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In this paper we show that if f is a bounded analytic function defined on the unit
disk such that at each point of the unit circle the cluster set of f has area zero, then
f has vanishing mean oscillation (see Sect. 1 for definitions). We discovered this
result (Corollary 1.5) and its quantitative version (Theorem 1.4) using some
techniques from operator theory. This proof is given in Sect. 1; the main tool is
Putnam’s Theorem (Lemma 1.1).

In the main result in Sect. 2 (Theorem 2.4) we extend the above result to the unit
ball in €", using commutative Banach algebra techniques rather than operator
theory. Here the key tool is Alexander’s spectral area estimate (Lemma 2.2).

Section 3 ties the techniques of Sects. 1 and 2 together by giving a simple proof
of Putnam’s Theorem for subnormal operators. Here the main tool (Lemma 3.2) is
a quantitative version of the Hartogs-Rosenthal Theorem. Some concluding
remarks indicate another method of combining the tools used in this paper.

Although there are obvious connections between the three sections of the
paper, each section can be read independently. Throughout the paper, ¢ denotes an
absolute constant, independent of everything except the dimension n of €" (in
tS)c:ct. 2). However, the actual value of ¢ may change; thus sometimes ¢ is replaced

¥ c.

L. Putnam’s Theorem and VMO

Let D denote the open unit disk in the complex plane. On the unit circle 0D we put
ebesgue arc length measure, normalized so that the measure of the entire circle is
one. For I oD, we let |I| denote the normalized measure of I. The usual Lebesgue
:p?jcij and Hardy spaces on the circle with respect to this measure are denoted L?
h P
For fe L! and I a subinterval of D, let f; denote the average of f over I, so
Ii= { f/1|. Next define || f ||puo to be the square root of the supremum (taken over

—

T ———————
Both authors were partially supported by the National Science Foundation



162 S. Axler and J. H. Shapiro

all subintervals I of dD) of [|f—fi|*/|Il The space BMO (bounded mean
I

oscillation) is the set of all functions fe L? such that || f | gyo< 0. A function

feBMO is said to be in VMO (vanishing mean oscillation) if the limit as r

decreases to zero of the supremum (taken over all subintervals I of 0D with |I| <r)

of [|f—fi*/l| equals zero. Good references for the basic facts about BMO and
1

VMO on the circle are [5] and [24]. These spaces can also be defined on the line
rather than the circle with almost identical theorems and proofs; see [14].

If f is in one of the Hardy spaces H?, we also denote the usual analytic
extension of f to D by f. Whether we mean the function defined on 0D or the
function defined on D will always be clear from the context.

If f is analytic on D and A € 0D, then the cluster set of f at 4, denoted cl(f; 4),is
defined to be the set of all complex numbers w such that there exists a sequence
{z,} CD such that z,— 4 and f(z,)—w.

Our main results in this section (Theorem 1.4 and Corollary 1.5) relate the
cluster set with VMO. Our main tool will be a version of Putnam’s Theorem on
hyponormal operators (Lemma 1.1). Throughout this section, C*-algebra always
means C*-algebra with identity. We use sp(T) to denote the spectrum of T in the
appropriate Banach algebra.

Lemma 1.1 (Putnam’s Theorem). Let B be a C*-algebra. If Te Band T*T— TT*is
a positive element of the C*-algebra B, then

|T*T—TT*|| <(area sp(T))/x.

Putnam’s Theorem is usually stated and proved only for the C*-algebra of
bounded operators on a Hilbert space, but we will need it as stated above for more
general C*-algebras. For the original proof, see [19, Theorem 1]. A nice proof
based on the Berger-Shaw Theorem can be found in [8, p. 294]. To prove the
version stated above from the operator theory versions, simply use the representa-
tion theorem which states that every C*-algebra can be thought of as a
C*-subalgebra of the algebra of all operators on some Hilbert space; see [10,
Theorem 2.6.1]. This representation preserves all the C* properties (norm,
spectrum, adjoints, etc.), so Lemma 1.1 follows from the Hilbert space version.

Purely C* theorems should have C* proofs, not proofs that rely on Hilbert
space, so the proof above of Lemma 1.1 is unsatisfying. One of our favorit¢
examples of this principle is the following proposition: If B is a C*-algebra and
TeB is left invertible, then T*T is invertible. This is fairly easy to prove for
operators on Hilbert space (and thus we get a proof for arbitrary C*-algebras as
with Lemma 1.1 above). A purely C* proof is more difficult (and also mor¢
interesting) to discover, but once you find the pure C* proof you are likely to be
convinced that it’s the right proof. Thus we raise the problem of finding a C* pr oof
of the C* version of Putnam’s Theorem. No one has yet found such a proof: #¢
suggest that Alexander’s spectral area estimate (Lemma 2.2) or the quantitative
Hartogs-Rosenthal Theorem (Lemma 3.2) may be useful.

Let P denote the orthogonal projection from L? onto H2 For feL*. th
Toeplitz operator T, : H2—H? is defined by T;(g) = P(fg). It is easy to check tha!
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the adjoint of T, is given by the formula T}*(g)=P(fg). I fe H* the projection is
unnecessary, so in that case we have Tl;,(g) =fg.

The orthogonal complement of H? in L? is denoted (H?)'. For fe L® the
Hankel operator H ;: H>—(H?)* is defined by H ((g) = (1 — P)(fg). The following
lemma gives a useful relationship between Toeplitz and Hankel operators.

