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Tangential boundary behavior of function
in Dirichlet-type spaces

By ALEXANDER NAGEL, WALTER RupiN, and JoeL H. SHAPIRO

I. Introduction

1.1. This paper deals with the tangential boundary behavior of harmonic
functions that belong to analogues of the classical Dirichlet space D. This is the
space of all holomorphic functions defined in the unit disc U for which

1 :
Ih1I2 = h(0) |2+;/fu|h(z)|2dxdy

is finite. For h € D, we are interested in the existence of limits, and in estimates
of the supremum, within regions §2 C U that allow tangential approach to the

boundary T of U.
0 "H

For example, let
b, (0) = {re“”: 1—r> exp{—c

This region makes exponential contact with the unit circle T at e‘’. For any f

defined in U, set

P
sin—"—

(@Kg,y,cf)(ﬂ) = sup{|f(z) |:z € 8770(0)}.
We show that there are constants A, < oo so that, for every h € D,
19Mg , My =A_lRI,

and lim h(z) exists as z > e'® within &, (), for almost all 8 € [0, 27].

This contrasts of course strongly with the behavior of bounded holomorphic
functions: if L is any curve in U that approaches the point 1 tangentially, then
there is a bounded holomorphic function in U whose limit along e‘’L exists for no
0 € [0,27]. (See [19], [20; p. 280], [5; p. 43].)
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Such results about tangential boundary behavior extend to a large class of
function spaces. In Sections II and III we study spaces of Poisson integrals of
potentials on R". However, our results apply also to various spaces of holomor-
phic functions in U, and we state some of them below as Theorem A.

In addition to the exponential contact regions &, we define regions

0 y}
which have order of contact y. We say that a function h, defined in U, has
@ limit L at e if h(z) — L as z — ¢’ within @ (0) for every c.

& limits are defined analogously.
Finally, in addition to the maximal operator Mg . . we define

(g, )(8) = sup{|h(2)|: z€ @, (0)}.

¢ —
2

sin

@, .(0) = {re“”: l1-r>c¢

THEOREM A. Supposel <p < oo,pq=p +q, FELYT),0<a<1,and

h(z) = 2if —F(t)'dtl_ (€ U).
Ti-a(l—ez) °
(@ If ap<1 and vy =1/(1 — ap) then the @ limit of h exists almost
everywhere on T.
(b) If ap = 1 then the &,_-limit of h exists almost everywhere on T.
(¢) If Mh = Mg, hor Mg , h is the corresponding maximal function,
then

I9%AIl, <AlFI,
when 1 <p < o0, and
m{IMh >N} < AXH|Fl,
whenp =1,0 <A < o0.

We remark that Theorem A deals with the Dirichlet space D when p = 2
and a = 1/2, since h € D if and only if there is an f € L*(T) such that

. _1 F(t)dt
h(2) j_ﬂ——————(l

2a _ e_"z)l/z

We also note that the function h in Theorem A is continuous on U when ap > 1.
In Section 5.7 we explain how Theorem A follows from the results of Sections II
and III.

The existence of tangential limits of holomorphic functions of certain types
was studied by Kinney [12]. His results imply that every h € D has @ limits
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almost everywhere on T, for every finite y, and also contain information about
the capacities of the exceptional sets.

Section IV contains applications of our main results to Carleson-type mea-
sures for the potential spaces under consideration.

Section V contains applications to Bessel potentials. It also contains generali-
zations of the Fejér-Riesz inequalities (Theorem 5.5 (c)), some information about
zero sets (Theorem 5.10), and a proof that the Cauchy integral of every function
of bounded variation on T has &,-limits almost everywhere on T (Theorem 5.8).

We thank Stephen Wainger for several helpful discussions concerning this
paper, and David Stegenga for an example that suggested Theorem 4.10.

1.2. Notations and terminology. For the most part, we shall not deal with
the unit disc, but with half-spaces of arbitrary dimension. We shall use the
following notations.

(i) R" is euclidean n-space, with norm | x |= (Zx2)!/2, and

R = {(x,y):x €R", y > 0}.

The dimension n will usually not be explicitly mentioned in any other notation.

B = {x: |x|< 1} is the open unit ball of R".

(ii) For E C R", m(E) is the Lebesgue measure of E. Instead of dm, we
often write dx, dt,. ...

L? = L?(m), with norm [|F|l, = (f|F [P dm)'/? if 1 <p < co. The index
conjugate to p will always be g: pg = p + q. Convolutions are defined on R" by

(F+G)(x) =jR"F(x —t)G(t) dt, .
and by

(Fxp)(x) = [ F(x—t)dp(t)

R"

if p is a measure.

(iii) The letter K and the word kernel denote a nonnegative L!-function
which is radial and decreasing; i.e., K(x) = K(t) if | x|=|t| and K(x) < K(¢) if
|x|=|t].

Also, K(0) = co (we are not interested in bounded K), and we usually
normalize so that || K|, = 1.

(iv) Lk is the space of all K-potentials associated to the exponent p. This
means that L% consists of all convolutions

f=Kx«F
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with F € LP. The norm
£l = inf{IFll: f= K*F)

makes L% into a Banach space that is isometrically isomorphic to L? /N, where N
consists of all F for which K * F = 0. (It should be noted that N = {0} for many
kernels K; in that case, the above inf can be ignored.)

Clearly, L% C LP. On the other hand, every f € L? lies in some L} (see
Section 3.14).

(v) The Poisson kernel for R%*! is
P(x) = Y

y 2 2
. (1P +v*)

where ¢, = I'(n—z—— 7~ ("*D/2 js 50 chosen that || P, ||, = 1 for 0 <y < oo.

K (x) = (P, * K)(x) is the harmonic extension of K to R%*.

Note that hZ is the space of all Poisson integrals P[ f] of functions f € L.
These are the Dirichlet-type spaces of our title. Thus, saying that u € hf means
that

(xeR*, y=>0)

(n+1)/2

u(x,y) = P[fl(x,y) = (B,* f)(x) = (K, *F)(x)
for some f€ L2, F € L?, and all (x,y) € R}*'.
We norm h% by setting
lullg , =1 fllg,
if u=P[f], fe Lk
(vi) fKisakemnel,1 <p <oo,pg =p + q,0 < B < o0, and x, € R", we
define the approach region

Q2 4(x0) = {(x,y) €RY: |2 — xo [V7IIK, I, < B)
and the associated maximal function

(M, p.pf)(xo) = sup{| ux, ¥) | : (x, y) € R 4}

where u = P[ f].
These approach regions are suggested by Theorem 2.5. Some of their
geometric properties are described in Proposition 2.11. When K is a Bessel

kernel, they are closely related to the regions @ and & defined above; see
Theorem 5.5.

