L%, then
p_gf € L¥ and gm}{pﬁfﬁ = AIEFHP—

Since Mp is not of strong type (p, p), this result shows
it My, gis not "eguivalent” to Mp if 1 < p < =, As we will see

Sec. 5, Theorem € is the main step in the proof of Theorem 3.
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waré the Proof of Theorem 6

need the following geometry. For I, € R", let
Py = {@, y) e BRI e o - 2] <yl
note the right circular cone in Rz+1 with vertex x,; and for u
ntinuous on RT*!, let
Fulzg) = supl|utx, )] : (&, y) € T4z}
the usual nontangential maximal function. For F an open subset

R", let

sEy = RPN U T,
x¢E
e usual "Carleson set"” over E, and for F an open subset of Rf+l,

<p<w®, and B > 0, let
JE) = IF L) = {x e B": Qf o) N F £ 8},

J(F) is a sort of "shadow" of F on F”. Then we have the follow-
g two results, the first of which is an interesting geometric

wer bound for capacity. Assume 1 < p < = and £ > O.
oposition 1. fThere exists 4 = A(X, p, B) < « such that for every
en set B C R

m{ gl §(S(E))} < 4y ,(E) .
oposition 2. If u is continucus in R:+l and 1 < p < =, then for
ery A > 0:

mAm

w > A} < AC, JfWu > A}
K, b, 8 k.p

ere 4 = A(K, p, B) < =,
Proposition 2 follows from Proposition 1 upon observing that

E = {Nu > X}, then 458(8(5}) is an open set containing

Kopgd 7 3}. Proposition 1 follows from the weak-type estimate of
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orem 5 and the fact that if F € T%EJE), then (since X * F > 1
By PIK * F] > Ay on S{&), where A, depends cnly on the dimension
nd not on F. We describe a similar argument in more detail in

next section.

Finally, we require:

sson's Strong-Type Estimate [2, Theorem 2.4]. If 1 < p < e,

n there exists A = A{K, p} < = such that for each F ¢ Le,
fCK A1x » Fl > 23doPy < alrll.
o Ko7

zial cases of this result have previocusly been obtained by Adams
and Maz'va {4]. WNote that the estimate is a significant
rovement over the trivial weak-type estimate

N i A
Co LB * F] > A} < Ak (4}

zh is just a statement of the fact that for every F € L ang

0, the function |F|/A belongs to T ,({|K * F| > a}),

>f of Theorem 6

sose f = K *¥ F for ¥ ¢ LY, and write u = P[f], v = P[F]. Then it

zasy to see that Nu < X * v, so

#

“m%.gﬁuﬁi

/ mlgw, , g0 > A}
2

A

A[ CK’p{Nu > aid () (Prop. 2)
0

A

A[ Cy, A8 * Bv > A} (F)
0

I

Aﬁﬁvﬂi (Hansson's estimate}

A

Alely.

re the last inequality follows from the Hardy-Littlewocd non-

gential maximal theorem.
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ZAPACITY VS, CURVATURE: PROOF OF THEQREM 3

rall that Thecrem 3 describes how the curvature of our approach
jions influences the capacity of the exceptional sets for conver-
we of hi functions within these regions. Theorem 3 follows by
mdard arguments from part (b) of the next result, which in turn

lows from part (a) and Hansson's estimate.

orem 7. Suppose 1 < p <, § >0, and K = H * 7, where § and &

: also kernels.

{a) Then there exists 4 = 4{p, B, ¢, H) < = such that
Cp,p Mg, p gt > A} < ACy (f{Bu > A}

* every u continuous on Ai*' and every A > 0.

{b) If, in addition, u = P[K * F] where F € L*, then

4 r
jgch,p%ﬁ%.pﬁ“ > A} (aF) S~AHF”p
A as in part {(a).
Note that part (a) above is a capacitary analegue of Propo~

don 2 of the last section. It fellows from a similar analogue

Proposition 1, which we state and prove in detail.
position 3. Under the hypotheses of Theorem 7 we have for every
n subset E of R":
Cq,p{g, g(SUEY) } < AC, L(B),
re 4 = A{p, B, G, H) < =,
of. Write My = Mg g pand J; = ﬁiﬁ- Suppose F ¢ Iy o(E) and

te u = P[K * F'l and v = P[§¢ * F]. Since K * F > 1 on E, we know

t u > Ay on S(E), where Ay > O is independent of E. Thus

Jy (S(E)) C {mgu > 2.}
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Cp plda (S} 2 Gy, p 0l > Agl
Cy, pIMPIH * G * F1 > Ao}
Cq pLH % MPIG % F1 > Aol

ol \?
g(ﬂmw;mfi) (w = PIG * F1)
2]

(5.

:re the next-to-last inequality follows from the trivial weak-

I~

e estimate (4) of Sec. 4, and the last inequality follows from
T strong-type estimate Theorem 6. Take the infimum of the right

le of the above inegquality as F ranges through T}'AEH. The proof
complete.

‘ARLESON MEASURES

call a finite posgitive Borel measure U on Rf+l a Carleson measure
P,
~ hy if

AL TR
Tevery u € hi. Stengenga [9] has characterized the (K, p}

‘leson measures for 1 < p < » as follows: they are precisely those

‘or which there exists 4 > 0 such that

WS(E)) £ ACy (B) (5)

T every open subset E of F". Stengenga also gives examples that
w that if (5) bholds merely for open balls £, then u need not be
‘arleson measure.

Using Thecorem 6 and standard arguments, we can obtain a more
metric condition on U that is sufficient for it to be a Carleson
sure for hf. Te state our result, we define for every open sub-

“E of R” a sort of "X, p, B)-Carleson region" over E:
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gf g&) = B\ U g g

T £ E

srem 8. Suppose 1 < p < %, B > 0; and suppose there exists

o guch that
wlgf 4B} < Am(B)

, -7 , Ig
every open ball B in ﬁ:+l. Then U is a Carleson measure for h,.

However, this condition 1s not necessary. Using an idea
municated to us by Stengenga, we can show that for each kernel X
X P
1 < p < =, there exXists a carleson measure § for ky that does

satisfy the hypothesis of the theorem.

ERENCES

Adams, D. R. On the existence of capacitary strong type esti-
mates in RB". Ark. Mat. 14 {1976):125-140.

gansson, K. Imbedding theorems of Sobolev type in potential
theory. Math. Scand. 45 {1979) :77-102.

Kahane, J. P., and Salem, k. Ensembles parfalts et séries
trigonométrigues. Actualités Sci. Ind. No. 1301
Paris: Hermann, 1963.

Maz'ya, V. G. On capacitary estimetes of strong type for frac-

rional norms. In Russian. Zap. Sem. rLoMI Leningrad 70 (1977):
161-168.

Meyers, M. G. A theory of capacities for potentials of func-
tions in Lebesgue classes. Math. Scand. 26 {1970):255~292.

Nagel, A.; Rudin, W.; and Shapiro, J. H. Tangential poundary
behavior of functions in Dirichlet-type spaces. Annals of
Math. 115 (31982).

salem, R., and Zygmund, A- Capacity of sets and Fourier series.
Trans. Amer. Math. Soc. 59 (1946) : 23-41.



Harmonic Extensions of L7 Potentials

Shapirc, H. 8., and Shields, A. L. ©On the zeros of functions
with finite Dirichlet integral, and some related function
spaces. Math. Zeit. 80 (1962):217-229.

Stengenga, D. A. Multipliers of the Dirichlet space. I11I1. J.
Math, 24 (1980):113-139.