Lemma 1.2. If fe H®, then T¥T,;— T, T =H%Hj.
Proof. If ge H?, then

UTFT, =T, T}g,9> =Tyl > = I T}gll*
= fglI* = IP(F)I* =l FglI* = I P(FPII?
=[0=-P)(fl*=Hjg|?
=<H}Hjg,9) .

Since this equation holds for each g e H?, we have the desired result.

Let f be an analytic function defined on D. It is easy to prove that if the area of
f(D) counting multiplicities (so if a region is covered twice it is counted twice) is
finite, then fe VMO see the comments following the proof of Lemma 1.6. Results
concerning the area of f(D), not counting multiplicities, are more difficult. From
now on, area f(D) means the area of the set of f(D); multiplicities are ignored. In
[3, Theorem 17, Alexander et al. proved that if area f(D) < oo, then f € H?. Hansen
[15] improved this result by showing that if area f(D)< oo, then fe H? for all
p<co.Finally, Stegenga [26, p. 428], noted that this work on geometric conditions
for BMO implies that if area f(D)< oo, then feBMO. Since BMO CL” for all
p<oo, Stegenga’s result implies the earlier results.

In the following proposition we give a new easy proof of Stegenga’s result using
Putnam’s Theorem. Proposition 1.3 should be interpreted to mean that if f(D) has
finite area, then fe H? and the boundary value function of f is in BMO. In Sect. 2
we give another easy proof of Proposition 1.3.

Actually, we will not use Proposition 1.3 in the rest of the paper. We prove it
because the main result in this section, Theorem 1.4, will be proved by localizing
the proof given here of Proposition 1.3.

Proposition 1.3 (Stegenga). There is a constant ¢ such that

“f||BM0§C]/ area f(D)

Jor every function f analytic on D with area f(D)< co.

Proof. First, let f€ H®. By Nehari’s Theorem (see [24, p. 100], for a statement and
Proof with the same notation we are using), there is a function he H® such that
IH;l = 7+ »- Now f=P(f)and P(h)is a constant. In the following inequality,
We do not use the full strength of the duality between H' and BMO); the constant ¢
tomes from the boundedness of P as an operator from L? to BMO. We have

If llemo = IP(f +B)llgmo Sl f+hll o = Hyll -
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Now
(1f lamo)* S| Hy||* = c*| H}H|
=TT, — T, T}l (by Lemma 1.2)
< c(area sp(Ty) (by Lemma 1.1).

However, itis easy to check that sp(T) C f(D) (actually equality is true; see [ 11,
Theorem 7.217) so we get that

(I flsmo)* <c(area f(D)) forall feH™, (1)

where ¢ is a constant independent of f.

Now suppose f is analytic on D, but not necessarily bounded. For 0 <r <1, let
f(z)=f(rz). Now as r increases to 1, we have that || f,||guo tends to || /| gmo- It is
also clear that

area f,(D)=area f(rD)<area f(D),

so the proof is completed by applying (1) to f, and taking the limit as r increases

to 1.
The following theorem is the main result of this section. To prove this theorem
we will need three further lemmas, so the proof is deferred until after Lemma 1§,

Theorem 1.4. There is a constant ¢ such that

distgyo(f, VMO) = csup{]/areacl(f; 4): 1€ 0D}
for all fe H®.

Since VMO is a closed subspace of BMO, the following corollary follows
immediately from Theorem 1.4.

Corollary 1.5. If fe H* and cl(f; ) has zero area for each A€ 0D, then f€ VMO,

It is somewhat surprising that in the corollary above, the condition that f€ H”
cannot be replaced by the assumption that f is an analytic function on D which s
in BMO. For example, consider the function f defined by f(z) =log(1 —z). Itis not
hard to verify that fe BMO. As a function on D, f is continuous at each point of
D except z=1. At z=1, the cluster set of f at 1 is the empty set (or perhaps the
point at infinity if you want to change the definition). At any rate, the cluster set of
f at each point of the circle contains at most one point and so has area zer0.
However, as a function on D, the imaginary part of f has a jump discontinuity a
z=1,s0 f¢ VMO.

Let C denote the set of continuous complex valued functions defined on 9
Since VMONH®={feH*:fe H® +C} (see [22, p.398], or [24, p.66]). !
Corollary 1.5 we could replace the conclusion fe VMO with fe H* + C. With this
observation, we note that the Lemma on p. 8 of [21] implies that if & H* and if
at each point of D the cluster set of f lies on a straight line, then f€ VMO‘
However, the techniques used in [21] do not suffice to prove the followiné
implication of Corollary 1.5: If at each point of 8D the cluster set of f lies on @
smooth curve, then fe VMO.
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Lemmas 1.6 through 1.8 will be used in the proof of Theorem 1.4. If T is a
bounded linear operator, then the essential norm of T, denoted ||T|,, is the
distance from T to the set of compact operators.

Lemma 1.6. There is a constant ¢ such that
distgyo(f, VMO) <c|Hj|.
forall feH™.

Proof. Let fe H*. From [24, p. 101], we see that there is a function he H® and a
function g € C such that 2|Hj||,= || f+h+gl|,. Now P(3) € VMO, so

distgyo (f, VMO) X || f+ P(@ llsmo = | P(f + 1+ )l smo
Scllf+h+3l,
=c|[Hjl,

as desired.