1.3. The Main Result. This is Theorem 3.8. It asserts, for 1 <p < oo, that
the maximal function operators My , » are bounded from L to LP: For every
kernel K,

Mg, pfll, <Alfllk,,

where A = A(K, p, B) < c0.
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The proof uses the corresponding weak-type inequality (which is much
easier, holds also when p = 1, and suffices to give pointwise convergence results;
see Theorems 2.7, 2.9) combined with a strong capacitary estimate due to
Hansson (Theorem 3.7) and with the Hardy-Littlewood maximal theorem.

The LP-boundedness of DM ,, , is needed to obtain

(a) capacitary results about factored kernels K = H* G (Theorems 3.12,
3.13) and

(b) a simple geometric condition which implies that a measure is a Carleson
measure for hZ (Theorem 4.5).

If we combine Theorem 3.8 with Proposition 2.15, we obtain examples of
maximal function operators that are bounded on a closed interval of p’s, and that
are of strong type whenever they are of weak type. Theorem 3.8 can thus not be
proved by dominating N, ».p Dy any of the standard maximal functions which
are only of weak type at the endpoint of their range of boundedness.

II. Inequalities of weak type and tangential convergence

A simple convolution inequality (Theorem 2.3) leads in a natural way to the
discovery of the approach regions 2} , that are associated to kernels K and
exponents p. The corresponding maximal function operators I », p turn out to
be of weak type (p, p) (Theorem 2.7). Consequently, every u € h% has QR-limits
at almost all points of R" (Theorem 2.9). These results are shown to be best
possible in the following sense: for fixed p, no larger regions work (Proposition
2.13) and, at least for a certain class of kernels K, %K,p’ p is not of weak type
(p,» p,) for any p,; < p (Proposition 2.15).

2.1 Definition. If 1 <p < o0, F € L?, and x € R", define

0<r<oo

1/p
(1) (M,F)(x) = sup {E(lr_B)-./B(x,,)IFP dm}

where B(x, r) is the open ball with center x and radius r, and rB = B(0, r). Note
that
@) M,F = (M, | FP)".

It is well known that M, is of weak type (1, 1) [18, p. 5]. Therefore M, is of
weak type (p, p): There is a constant A, < oo such that
(3) | m{M_F > A} <A NTPIFIR
for every F € LP.
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2.2 Lemma. IfF € L', and g = 0 is radial and decreasing, then

[ IFledm=(MF)0) [ gam.

Proof. This is obvious if g = g,, the characteristic function of 7B, hence for
g = 2c,g,, where the c, are positive constants. The general case follows from the
monotope convergence theorem. (See [18; p. 63].)

2.3. THEOREM. Suppose 1 < p < 0. There is a constant A = A(n, p) < oo
such that

| (K+F)(x) |< A{(M,F)(xo) | x — %o ["" I Kl + (M,F)(,)lIKIl,}

whenever F € L?, K is a nonnegative radial decreasing function on R", x, € R",
and x € R"

Proof. Take x, = 0, without loss of generality. Fix x. Then

| (K*F)(x)|< fR”K(x —t)|F(t)|dt=1+1I,

where I and II are integrals over {|#|<2|x|} and {|¢t|>2|x|}, respectively.
Since

/ |F|P dm < r"m(B)[(MpF)(O)]p
rB
holds for all r > 0, Hélder’s inequality shows that

I=<[2"|x|"m(B)]""(M,F)(0)IKIl,.
InIl, |x — t|= 3 | t|, hence K(x — t) < K(t), so that

< L”K(%t) |F(t) | dt < 2"[|K |l (M,F)(0),

by Lemma 2.2.
These two estimates prove the theorem.

24. Remarks. (a) Observe that the convolution of two nonnegative radial
decreasing functions is (obviously) radial, and that it is also decreasing. This is
clear for the convolution of the characteristic functions of two balls centered at 0,
hence for linear combinations with positive coefficients of such characteristic
functions, hence in general, by the monotone convergence theorem.

(b) If K is a kernel, and K, = K * P, as in Section 1.2 (v), Remark (a)
shows that Theorem 2.3 holds with K, in place of K.

By Holder’s inequality, M, F < M_F.
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By Fubini’s theorem, [ K, ||, = K20, = I KIl,.
Hence Theorem 2.3 implies the following:

2.5. THEOREM. If 1 <p < 0, F € L?, and u is defined in R""! by
u(x,y) = (B, *K«F)(x) = (K, *F)(x),
then
|u(x, y) | < A(M,F)(x,)[I1KIl, + | x = %o [*? 1K, Il ]

forall x, € R", x € R".

2.6. Remark. For fixed x, € R", Theorem 2.5 shows that any bound on
(1) |x = xo["/7IIK, I,
gives a bound on u(x, y). Letting O} 4(x,) consist of all (x, y) € R"*! for which
(1) is less than B, we obtain the approach regions defined in Section 1.2 (vi).

Since M, is of weak type (p, p), Theorem 2.5 shows that the same is true of
the maximal function operators M , 5 associated to @ 4 as in Section 1.2 (vi):

2.7. TueoreM. There is a constant A = A(n, K, p, B) < oo such that
(1) m{My , of >N} <ANPIFIE,
forall fe L% and all A € (0, o).

Recall that || fl g , = inf{l|F|l ,: f= K= F}.

Proof. If u = P[f] and f = K * F, Theorem 2.5 shows that

@) |u(x, y) |< A(M,F)(xo)(1 + B)
in QF 4(x,). Thus
(3) My, s f <A + B)M,F.

Since M, is of weak type (p, p), (3) implies (1).
As usual, this weak-type estimate leads to a convergence theorem:

2.8. Definition. A function u with domain R%*! is said to have Q%-limit L
at a point x, € R" if it is true for every 8 < oo that u(x, y) - Las(x, y) = (x,,0)
within Qf 4.

2.9. TueoreM. If 1 <p < o0, f€ L%, and u = P[ f], then, for almost all
x, € R", the Q%-limit of u exists at x, and equals f(x,).

Since the derivation of 2.9 from 2.7 is perfectly standard, we omit the
details.
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2.10. The content of Theorems 2.7 and 2.9 will become clearer as soon as
we describe the shape of the regions @} 4(x,). For simplicity, we take x, = 0,
and just write Q% ;. For fixed y > 0, Definition 1.2 (vi) shows that the set of all
x € R" for which (x, y) € @f 4 is an open ball, centered at 0, whose radius is
B?/"r(y), where

r(y) = IIK, ;7™
Thus Qf , is determined by r(y).

2.11. ProposiTION. If 1 <p < o0 and K & L9, then
(@ r(y) > 0asy -0,

(b) 7(y,) = r(y,) when y, < y,,

(o) r(y)/y > casy -0,

(d) there are constants vy,, v, such that

r(y)
y

>y, >0 (0<y<oo)

and

1(5) <7y, < o0 (1<y< ).

The assumption K ¢ L7 is a natural one. For if K € L7 then every f € L% is
continuous, so that P[ f] is continuous on the closure of R%*!.

The geometric meaning of (c) is that Qf , is tangential; (d) says that Qf ,
contains the cone {|x|< y,y} and that the part of 2} ; where y > 1 lies in the
cone {|x|< y,y}.

Proof. Since K & L? and since K (x) converges to K(x) almost everywhere
as y — 0, Fatou’s lemma shows that ||K ||, > oo as y — 0. This gives (a).

Hy,=y, +y,y>0,y, >0, then P, =P *F,, so that

(1) K, I, = I1B,+K, lI, < IIB,IIK, I, =K,

This proves (b).
The proofs of (c) and (d) use the relation

(2) [y/r(y)]™" = y*/*IIK,Il, = y"/? | K+ B, .

Choose ¢ > 0. Split K into K = H + G, where [[H|l, <e, G € L®, [|Gll, <1.
Then |G+ P, I, < IGll,, IG*P,Il, <1, so that |G * P, ||, is bounded. On the
other hand,

(3) IH+B, |, <elP,ll, = ey /?IIP,ll,.

Thus y/r(y) — 0 as y — 0. This proves (c).
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Similarly, [y /r(y)]"/? < || P,|l , for all y. This gives the first half of (d). For
the second half, note that P,, = P, * P, gives K, = K, * P,. Since y"P, (x) is an
increasing function of y, for each x, it follows, when y = 1, that
(4) K,(0) < y"K,,(0) <y"lIK, I, IP,Il,= y"/PIK, NP,

Thus [y/7(y)]"/? = K4(0) /|| P, |l ,. This proves (d).

2.12. Our next proposition will show that Theorem 2.7 is optimal with
regard to the size of the approach regions. To formulate this precisely, recall that
Q% p(x,) consists of all (x, y) such that

(1) |2 — 20 |< B""r(y)

and compare this with another region

2) Q(xo) = {(x, y): |2 — x0|<p(y)},
where p is some positive continuous function. Let

(3) (Nf)(xo) = sup{| u(x, y) | : (x,y) € Q(x,)}
where, as usual, u = P[ f].

2.13. ProposiTiON. If 1 <p < o0 and 9 is of weak type (p, p), then
p(y)/1(y) is bounded on 0 < y < 0.

Proof. The hypothesis about 9U is, explicitly, that there is a constant
A, < oo such that

(1) m{Nf=A} =AAPISfI%,
for all fe L% and all A € (0, o).
Pick FEL?, F=0,||Fll,=1,letf=KxF,u=P[f]. If |x|< p(y) then

0, y) € Q(x), so that u(0,y) < (9f)(x). The set {INf=u(0,y)} contains
therefore a ball of radius p(y). Hence

(2) p(y)"m(B) <m{INf=u(0,y)} =Au(0,y) "

by (1), since || fl ¢ , < 1. Thus

&) Ap(y)™"" Z u(0,y) = (K, *F)(0).
Taking the supremum over all admissible F leads from (3) to

(4) Ao(y) P =K, I, =1(y) """

hence p(y) < A?/"r(y).
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9.14. Let us now see how r(y) is affected by changes in p; for emphasis,
write

(1) r(y) = IK, ;7"

in place of r(y).
If 1 <g < oo, then

1/(g—1)
2) 1K, % = { jR KK, dm} :

Since K, dm is a probability measure, the right side of (2) is an increasing
function of q.

It follows that r,(y) is an increasing function of p.

Hypothesis (1) of the following proposition is stronger. We do not know
whether it holds for every K. It does hold for the Bessel kernels; see Proposition
5.3.

2.15. ProPOSITION. Assume that p, < p and that

-

Then My , g is not of weak type (p,, P1)-
This shows another direction in which Theorem 2.7 is optimal.
Proof. Apply Proposition 2.13, with 7, , 7, My , , in place of 7, p, .
9.16. Remark. If K is any nonnegative measurable function that is majorized
by some radial decreasing K € L', then Theorems 2.7 and 2.9 hold for the

potentials f = K * F in place of K * F, and for the approach regions £% ,, simply
because K * | F|< K*| F|.

9.17. Potentials of measures. In all of the preceding work, L' could have
been replaced without any difficulty by the larger space of all complex Borel
measures p on R", since, as is well known, the maximal function

_ el (B(z, 1))
W (M) = 28 (B, )

satisfies the weak-type (1, 1) inequality
A
2) m{Mp > A} SXII;LII (0 <A < o0).

Here |lpll =|p| (R"), where | p| is the total variation measure associated to p.
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Theorems 2.5 and 2.7 extend therefore to measures: If
3) fx) = (Rew)(x) = [ K(x—t)du(t)
and u = P[ f], then

(4) |u(x, y) |= A(Mp)(x,)[1 + | x — x| IK, Il ]
and the Q}-limit of u exists at almost every x,€ R", where
(5) Qk.5(x0) = {lx — %o ['"IK, Il < B}

2.18 Remark. Suppose that © is as in Section 2.12, that 9U is the corre-
sponding maximal function, and that p(y) /7(y) is unbounded as y — 0. Proposi-
tion 2.13 shows then that 9U is not of weak type (p, p). A version of Stein’s
theorem, due to Sawyer [7; p. 13], implies therefore that there exists f € L such
that 9Uf = oo on a set of positive measure. In particular, P[ f] does not have
QHimits almost everywhere.

III. Capacities, and inequalities of strong type

To every potential space L} corresponds a capacity Cy »- These capacities
are crucially used in our proof of the main result of this section (Theorem 3.8),
although the statement of that theorem does not mention them. The theorem
states that the maximal function operators My ».p are of strong type (p, p)
when p > 1, not merely of weak type, as asserted by Theorem 2.7. Hansson’s
recent strong type capacitary inequality (Theorem 3.7) is what enables us to pass
from 2.7 to 3.8.