Lemma 1.6 provides one method of giving an easy proof that if f is analytic on
D and the area of f(D) counting multiplicities is finite, then f€ VMO. Since we
never need to use this fact, we just sketch the proof: Suppose the area of f(D)
counting multiplicities is finite. If f(z)=>a,z", then the area of f(D) counting
multiplicities equals 7 3 nla,|>. Now examine the matrix of H 7 with respect to the
usual orthonormal bases, and note that the condition on the Taylor coefficients of
/implies that the entries of the matrix are square summable. Thus H7 is a Hilbert-
Schmidt operator, and hence Hj is compact. Lemma 1.6 now implies that f is in
VMO.

Let 7 denote the norm closed algebra generated by {T: fe L*}. It turns out
that 7 is also equal to the C*-algebra generated by {T,:feH>}; see [11,
Chap. 7], for more information about . For A€ D, let J, be the smallest norm
closed two sided ideal of 7 containing {T}:fe C and f(4)=0}. The canonical
quotient map from Z to 7 /J ;, will be denoted gq,,s0 q,(T)=T+J,foreach Te 7.
For feL~, q:(Ty) is called a local Toeplitz operator; see [4, 6, 11-13] for more

about this subject. In the following lemma we actually have equality but we don’t
need it.

Lemma 1.7. If fe H>, then

sp(q(Ty))Ccl(f; 4) for each AedD.
Proof. Note that if we C, then

4(T,)=q(T, -y + W) =w(4);

here we are letting w(4) sometimes denote w(l) times the identity of the
ppropriate Banach algebra.

Let fe H*. To prove Lemma 1.7 it suffices to prove that if 0¢cl(f; A), then
44T;) is invertible. So suppose that 0¢cl(f; 4). Write f=bg, where b is an inner
unction and g is an outer function. Since f is bounded away from 0 near A, there is
40 open interval I of 3D containing A such that b is continuous (and unimodular)
o [and g is bounded away from O on I. Since g is an outer function, there is a real
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valued function ueL' such that g=exp(u+ii). Let v equal (—u) times the
characteristic function of I, and let h=exp(v+if). On I, u+v equals 0, so gh is
continuous on /.

Let we C be such that w(4)=1 and w=0 on 0D~ 1. As we saw in the first
paragraph of this proof, q;(7,)=1, so

q( Tf)q AT =q(T,)q;( Eg)‘h( T,) =q,( wa(gh)) .

Since wb(gh) is continuous on 0D and nonzero at A, the last quantity in the
equation above is a nonzero scalar multiple of the identity. Since u is bounded
away from — oo on I, the outer function h is invertible in H®, and so q,;(T;) is
invertible. Thus the equation above implies that g,(7}) is invertible, as desired.

The next lemma says that the essential norm of an operator in 4 depends only
on the local behavior of the operator.

Lemma 1.8. If S€ .7, then
[Slle=sup{llg.(S)|l: LD} .

Proof. Let ©@{7 /J ;: A€ 0D} denote the C* product of the C*-algebras 7 /J,; thus
the norm of any element of the product is the supremum of the norms of the
components. Let # denote the set of compact operators on H2. Douglas [11,
Theorem 7.49], has shown that the map from /4 to @{7/J,: Ae oD} which
sends T+ 4 to @{q,(T): A€ 0D} is injective. Since every injective homomorphism
between C*-algebras is an isometry [10, Corollary 1.83], we are done.

We have now assembled all the ingredients necessary to prove Theorem 1.4

Proof of Theorem 1.4. Let fe H*. Then

[distpuo(f, VMO)]?
<c|Hj|? (by Lemma 1.6)
=c|H}H,
=c||T¢T,— T, T#|. (by Lemma 1.2)
= esup{llgx(T)*au(T) — 4:(TPa(T)*|: 4D}  (by Lemma 1.8)
<csup{area sp(q;(T;)): A€ 0D} (by Lemma 1.1)
Zcsup{areacl(f; 1): Ae 0D} (by Lemma 1.7),

and we are done.

In Sect. 2 we extend Theorem 1.4 to the unit ball in C" for n> 1. A probler
arises when trying to extend to several dimensions the operator theoretic proo
given in this section. Specifically, it is unclear whether Lemma 1.6 holds when
n>1; see the discussion following the statement of Theorem 2.4.

The techniques used in this section can be used to prove a slightly strong
version of Theorem 1.4, although at the cost of losing the geometric f’fﬂ"or
associated with the cluster sets; see the discussion following Proposition < 10.
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2. Alexander’s Spectral Area Estimate and YMO

In this section we will use results from the theory of function algebras to obtain
analogues of the distance estimate of Theorem 1.4 for bounded analytic functions
on the unit ball of C"; see Theorem 2.4. In this context we use Alexander’s spectral
area estimate (Lemma 2.2) instead of Putnam’s Theorem (Lemma 1.1), and we
replace the BMO norm by Garsia’s equivalent norm. In the next few paragraphs
we define Garsia’s norm in the setting of the unit circle, state Alexander’s spectral
area estimate, and illustrate our method by giving another proof of Stegenga’s
Theorem (Proposition 1.3). We then develop the major theme of this section — the
generalization to €" of Theorem 1.4.