We also obtain a modified version of Theorem 2.9, for “factored” kernels
K = HxG, where both H and G are kernels (Theorem 3.13). In that case, the
approach regions ) are narrower than the Q,’s, simply because || K || =Gl
To compensate for this, the set on which a function u € h fails to have Q2limits
turns out to be not just of measure zero (as in Theorem 2.9) but to have
(H, p)-capacity zero.

We now define these capacities, for 1 < p < co.

3.1. Definition. Suppose K is a kernel, as in Section 1.2, 1 <p < o0, and
E C R". Define T(K, p, E) as the set of all F € L” such that F =0 on R" and

(1) (K*F)(x) =1 foreveryx € E.

(Note that (K * F)(x) exists, in [0, oo], for every x € R", since K = 0 and F > 0.)
The letter T stands for “test function”.
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Following Meyers [14], the (K, p)-capacity of E is defined to be
2) Ck.,(E) =inf{lIFlI2: FE T(K, p, E)},
with the understanding that the inf of the empty set is + 0.

3.2. Here are some simple properties of these capacities:
(@) Cx , is a translation-invariant, monotone, countably subadditive set

function.
(b) Let x g denote the characteristic function of a set E C R". Then x, <

K + F for every F € T(K, p, E). Since [K+F||, < ||Fl| ,, we conclude:

If Cx (E) = 0 then m(E) = 0.

(c) Pick F,€L?, F,=0, let E={K*F,= oo}. Then 0F, € T(K, p, E)
for every 8 > 0. Letting § — 0, we see that C¢ (E) = 0.

Consequently, if F € L?, then (K= F)(x) exists, as a Lebesgue integral,
except possibly on a set E with Cy ,(E) = 0.

Briefly: The functions f = K * F € L} are defined Cy_,-almost everywhere.

(d) If K¢ L7 it follows from (c) that every countable set has (K, p)-
capacity 0.

(e) Let K= H=*G, both H and G being kernels. If F € T(K, p, E) then
obviously G * F € T(H, p, E). Since |G*F||, < || Fll ,, we conclude that

Cy.,(E) =Cy ¢, ,(E) forevery E CR".
Some further notations are now needed:
3.3. Definitions. (a) If x, € R", then
T(z,) = {(x,y) € R |x — x0|< y}.
(b) If E C R", then
S(E) =R%"'\ U I'(x).

x¢E
(c) If u = P[f] and x, € R", then

(Nf)(xo) = sup{| u(x, y) | : (x,y) € T(x0)}.
(d) If WCR%™! then JE 4(W) is the set of all x €R" for which W

intersects Q% 5(x).

The sets I'(x,) are cones. When n = 1, S(E) is a union of triangles, one over
each maximal segment contained in E. These triangles play the same role as the
“Carleson squares” on which the original definition of Carleson measures was
based.

When there is no need to specify p, K, 8, we shall sometimes write J and £
in place of J¢ g and Qf 4.
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Nf is the nontangential maximal function to which the Hardy-Littlewood
maximal theorem [18; p. 197] refers.

3.4 LEMMA. There is a constant b > 0, depending only on n, with the
following property:
Iff=1onE, f=0o0nR", u=P[f], and (x, y) € S(E), then
u(x,y) > b.
Proof. If £ € R", |§ — x|<y, then (x,y) € I'(§); hence £ € E, by the
definition of S(E). Thus E contains the open ball with center x and radius y. If
we set x — £ = yt, it follows that

u(x,y) = _/EPy(x —§)dé= j;l’y(yt)y” dt = j;Pldm

where B is the unit ball of R".
3.5. LemMa. For fe L' + L®, and 0 <\ < o0,
(ONf>N) CISUNF>N)),
where M = My , 5, J =L -

Proof. Assume x,, satisfies (9 f)(x,) > A. Then there is a point (x, y) €
(x,) at which | u(x, y) |> A.

Next, let E = {Nf > A}. If £ € R"\E, then (Nf)(£) <A, hence |u|< A in
I'(§), so that (x, y) & I'(£). Consequently, (x, y) € S(E).

It follows that (x,) intersects S(E). This says that x, € J(S(E)).

These two lemmas, combined with Theorem 2.7, lead to some lower
estimates for capacities.

3.6. ProposiTiON. There is a constant A = A(K, p, B) < o such that

(1) m(J2 4(S(E))) < ACy ,(E)
for every E C R", and
@) m{My , of >N} < AC {Nf>A)

for every f € L' + L™.

Proof. Let u = P[K * F}, where F € T(K, p, E). By Lemma 3.4, u > b on
S(E). If x € J(S(E)) then €(x) intersects S(E); hence (K * F)(x) > b. In
other words,

3) J(S(E)) C {OM(K *F) > b}.
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Our earlier weak-type estimate (Theorem 2.7) shows therefore that
(4) m(J(S(E))) < Ab~?|FIl%.

If we replace the right side of (4) by its infimum over all F € T(K, p, E), we
obtain (1).
Lemma 3.5, with {Nf > A} = E, shows that (2) follows from (1).

3.7. HanssoN’s THEOREM. For 1 <p < oo, there is a constant A =
A(K, p) < oo such that

[ Ce {K=F>2}d(\) < AIFI
0

for every Fe LP, F = 0.

We refer to [8; pp. 93-95] for the proof; see also [1], [13].
Now we can prove that the maximal function operators Oy o, p are of
strong type (p, p) if p > 1.

3.8. THEOREM. Ifp > 1, there is a constant A = A(K, p, B) < oo such that
(1) My, pfll, =Alfllk ,
for every f € L%. Equivalently,

2) fR"|"J1LK’p’B(K*F)|”dmsA”/R”|F|"dm
for every F € L?.
Proof. The wellknown identity
[y dm= ["m{y>1)d(v)

which is valid for all measurable ¢ =0, when applied to ¢ = My  L(K=*F),
shows that the left side of (2) equals

/oom{")IL(K «F) >\ d(\?) < AwaK,p{N(K «F) > A} d(3")

<A [ Cy (K*NF>X) d(\)
0

<A|NF|z < AllF|2,

which proves (2). In this chain of inequalities, we first used 3.6 (2), then the
obvious fact that N(K * f) < K * NF, then Hansson’s theorem (with NF in place
of F), and finally the Hardy-Littlewood maximal theorem.

3.9. Remark. Theorem 3.8 does not hold for p = 1. To avoid duplication,
we postpone the proof of this to Theorem 4.8.
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We now turn to the study of factored kernels K = H * G, where both H and
G are kernels as defined in Section 1.2 (iii). Our objective is Theorem 3.13, which
complements Theorem 2.9.