For z in D let u, denote the Poisson measure (or harmonic measure) for z on
doD:

du () =(1—z)/11 —ze” *|dt)2m,
and for f in ! write

f@)= a{)fduz (zeD).

The function f defined on D by this formula is the Poisson integral of f’ it is the
natural harmonic extension of f from oD to D.
For f in L? we define the (possibly infinite) Garsia norm of f to be

If g =sup {(aJ;J lf*f(Z)Izdu,>1/2 ize D} :

Garsia proved that fe BMO if and only if || f || s < 00, and that the seminorms || | ¢

and | |lpyo are equivalent on BMO. A proof of the following lemma can be found
n [24, pp. 36-37].

Lemma 2.1 (Garsia’s Theorem). There exists a constant ¢ such that

[ flle/e=1flsmo=cllfle
for every f in L2

In order to state Alexander’s Theorem we need to recall some terminology. A
function algebra (or uniform algebra) A on a compact Hausdorff space Q is a closed
subalgebra of C(Q) which contains the constant functions and separates the points
of 0. The maximal ideal space M, of A is the space of nonzero complex
homomorphisms of 4. With the weak-* topology, M, is a compact Hausdorff
SPace, in which Q is naturally embedded as a closed subspace. The Gelfand
transform of a function f in A is the continuous function f on M, defined by f(m)
=m(f)for me M ,. The spectrum of f in A, denoted sp(f), is equal to f(M ). The
map f—7 is a Banach algebra isometry of A into C(M ).

Ifme M ,, then an A-representing measure for m is a Borel probability measure
#on M, such that f(m)= | fduforeach f in A. We denote the collection of all

M

A
Such representing measures for m by R ,(m). A standard argument involving the
ahnjBanach and Riesz Representation Theorems shows that R,(m) always
‘ntains a measure supported on Q.
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Lemma 2.2 (Alexander’s Spectral Area Estimate). Suppose A is a function algebry,
If meM ,, pe R (m), and fe A, then

I} |f—f(m)|*du<area sp(f)/x.

This theorem was applied in [3, 1, 2] to derive lower bounds for the areas of
projections of analytic varieties on the complex coordinate axes. Further
applications are given in [2]. Alexander’s proof of Lemma 2.2 depends on a
quantitative version of the Hartogs-Rosenthal Theorem of function theory. In
Sect. 3 we use this tool (Lemma 3.2) to give a new proof of Putnam’s Theorem for
subnormal operators. Right now we want to illustrate how Alexander’s Theorem
yields results about BMO. We begin by giving another easy proof of Proposition

1.3, which states that there is a constant ¢ such that || f|gyo = c]/area f(D) for
every function f analytic on D.

Proof of Proposition 1.3. In Lemma 2.2, let 4 be the disc algebra; so 4 consists of
all functions in C(D) that are analytic on D. The maximal ideal space of 4 is D. For
fe A and ze D, apply Lemma 2.2 with u= u,, the Poisson measure. Taking the
supremum of the left side of the resulting inequality over z in D we obtain

I.f11&=sup { §1f=f)Pdp,:z € D} <area f(D)/r.
D

More generally, if f is analytic in D with area f(D) < oo, then as in the proof given
in Sect. 1 of Proposition 1.3, we apply the above inequality to the dilate f, for
O<r<1 and let r—1. The result is

I fllg=])/ areaf(D)/m .

This inequality and Garsia’s Theorem (Lemma 2.1) complete the proof.

We now turn our attention to bounded analytic functions on the unit ball of C"
for n>1. Our goal is to prove an analogue of Theorem 1.4 by localizing the
argument of the last paragraph to certain function algebras associated with points
of the boundary of the ball. There is some question about what BMO should mean
in this context. We will discuss this matter after setting out some notation and
terminology.

Let B denote the open unit ball of €", and let B denote its closure. Let o denote
surface area measure on the unit sphere 8B, normalized so that the total mass is L
Thus o is the unique rotation-invariant Borel probability measure on 0B. We writ¢
L =LP(0)=L*(0B, o).

For 1<j<n, let u; be the orthogonal projection of C" onto the ™ COII}PIeX
coordinate axis; so u(z) =z, for z=(z,, ..., z,) € C". We denote the complex innef
product on C" by <, ), where

{z,wy=2z,Wi+ ... +2Z,W,.

The Euclidean norm is denoted | | and is defined by |z|=]/<z,z). i

For n> 1 there are two natural generalizations of BMO from oD to dB. Each
corresponds to a different class of spheres on 8B, and the two spaces are different
For £ in 0B and 6 >0 define

Es¢)={z€dB:|¢t—z|<d} @
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and
Ny(&)={zedB:|1-{& z)|<d*}. A3)

The Euclidean spheres E4(¢) arise in connection with the study of harmonic
functions on B. They model the singularity of the Poisson measures

dp (&) =(1—z|)/lz— £|*"da () 4

defined on 6B for each z in B. If fe L'(0), then as in the case n=1, the Poisson
integral

@)= [ fiu. (z¢B) 5
is the natural harmonic extension of f to B.

For f in L?(¢) we define | f |z as in Sect. 1, replacing 6D by 0B, normalized
Lebesgue measure on 0D by o, and intervals I by spheres E;(¢), and let BMOg
denote those f in L*(s) for which | f|z<oo. There is also a Garsia norm
equivalent to || ||g, given by the formula

”f”EG =sup {(ajs |f’"f(z)|2dﬂz>1/2 ASS B}-

The non-isotopic spheres N(£) are in many ways more closely connected with
complex function theory on B than are the Euclidean spheres. They are associated
with the Poisson-Szego measures

dv()=[(1—[z1)/I11 =<z, EH*T"da(£) (6)

defined on @B for each zin B.If f € L!(c), then the Poisson-Szego integral of f given
by

f@)= afodvz (zeB) ™

is the natural .#-harmonic extension of f to B. We will not define this class of
functions here — a detailed discussion can be found in [20, Chap. 4] — but will
content ourselves with noting that .#-harmonicity is preserved under composition
with analytic automorphisms of B (ordinary harmonicity is not), and that a real
valued harmonic function in B is .#-harmonic if and only if it is the real part of an
analytic function.

We define | ||y and BMOy in the obvious way relative to the spheres N (£). We
remark that Krantz’s paper [17] contains a detailed discussion of BMOj and
BMON. In particular, if n > 1 neither space contains the other, but the intersection
ol BMO, with the H?(B) boundary functions lies in BMO,. However, it is BMOy,
and not BMO,, which is used to describe the dual space of the Hardy space H'(B).

We define the Garsia norm | f |y ¢ for fe L*(s) by

Iy, 6=sup {(aIB |f—f (Z)Izdvz)” 2:ze B},

Where £(z) is now defined by (7) for z € B. The same argument that proves Garsia’s

leOfem (Lemma 2.1) for 0D yields the analogous inequalities relating || ||z with
” lla,q. and || ||y with || ||y, ¢ For completeness we prove the part of this result that
¥ will need in the sequel for the N-norms.
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Proposition 2.3. There exists a constant ¢ such that

IfinSellfly,g for each f in L*(o).

Proof. Fix ¢€0B and 0<3<|/2. Let N=N,(¢) and let fy= { fdo/a(N). In the
N

Hilbert space L*(N, a/a(N)) the constant fy is the orthogonal projection of f onto
the one dimensional subspace of constant functions, so for every we € we have

va |f—fxl*daja(N) < IIV |f—wl*da/a(N).
Suppose 32 1. Then since ¢=v, we get
’!J |f=ful*da(N)/a(N) < va |f=1(0)*da/a(N)
< afB |f=£(0)|*da/a(N)
= afB |f=f(0)*dvo/a(N)

S| fIx,6/o(N).

On the other hand, if0<d <1, let r=1— 62 Then for zin N = N 4(&) we have the
following estimate on the kernel defining v,,:

[(1—r2)/[1—<rE, 11" 2 1/(46%)" Z c/a(N)
where the last inequality is in [20, Sect. 5.1.4]. Thus
1/ =fuldo/oN)S | |f=FrE)do/o(N)
écafB |f=f(r&)Pdv,

scllfld,6-

These inequalities show that || f|y<c| f|y,¢ for each f in L?*(c). This completes
the proof.

Each of the BMO spaces defined above has a corresponding VMO subspace,
denoted by VMO, or VM Oy, as the case may be. Each is a closed subspace of ifs
respective BMO space, and each contains the continuous functions on 0B [just
each BMO space contains L*(g)]. Let disty(f, VMO,) denote the distance i
BMO, from fe BMO, to VMOy:

disty(f, VMOy) =inf{|| f—gly: g€ VMO,}

with a similar definition for distz(f, VMOy). )
Let H*(B) denote the space of bounded analytic functions on B, endowed with
the sup-norm. For each fe H*(B), define a function on 8B, also denoted /. by
taking radial limits, which exist for almost every (do) point of dB. The map tha!
associates f with its radial limit function is an isometric algebra isomorphis™
taking H*(B) onto a closed subalgebra of L*(c); see [20, Chap. 5]. We can no%
state the main result of this section. The cluster set of f at &, denoted cl(/: &), 18
defined exactly as in the unit disk — it is the set of w in € such that w=1imf (zy) oI

some sequence {z,} in B with {=limz,.
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Theorem 2.4. There is a constant c¢ such that for each feH®(B), both
distz(f, VMOy) and disty(f, VMOy) are less than or equal to

csup{]/areacl(f;¢):{edB}.

The proof of Theorem 2.4 will occupy the rest of this section, and will be divided
into a number of lemmas and propositions. Of course, when n=1 Theorem 2.4
reduces to Theorem 1.4. We digress for a moment to discuss the problems which
arise when attempting to use the techniques of Sect. 1 to give a proof of Theorem
24 for n>1.

To mimic the techniques of Sect. 1, we would define for f in H*(B) the Toeplitz
operator T;: H*(0B)—H?(0B) and the Hankel operator H;: H*(0B)—(H*(0B))*
by Ty(h)y=fh and Hy(h)=(1—P)(fh), where P is the orthogonal projection of
L*(0) onto H?*(6B). The main stumbling block that prevents the proof given in
Sect. 1 from working when n> 1 is that it is unclear whether Lemma 1.6 holds in
this context. We raise the following question, whose answer would probably
determine whether Lemma 1.6 holds for n> 1: For which functions fe H®(B) is
Hj compact?