3.10. LEmma. If K=Hx*Gand 1 <p < o0, then
(1) Cu,,{J& s(S(E))} = AC ,(E),
where A = A(H, G, p, B) < .

Proof. Put V = JE 4(S(E)). We have to prove that
(2) Cy (V)= AIlFI?

for every test function F € T(K, p, E). If f= K+ F, Lemma 3.4 shows that
P[f]>Db on S(E). If we write 9N for M, ,, 4 it follows, for every x € V, that

b<(Mf)x)=M(H*xG*F)(x) < Hx*M(G*F)(x).
Thus b '9M(G*F) € T(H, p,V), so that
(3) Cu, (V) =b7?IIOM(G+F)I2.

Theorem 3.8, applied with G in place of K, shows that (3) implies (2).
Note that this proof used the LP-boundedness of the operator 9. The
weak-type result 2.7 would not have sufficed.

3.11. ProrosiTioN. If K=H*G, 1 <p < o0, and f € L%, then
Cu, (Mc.,. pf >N} < ACk {Nf>A}.
Proof. Combine Lemmas 3.5 and 3.10.

We now come to a modified version of Theorem 3.8.

3.12. TeEoREM. If K =H=*G, 1 <p < o0, and f € L%, then

(1) /0 Cu. (M, o F>A}d(N) < Al IR,
where A = A(H, G, p, B) < 0. Consequently,
2) Cu,p{Ma,p pf > A} <ANTUFIR -

Proof. Since f = K * F for some F € L?, we have Nf < K * NF. Proposition
3.11 implies therefore that the left side of (1) is at most

A/O Cy. {K*NF>\} d(\*) < A|INF|Z < A|F|?

by the theorems of Hansson and of Hardy-Littlewood, as in the proof of Theorem
3.8. This proves (1).
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Denote the left side of (2) by g(A). Then g is a decreasing function, so that
© A
[ &) d(e) = [(e(r) () = M)

Hence (1) implies (2).

Part (ii) of the following theorem is our principal reason for looking at the
factored kernels K = H * G. Part (i) is classical (see [11], for example, for the case
of the unit circle) and is included for comparison.

3.13. THEOREM. Suppose K = H*G,1 <p < o0, f€ L%, and u = P[f].

(i) There is a set E’ C R", with Cy ,(E’) = 0, such that the nontangential
limit of u exists and equals f(x) at every x € R*\ E’.

(ii) Thereis a set E” C R", with Cy (E") = 0, such that the Q2-limit of u
exists and equals f(x) at every x € R*\E". (“Q&-limit” is defined in Section
2.8.)

Proof. There exists F € L? so that f = K*F. As explained in Section 3.2
(c), f(x) is then unambiguously defined by this convolution outside some set Y
with Cg ,(Y) = 0. Hence (see Section 3.2 (e)) Cy ,(Y) = 0 as well.

The pointwise convergence C, -almost everywhere follows from the corre-
sponding weak-type result 3.12 (2) by standard arguments.

3.14. Remark. The obvious inclusion L% C L? has a partial converse which
shows that every f € L? lies in some potential space L%:

(*) To every fe L? corresponds a kemnel K and an F € L? such that
f=K=xF.

This follows from Hewitt’s proof [10] (where f = K * F is obtained with
K =0, K € L") of his generalization of Cohen’s factorization theorem [4], if we
take care to make K radial and decreasing. Since the proof works for every
approximate identity one can, for instance, find a K (depending on f, of course)
of the form

o0
K(x)=Y e,.exp(—t,.|x|2)
i=1
where t; > 00, € >0.

Every f € L? has thus tangential Q-limits almost everywhere, for a suitable
K, and the corresponding maximal functions My , o f are in LP.

IV. Carleson measures

The following definition is an obvious analogue of the familiar one in which
HP-spaces occur in place of hE. We recall that h% consists of the Poisson integrals
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u of potentials K * F, and that hZ is normed by
lullg , = inf{lFll,: u= P[KxF]}.

4.1. Definition. A positive Borel measure p on R"*! is said to be a Carleson
measure for hY, if there is a constant A < oo such that

p - p
L. |uPdesAluly,
.

for every u € h%.

Stegenga [17] obtained the following capacitary characterization of these
Carleson measures.

4.2. THEOREM. Assume 1 <p < o0. A positive Borel measure p on R"*! is
a Carleson measure for h, if and only if there is a constant A < oo such that

w(S(E)) = ACy ,(E)
for every open set E C R".

Actually, Stegenga proved this only when n = 1, for certain kernels K. But
since Hansson’s theorem (3.7) is now available, the proof given on pp. 123—4 of
[17] yields the theorem as stated here.

Theorem 4.5 below exhibits a geometric condition which implies that p is a
Carleson measure for h%. This sufficient condition is, however, not necessary.
Theorem 4.10 shows this.

Theorem 4.5 uses the following sets.

4.3. Definition. For E C R", and K, p, B as before,
Qz,B(E) = RTI\ U ﬂﬁ,ﬁ(x)-
x¢E
Note that Q(E) is related to £ in the same way in which S(E) is related to T
in Definition 3.3.

Here are some properties of these sets; to simplify notation, we omit
K, p, B, and take 8 = 1.

(a) If E, C E, then Q(E,) C Q(E,). This is obvious.

(b) If 1(y) is the radius defined in Section 2.10, then (x, y) € Q(E) if and
only if | x — x"|= r(y) for every x’ & E. This is also clear from the definitions.

(c) If E is open, (x,y) € Q(E), and B(x) is the largest open ball with
center x that lies in E, then (x, y) € Q(B(x)).

To see this, let p be the radius of B(x), assume p < oo, without loss of
generality. Then there is an x’ ¢ E with |x” — x|= p. Since (x, y) € Q(E) and
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x’ ¢ E, (b) gives

r(y) <|x’ —x|=p.
For every x” ¢ B(x), |x” — x|=p =1(y). Hence, using (b) again, (x,y) €
Q(B(x)).

4.4, ProprosiTION. If f€ L%, u = P[f], then
{lu]>A} CO{IMf>A}
where M = My ,, 5, Q = Ok 5> 0 <A < 0.

Proof. Pick (x,y) so that |u(x,y)|>A. Let E= {9 f>A}. If x, ¢ E,
then (M £)(x,) < A; hence (x, y) & 2(x,). This says that (x, y) € Q(E).

4.5. THEOREM. Let u be a positive Borel measure on R, If p > 1, and if
for some B > 0 there is a constant A < oo such that

(1) n(Q 4(B)) = Am(B)
for every open ball B C R", then p is a Carleson measure for h¥.