Readers familiar with a paper of Coifman, Rochberg, and Weiss may believe
that this question has already been answered. Theorem VIII of [7] states that for
fe H*(B), the Hankel operator with symbol f is compact if and only if f€ VMO,
However, the Hankel operators appearing in [7] are not the same as the Hankel
operators defined here. The Hankel operators used in [7] are (equivalent to)
multiplication followed by projection onto

Y={f:fe H*B) and f(0)=0}.

Our Hankel operators are multiplication followed by projection onto (H*(6B))*.
Of course, Y C(H?(0B))* and when n=1 the two spaces are equal, but for n> 1 the
inclusion is strict. This distinction was overlooked in [9], which uses the same
definition of Hankel operators as we do. In particular, the last paragraph of Sect. 3
of[9], where results from [7] are used, should be treated with caution. Perhaps the
techniques of [7] can be used to answer the question raised in the above
paragraph.

To conclude this discussion, we note that we cannot just adopt the definition of
Hankel operator used in [7]. Our definition is the natural one when dealing with
Toeplitz operators, because it provides the crucial link between Toeplitz and
Hankel operators as expressed by Lemma 1.2, which holds even when n>1 with
our definition.

From now on we denote the maximal ideal space of H*(B) by M, and use f to
denote the Gelfand transform of feH®(B), so f is a continuous complex valued
flunction on M. The fiber map n: M- B is defined by

a(m)= (i (m), ..., d,(m)) ~ (me M),

Where we recall that u ;is the j™ coordinate projection on €. For z € B the fiber of
1 over zis denoted M, and is defined by M, =~ !(z). Since 7 is continuous, M, is
“0sed in M. The fiber algebra A, associated with z is the subalgebra of C(M,)
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which arises from restrictions of functions in H*(B):
A, ={fIM,:fe H*(B)} .

Finally, if me M we write R (m) instead of Ry« (m) for the set of H*(B)-
representing measures for m, viewing H*(B) as a function algebra on M.

We regard B as naturally embedded in M, and identify f with f on B. For zin
B, the functions u;—z; [1<j<n, z;=u,(z)] generate the maximal ideal consisting
of all f in H*(B) which vanish at z=(z,, ..., z,) (this is easy when n= 1, but difficult
for n>1; see [20, Sect. 6.6]). It follows that M, ={z} when |z|<1,s0 M, and A4, are
nontrivial only if z € B. The following results are standard when n=1 ([16, Chap.
10] and [25]), and known for n> 1.

Lemma 2.5. Suppose &€ 0B. Then
(@) fe H®(B) extends continuously to Bu{¢} if and only if f is constant on the
fiber M.
(b) A, is a closed subalgebra of C(M,), and its maximal ideal space is M.
(¢) If me M, and pe R,(m), then support uCM,.
(d) For each fe H*(B) we have cl(f; é):f(Mé).

The proofs of (a) and (b) follow exactly as in the case n= 1 from the existence of
a function h continuous on B, analytic on B, with |h|<1 on B~ {¢} and h(¢)=1.
For example take h(z)=(1+<z, £>)/2. See [16, p. 161], for the details.

Part (c) is an immediate consequence of (a). For (a) implies that (h)" tends
pointwise to the characteristic function of M., so by dominated convergence

1= h(m)"= Afl (W)ydp—pu(M)

as n—oco. This shows that u is concentrated on M.

The proof of (d) is not an immediate generalization of the case n= 1, and we will
not give it here. For the details see McDonald’s paper [18].

Before proceeding further, we pause to note explicitly a convenient way of
rewriting the left hand side of Alexander’s spectral area estimate (Lemma 2.2).

Lemma 2.6. Suppose u is any probability measure, fe L*(u), and w=| fdu. Then
J1f—wiPdp=J1fPdu—w*.
Proof.
[1f=wldu=]|f*du—2Re(% | fdu) +|w|’
=[1f1Pdp—2wP +|wl,

as desired.
We can now give our main application of Alexander’s spectral area estimate t0
H*(B). This result provides the crucial step in the proof of Theorem 2.4.

Theorem 2.7. If fe H*(B) and £ € 0B, then
lim sup [Sup {Afl |f—f@)dyu: pe Roo(Z)H S(area cl(f; {))/m.

zeB, z—¢



putnam’s Theorem 173

Proof. Fix f in H*(B), and let w denote the lim sup on the left side of the inequality
above, and choose sequences {z;} in B and y; in R (z;) such that z;—¢ and

f |7~ 1G)Pdp—w.
M

Since the measures {y;} are probability measures we may — by passing to a subnet if
necessary — assume that {4} converges to a Borel measure y on M in the weak-*
topology induced by C(M). Itis easy to check that pis a probability measure that is
multiplicative on H*(B):

| ghdu= (I g”d#) (I ﬁdu) [g9.he H*(B)],

M M M
50 i€ R (m) for some m in M. Now the weak-* convergence of y; to u yields for
each g in H*(B) [since g€ C(M)]:

g(m)= [ gdu=1lim [ gdu;=limg(z),
M M
hence z;—m in M. In particular,
n(m)=limn(z;)=limz;=¢,

so me M, and hence by Lemma 2.5(c), we have support uCM,.
We claim that

1{4 \f=fm)Pdu=w. @)
This follows from Lemma 2.6 and weak-* convergence:
w=lim 1{{ |f—f(z)du;  (definition)
=lim Aj{ |/1%du;—1/(z;)I* (Lemma 2.6)
= 1!4 |fPPdu—|f(m))? (weak-* convergence)
= 2£|f—f(m)|2du (Lemma 2.6).

Since support uC M, we know that p is an A,-representing measure for the
restriction to A, of the complex homomorphism m. Thus in view of Lemma 2.5 we
can apply Alexander’s spectral area estimate (Lemma 2.2) to u and f|M ¢ With
A=A, and M ,=M,. The result is

Ag |f—f(m)|*dp<area f(M)/n
| —areacl(f; &)/r [Lemma 2.5(d)].

This inequality and (8) complete the proof.

[n order to use Theorem 2.7 to prove Theorem 2.4, we have to make some
Connections between H(B)-representing measures, which live on M, and more
concrete measures on B. The ball algebra A(B) is the subalgebra of C(B) consisting
of functions analytic on B. By identifying each point z of B with the linear
functional of point evaluation at z, we identify B with the maximal ideal space of
A(B). For z in B, let R,(z) denote the collection of A(B)-representing measures u



174 S. Axler and J. H. Shapiro

for point evaluation at z such that for each f in H®(B), the radial limit

limf(rf) (—-1-)

exists for almost all (du)¢ in 0B.

We stress that although we are allowing support u to intersect B, the measures
of most interest are actually supported on 0B. The surface area measure o is in
R,(0), and so is normalized arc length measure on LNdB for any complex line L
through the origin. The Poisson measure u, and the Poisson-Szego measure v,
given by (4) and (6) for z in B both lie in R,(z), since they are in R 4)(2) [20,
Chap. 3] and are absolutely continuous with respect to ¢. It is apparently not
known whether R, (z) = R 45)(2) [20, Sect. 11.3.5]. The next result shows that each
U € R,(z) can be canonically associated with an H®(B)-representing measure for z.
Recall that = is the canonical map from M onto B.

Proposition 2.8. If ze B and pe R,(z), then there exists a measure fi€ R (z) such
that

(1) it =p
and such that if ®:C—C is continuous and f€ H*(B), then
(i1) [ @ofdp=[ o fdu.
M B

Remarks. Recall that for ¢ € B we are denoting the radial limit of f at &, if it exists,
by f(&). Thus the integrand on the right side of (ii) exists almost everywhere (dy)
because p € R, (z). In our application of Proposition 2.8 we will not need (i) and wil
need (ii) only for the two functions ®(w)=w, and &(w)=|w|*> (weC).

Proof of Proposition 2.8. Suppose p€ R, (z): We introduce some notation for
concepts involving L*(u). If f &€ H*(B), let [ f] denote the pu-equivalence class of f.
Let X, denote the maximal ideal space of L°(u). For me X ,, let ¢(m) be the com-
plex homomorphism of H®(B) defined by

pm)(f)=m(f]).

Let § be the Gelfand transform of g e L°(u). Then the definition of ¢(m) can be
rephrased:

flom)=[fT(m) [feH*(B)]. (9)

Itiseasy to check that ¢ is a continuous map from X, to M. Since C(X ) is precis_:ly
the set of all Gelfand transforms § for g € L*(y), we can define a Borel probability
measure /i on X, by

Jgda=[gdn  [geLlW]. (10)

We are going to show that fi=figp ~! is the measure we seek. ‘
Suppose @:C—C is continuous. Then because the Gelfand transform s 4
C*-algebra isometry of L*(u) onto C(X ), it is easy to check that (P g) =Py for
each g in L*(u) (for example, begin with @ a polynomial in z and Z, then take
uniform limits on the essential range of g). Using the definitions of s and ¢ the
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change of variable formula, and the above fact, in that order, we obtain for
feH"(B)

Ld’f)fdﬁ= J{{‘lhﬁi(ﬁco"‘)
= | &(f(¢(m)))dfi(m) (change of variable)
X

= Xf ®o[fTdi [by 9)]
=Xf (@-fTdi
= };‘Pf)fdu [by (10)],

which proves (ii).
To show that jin ~! =y, we fix f and g in H*(B) and apply (ii) to f+gand f—g
with ®@(w)=|w|? (we C). Upon subtracting the resulting equations we obtain

Re | fgdi=Re| fgdu.
M B
Replacing g by ig and repeating this argument, we obtain the same result for
imaginary parts. So
| fgdi={ fgdu (11)
M B
for every f,ge H*(B). Now let W denote the collection of all finite sums of
products fg with f and g in A(B). Since the H*(B) Gelfand transform f of a
function f in A(B)is constant on each fiber M (¢ € 9B), we have fon=fon M. So if
his the finite sum h=3 f;g; with f}, g; in A(B), then
{hd(in~Y)= | hondj
B M
=thl(]}°ﬂ)(gj°n)‘dﬁ
=Z .[ f;gx jd.a
M
=Zlf?f,-§,du [by (11)]
= [ hdu.
B
By the Stone-Weierstrass Theorem W is uniformly dense in C(B). Thus we have
Ighd(ﬂn_ )= [ hdy for every he C(B), and hence jin ' =p.