Proof. Let E C R™ be open, E # R". For each x € E, let B(x) be as in
Section 4.3 (c). A standard covering lemma shows that there is an at most
countable set {x;} in E so that the balls B(x;) are pairwise disjoint, and so that
every B(x) lies in some B;, where B, is the open ball with center x; whose radius
in 10 times the radius of B(x;). Then 4.3 (c) gives the first inclusion in

@) O(E) © U Q(B(x)) < U Q(B).

The second follows from 4.3 (a) and the covering lemma. By (2) and (1),
w(Q(E)) = Zm(Q(B)) = AXm(B)

(3)
<A -10"Y¥m(B(x,)) <A'm(E)
i
for every open E C R".
The rest of the proof is as in [18; p. 236]. Let f € L%, put u = P[f], let
M = My ,, 5- The lower semicontinuity of M f shows that {IM f > A} is open.
Hence (3) and Proposition 4.4 imply that

(4) p(lu]>A) < Am{ILF>1),
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and therefore
[ luPdp= [ u{lu|>2}-d()
R%H! 0
<A [“m{IF>A}d(V)
0

= A'[R"|<>)mf|ﬂ dm < A”I|f1% .

Theorem 3.8 was used in the last inequality. Since || fllx , = llull ¢ ,, the
proof is complete.

4.6. Example. Fix p = 1, assume K ¢ L9, put
(1) V(y) =r"(y) = IK,II;?

and let u be the measure on R%*! defined by

@) [ 4dn=[40.9)av(y)

for every continuous ¢ with compact support.

The radius r(y) is as in Section 2.10, so that V(y) is the volume of the
cross-section of Qf , at level y, except for some multiplicative constant. By
Proposition 2.11, V is an increasing function, and V(y) > 0 asy — 0.

We claim that p satisfies the hypothesis of Theorem 4.5, i.e., that

(3) #(Q(B)) < Am(B)

for all balls B C R", where Q = Qf .

Let r be the radius of B, and choose 8 so that r = 7(8). The left side of (3) is
obviously largest when the center of B is at the origin. In that case (2) implies
that

(4) wo(®) = [ "dv = V(8) = Am(B).

Thus (3) is proved.

We draw two conclusions: first, when p > 1 our p is a Carleson measure for
h%, a fact which can be just as easily deduced from Theorem 4.2 and which
generalizes the classical inequality of Fejér and Riesz [6; p. 46]; see Section 4.7.
Secondly, we shall see in Section 4.8 that p is not a Carleson measure for h}. This
proves that Theorem 4.5 fails for p = 1.
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4.7. The Fejér-Riesz inequality. If V is associated to K as in Example 4.6,
and if 1 < p < oo, then

8y [ 1u0.9) P dv(y) = Allullg,,
for every u € h%.
The classical case deals with HP-functions in the unit disc, and asserts that
L1 par=af” |fe)pao.

Note that (1) says something about the rate of growth of functions in hZ.
Since u =K, *F for some F & L?, Holder’s inequality shows that |u|<
1K, Il I Fll,; hence

2) |u(0, y) P < V(y) " llullg ,.
But this easy estimate (2) does not imply (1), nor does its strengthened form
(3) lim 1K, II;* | u(0, y) |= 0,

y—

which follows from (2) since the continuous functions are dense in L?.

4.8. THEOREM. If K ¢ L*, and B > 0, then there is an f € Lk, f > 0, such
that

(1) [ (M1 pf) dm = o0
and
© fwwwww:w

where u = P[f] and V(y) = K, II ;%
This shows that Theorems 3.8, 4.5, and 4.7 fail when p = 1.

Proof. Since K is unbounded, one sees that
1K, I, =K,0)= | PKdm
R'I

assumes all positive values as y ranges over (0, o). Hence there corresponds to
every x € R"\ {0} a number y(x) > 0 such that

(3) V(y(x)) " =K, (0) = B|x| ™™

Now pick a positive continuous F € L!, with || F||, = 1, put F(x) = j"F(jx)
forj=1,2,3,..., put f,= K=F,, u;= P[f]. Since KxF, > K as j > o0, u, >
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P[K]; hence (3) shows that

(@) lim 4,0, y(x)) = 8| (x #0).
Equivalently,
(5) lim 4,0, 9) = V(y)™ (0<y< o).

By Definition 2.6, (0, y) € Q 4(x) if and only if |x|*[IK,l,, < B. Thus
(0, y(x)) is a boundary point of Q(x). Hence (dropping subscripts and super-
scripts on 9N ), we have

(6) (%ﬁ)(x) = u,(0, y(x)) (x #0).
By (6), (4), and Fatou’s lemma,

(7) (on£) dm>Bf |x] ™" dx = oo
1—*oo R"
Similarly, (5) leads to
.t _ (tdVly) _
(®) lim (4,0, y) dV(y) = [0 = oo

since V(y) > 0asy — 0.
Passing to a subsequence, we may assume that the integrals on the left of (7)
and (8) exceed j3. Then f = Ei"zﬁ satisfies (1) and (2). This completes the proof.

As was mentioned earlier, the converse of Theorem 4.5 is false. We thank
David Stegenga for sending us an example which showed this, and which led us
to Theorem 4.10.

49. LEemma. (a) If1 <p < oo and u = P[ f] € h%, then there exists F € L?
such that | Fll, = llullg , and u(x, y) = (K, * F)(x).

(b) IfFis the radial decreasing rearrangement of | F |, where F is as in (a),
and if uy(x, y) = (K, * F)(x), then

(1) Nugllg , < llullg ,

although

(@) [ lu(x9)Pde< [ uy(x,y)" dx
rB rB

forally >0,r>0,
Recall that 1B = {x e R™: | x|<Tr}.
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Proof. The set of all F € L” such that f = K * F is convex and closed, hence
weakly closed (because 1 <p < o0), hence contains an element of minimal
norm.
This proves (a), and gives (1) since

3) luglg, < IFlI, =IFI,=llullg,.

To prove (2), choose v € L so that ||vll, = 1 and v = 0 outside rB. Let ©

be the radial decreasing rearrangement of v. An inequality due to Sobolev
[16; pp. 39-42] (see also [9; pp. 279-284]) shows that

(4) | (K, * F*0)(0)|< (K, *F*5)(0).
In other words,
(5) jl;nu(x,y)v(—x)dx sfmuo(x,y)a(—x)dx.

Since |51, = lloll, = 1, (2) follows from (5).

4.10. THEOREM. If 1 <p < oo and K is any kernel, then there exist
Carleson measures for h% that violate the sufficient condition of Theorem 4.5.

Proof. For 0 <y < oo, define

) oto) = ] 2D

m(tB) :0<t$y}.

Since Cy ,(tB) = AV(?) and V(t)/t" - oo as t - 0 (see 3.6 (1), with E = tB,
Section 4.6, and 2.11 (c)), it follows that
(2) Y(y) 7 o0 as y\O.

Choose f; so that B; 7 .
Choose y; > 0, so small that, setting

(3) n = B/ r(y;)

(see Section 2.10), we have

(4) $(r;) >2"" and Cy ,(B) <27
fori = 1,2,3....

Define p, to be y(r;) times n-dimensional Lebesgue measure, restricted to
the ball

(5) {(x,9:): |x|<n},

which is the intersection of Q% , with the hyperplane y = y; and which therefore
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lies in QF 4(27;,B). Hence

(6) 1,(QF 4(21,B)) > 2'm(21,B)
and
(7) Il = ¥(r,)m(r,B) < Cg ,(r,B) <27'.

We claim next that
(8) /l;n+l|u|”dpi_<_Allull’,’<,,, (u € h?)

where A depends only on K and p.

By Lemma 4.9 it suffices to prove (8) under the additional assumption that
u = P[ f] for some radial decreasing f € L.

Put E, = {Nf > A}. (See Definition 3.3.) The intersection of S(E, ) with the
support of p; is then a ball of radius p < 7;, E, itself is a ball of radius > p, and
hence

(9) ""i(S(EA)) = y(r,)m(pB) < yY(p)m(pB)
< Cx ,(pB) = C ,(E,).

Therefore, noting that {u > A} C S(E,\) as in [17] and in the proof of Lemma
3.5, we see that

10)  furdp= [ {u>2yd0e) = [7C,(E) dOV).

Now (8) follows from (10), exactly as in the proof of Theorem 3.8, by the
theorems of Hansson and of Hardy-Littlewood.

By (7) and (8), the measure p = 3(2/3)’p, is a Carleson measure for h.

Finally, fix 8. Then B < B, for all sufficiently large i, so that

(11) Qk.p(271,B) D QF 4(27,B),
and (6) shows therefore that
n(QF 4(2%,B)) = (3)'n,(QF, 4(27,B))
> (4)'m(2r,B).
Hence 4.5 (1) fails for this p.
V. Examples and applications

In this section we investigate a special class of kernels, the so-called Bessel
kernels, for which the regions Q% ; can be determined quite precisely, and we
present several function-theoretic applications.
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Our work will be simplified by the fact that the essential features of Q% ,
depend only on the behavior of K near the origin. The following proposition
makes this more explicit.

5.1. ProPOSITION. Assume that 1 < p < oo, that K and H are kernels, not
in L9, and that there are constants a, b, € > 0 such that

K
(1) O<as§%5b<oo if 0 <|x|<e.
Then there are constants a’, b’ such that
1K, |l
2 O0<a <—2l<p<
@) =T, *

for all y € (0, ).
Consequently, every Q% 5 contains an QF; , and vice versa.

Proof. The ratio in (2) stays bounded and stays away from 0 as y — o0, by
Proposition 2.11 (d). Hence we only need to examine its behavior as y — 0.

Write K = K’ + K”, H= H’ + H”, where K’ and H’ are the restrictions of
K and H to {|x|<e€}. Then K” € L* N L'; hence K” € L9, and therefore
IK” * P, |l , is a bounded function of y on (0, o). The same is true of || H" * P, |l ,.
Since || K, ||, and ||H, ||, tend to co when y — 0, it follows that the upper and
lower limits of the ratio in (2) are unchanged if K and H are replaced by K’ and
H'. Since aH’ C K’ C bH’, (2) holds.

The assertion concerning the regions Q2 and €, follows from (2) and
Definition 2.6.

CoroLLARY. Assume that K and H satisfy (1). A function u in R"*! has
then an Q-limit at x, € R" if and only if u has the same Q}limit at x,. To each
B corresponds a vy such that

My p g f =My, f
and vice versa.
We therefore lose nothing of importance if, in discussing h%, we replace 2

by ,,.

5.2. The Bessel Kernels G,. For 0 < a < n, G, is the function on R" whose
Fourier transform is '

(1) C(&) = (1+&p) " ((eR").
Each G, is a positive radial decreasing L'-function. Explicit formulas for G (x)
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may be found in [3; p. 416] and [18; p. 132]. These show that G (x) decays
exponentially as | x| - oo, that
(2) G (x) ~|x|*" asx >0
if 0 < a <n, and that

1
(3) G,(x) ~ 10g|_xT asx - 0.

Here and later, the notation

(4) u=o
means that u /v has a positive finite limit, and
(5) u~ov

will mean that /v and v/u are bounded.

In order to apply our general theorems about hZ, we have to estimate the
norms ||G,* P, |l as y - 0, for 1 < g < 0.

Note that G, € L? when ap > n.

5.3. PropPosITION. As y — 0,

(1) IG,*P,ll,~y "/ ifap <n,
1\9
(2) ||G,,*Py||q~(logg) ifap=n,p>1,
and
P 1
(3) IG,*P,ll, ~log~y—.

Proof. To facilitate the computations, we use Proposition 5.1 and replace
G,(x) by the kernel

(4) H(x) = ﬁ f e 152 1P (x) ds.

If 5 is replaced in (4) by | x|s, comparison of the resulting integral with 5.2 (2)
and 5.2 (3) shows that H (x) ~ G (x) as x — 0. Therefore it suffices to estimate
IH,*P,Il,asy — 0.

Since P P, = P, , (4) implies that

(5) (H,*P,)(x) = F(la) f Temsse P, (x) ds.
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If we define
— L o —soa—1 -t
(6) Loow) = gy [ e s s +u) s,

the explicit formula for the Poisson kernel shows that there exist y’ > 0, v’ < o0
(depending only on n) such that

(7) Y,Ia+1,"+1(| x| +y) = (Ha*Py)(x) < Y”Ia,n(l xl +y)
Since I, (y) =~ y* 'if 0 < a <£t, it follows that
(8) (Ha*Py)(x)~(|x| +y)* " (0<a<n).

Since | x |["P,(x) < c, for all x, y, we also have
(9) (H,*B,)(x) =, | x| ™

If 1 <p < oo, use (8) when | x|< 1, use (9) when | x|= 1, raise to the g-th
power, and integrate. The result is (1) and (2), with H in place of G. Finally,

(10) |H,*P,ll,, = (H,*P,)0) = c,1I, (y)
yields (3) and the case p = 1 of (1).

5.4. Bessel potentials. The potential spaces generated by the Bessel kernels
G, are usually denoted by £7, rather than by LZ . Thus, when 1 <p < o0, 27
consists of all f= G, *F where Fe€ L?, and | fll, , = IIFll,. (Note that the
map F - G_* Fis 1 — 1.) However, when p = 1, we shall include potentials of
measures. Thus £} consists of all f = G, *u, where u is a complex Borel measure
on R", and we define || fll, , = Ilull (see Section 2.17).

Here is a synopsis of Theorems 2.7, 2.9, 3.8, and 4.7, for the Poisson
integrals of Bessel potentials. The proof uses Proposition 5.3.

5.5. THEOREM. Suppose 1 <p < o0, 0 <a =<n, f€ LP, and u = P[f].
(a) Except possibly on a set of x,’s of measure 0, u(x, y) converges to f(x,)
when (x, y) = (x,,0) within the regions defined by

(1) y>clx—x, [/ ("7 ifap <n,
(2) y >exp{—c|x— x,| 7"V} ifap=n,p>1,
3) y>exp{—c|x—x,|"} ifa=n,p=1,

where c is any positive number.
(b) The corresponding maximal functions ON f are in L? if 1 <p < o0, and
are in weak L' if p = 1.
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(c) The following inequalities hold when p > 1:

1
@ [ 10, y) Pym==r=tdy < All Iz, ifap <n,
0 N

(5) [ w00 p F=AIFI, if ap = n.

yllg

With regard to part (a), we observe that the exponential contact regions that
correspond to the potential spaces £? when ap = n are all distinct, with the sole
exception of £2 n/2 and £l. On the other hand, when ap < n, then the approach
regions for 27 depend only on the product ap (called “weight” in [2]).

This contrasts with the behavior of the Bessel capacities B, ,: according to
[2; p. 874], no two of these capacities have the same null sets, in the range
1<p<o,0<ap=n.

5.6. Kernels on the unit circle. If R" is replaced by the unit circle T, and
0 < a =1, the kernel G, is replaced by

(1) g.(0) =1 + 5 2 |n| %™
n?ﬁo
When 0 < a < 1, the asymptotic relation

a—1

2) g.(0)~ sin g

holds as 6 — 0 (see [20; p. 186)); also

(3) g(0) =1+log
2sm—’

Thus g, has essentially the same singularity as G, when n = 1, so that the
results of Theorem 5.5 (with n = 1) obviously hold in this context. To list them
again would be repetitious. Instead, we shall now apply our general theorems to
holomorphic functions in the unit disc.

5.7 Cauchy integrals of potentials. Let us define
- 1 i0ya—
(1) &(0) =log——7g,  .(8) = (1 =€) '

if 0 < a < 1. These are not kernels in the sense in which we have used the term,
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but they are dominated by g, and g, (see Section 5.6): there are constants A,
for 0 <a =1, such that |3, |<A_g,.
If P(0) is the Poisson kernel for U, and z = re?, then

@) (B+2,)(6) = log 7~

(3) (Pxg,)(0)=(1—2)"" O<a<1)

and the Cauchy integral of g, * F is the same as its Poisson integral, namely

“ R

Since | g, |= A,g,, the proof of Theorem A (stated in the introduction) is
now simply a matter of translating Theorems 2.7, 2.9, 3.8 into our current
terminology; the approach regions are determined as in Theorem 5.5, with § and
1 — r in place of x and y.

5.8 TuEOREM. If f is a function of bounded variation on T, then the
& -limit of its Cauchy integral

_ f(¢) dt
hlz) = 2""f—wl—e Mz
exists at almost every point of T.

The term &,-limit refers to the exponential contact regions that occur in
Theorem A of the introduction.

Proof. Assume f(O) = 0, without loss of generality. The denvatlve of fis a
measure A, with )\(0) = 0. Setting p = —iA, we have [i(n) = nf(n) for all
integers n. On the other hand, if g, is as in Section 5.6, then

(g1%1) (n) = 42 (n)/|n]| (n #0).
Thus
1A , i (n)/n = f(n) ifn >0
1n) + (g,+p) (n) = { o =0,
Consequently,

h(z) = ?fw)z" = 4P[£1(z) + Plg, »4](2).



TANGENTIAL BOUNDARY BEHAVIOR 359

Since g, * p € £}, Theorem 5.5 (3), adapted to U, shows that P[g, * u] has
an &,-limit almost everywhere on T. Since f is continuous except possibly at a
countable subset of T, and since P[f] extends contlnuously to any point of
continuity of f, the proof is complete.

Our final application deals with spaces of holomorphic functions in the
upper half-plane and with their zero sets. Since we shall work with general
kernels K, we prefer the half-plane to the unit disc.

We define HZ to be the space of all holomorphic functions in R% that
belong to h%, i.e., that are Poisson integrals of potentials in Lg.

59. Lemma. If u € HE, u 20, B >0, and E is the set of all x € R such
that Q% s(x) contains infinitely many zeros of u, then m(E) = 0.

Proof. The Q2-limit u* of u exists almost everywhere (Theorem 2.9) and is
therefore 0 at almost all points of E. Hence m(E) = 0, since u* cannot be 0 on a
set of positive measure.

5.10. THEOREM. Suppose K is a kernel on R, 1 <p < o0, and {y;} is a
sequence of positive numbers such that

(1) any ;7=

Then there exist real numbers x; such that 0 is the only function in H} that
vanishes at every z; = x; + iy,.

Proof. Put r(y) = I|K, Il 7, as in Section 2.10. The width of Q2% , at height
y is then 27(y). Since 2r(y,) = oo, there exists {x;} so that every real x belongs
to infinitely many segments I;, where

2) L= {x:|x—x;|<r(y,)}.

But (2) says precisely that z; € Q% \(x). Every Qf ,(x) contains thus infinitely
many z;, so that the theorem follows from Lemma 5.9.

5.11. Remark. When transferred to the unit disc, Theorem 5.10 gives an
affirmative answer to a question raised by Shapiro and Shields [15; p. 224]. They
ask whether the theorem is true when p = 2 and K is any kernel on T with
K(n) >0 and K convex on {n = 0}. They prove it in the case K = g, i.e., for
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the functions in the spaces D, that consist of all h of the form

h(z) :Lf" __F@)dt

2 — (1 _ e—,'tz)l—u

where F € L2,
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