B
It remains to check that g is an H®(B)-representing measure for z. Fix
f€ H*(B) and let f.(0<r<1)denote the dilate of f by r, asin Sect. 1 [ £,(&) =f(r&)

f‘?f ¢€B]. Then f.e A(B) and the Lebesgue Dominated Convergence Theorem
Yields (as r—1 -)

;fgfdu=limg;frdu.
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But | fidu=f(rz) since p€ R 45(2), and f(rz)> f(z) asr—1—.Soforall f in H*(B)
B
we have lf@fdu =1(z). (12

Apply (ii) with @ equal to the identity map on €, and use (12), getting
I& fap= 1{ fap=f(z) [feH*(B)],

and so /ie R, (z). The proof is complete.
Corollary 2.9. If fe H*(B) and & € 0B, then
lim sup [Sup {}fg lf=f@)N dpu: e R*(Z)}] Z(areacl(f; §)/n.

zeB,z—>¢

Proof. Fix ze B and p € R (z) for a moment. Let /i be the measure promised by the
last proposition, and apply (ii) to f—f(z) with @(w)=|w|>. The result is

% |f=f@)Pdp= AI{ |f—f2)Pda.
Since jie R (z), the corollary now follows immediately from Theorem 2.7.

We can now give the proof of Theorem 2.4. It consists of showing that
Corollary 2.9 is in fact a stronger result.

Proof of Theorem 2.4. For f in H*(B) and 0=r<1, let
G(f;r)=sup {(%If—f(Z)lzdﬂymZ#ER*(Z), r<lzl< 1}~

Clearly G(f; r) decreases as r— 1 —. An immediate consequence of Corollary 2.9is

that
}i_{rllG(f; r)Ssup{]/area cl(f; é):éeaB}/l/;, (13)

so to finish the proof we need to show that both disty(f, VMOy) and
disty(f, VMOy) are controlled by limG(f; r). The key to this argument is the
following inequality:

G(f;EG(f;rs) [0=rs<]1, feH*(B)]. (14)

Here, as usual, f; is the dilate of f by s.
To prove (14), fix zin Bwith r < |z| < 1, and take pin R,(z). For ¢ in dBlet vy be
the Poisson-Szego representing measure given by (6), which we write as

dve(n)=P(s¢,n)da(n) (1€0B),
where
PG, m)=[1 -1/ —={4mPT.

(Actually, we could as well use the Poisson measures dy, here.) Now using the
Cauchy-Schwarz inequality on the probability measure v, we get

If(sQ)? = ’jfd"scz < [ If1Pdve,
0B B
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so by Fubini’s Theorem
lfﬁ |f(sOPdu(@) < aIB |f @ (153 P(s¢, n)du(§)> da(n)

= [ |f*dv, (15)
where o8

dv(n) = <£ P(s¢, 'l)d#('f)) da(n).

We claim that v e R, (sz). Since v is absolutely continuous with respect to o, it is
enough to show that v € R 4/(s2). It is easy to check that v is a probability measure
on dB. Suppose g € A(B). Then

[ gdv=]| (I gmP(s¢, n)da(n)) du(&)  (Fubini)
OB B\0B
= [ 9(sO)du(®)
= 1!-; 95(D)du(&)
=9,(2) [1eR 5(2)]
=g(sz).
Thus ve R (sz), as desired. From this fact, Lemma 2.6, and inequality (15) we
obtain
II} |fi— £ dp
= ‘J; IfPPdu—1f(2)I*  (Lemma 2.6)
é(_’l;ﬂlflzdv—lf(SZ)l2 [by (15)]
= [ |f—f(sz)|*dv [Lemma 2.6, since ve R (sz)]
oB
<[G(f; )],

and (14) follows because u e R,(z) and r<|z|<1 were chosen arbitrarily.
To finish the proof of Theorem 2.4, suppose ¢>0 is given. Fix 0<r< 1. Since
Ji=f in L*(0) as s—1—, we can choose 1>s>r so that

afB |f = fil*do <e(1—r)".
Thus if |z|<r, Lemma 2.6 yields
afB I(f =)= (F=f) @) dv,
= 558 |f(n) =) *P(z, p)do(n) — (f =) ()
<2".
From Proposition 2.3 we obtain

If=flZScsup {653 =)~ (f=L@Idv, ze B}
2%+ G(f— £ 1]
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by (16) and the definition of G. Since s=r, inequality (14) yields

G(f—f:N=Gin+G(f; sr)
SG(fiN+G(f;r?)

<2G(f;r%).
But f, is continuous on B and hence isin VMOy. So by the last two inequalities we
have )
disty(f, VMOy) S cl}/s + G(f; )] (1)

for each 0<r<1. Let r—1— and then let -0+ in (17). We obtain
disty (f, VMOy) = climG(f; 1),

which, along with (13), completes the proof of the “N”* part of Theorem 2.4. The
“E” part is entirely similar, so we are done.

For the rest of this section we return to the case n= 1, where Theorem 2.4 can be
somewhat strengthened. As in Sect. 1, H* and L* denote the usual Hardy and
Lebesgue spaces on the unit circle. The space of multiplicative linear functionals on
H~ is still denoted by M, and we let X denote the maximal ideal space of L™. For
convenience we now write f rather than f for the Gelfand transform of f. Each
me M has a unique extension to a linear functional of norm 1 on L, and thus we
can consider X to be a subset of M. For me M, let u, be the unique Borel
probability measure on X such that

m(f)= [ fdu, forevery feH®.

The closed support of the measure u,, is denoted suppm.
Instead of localizing to the fiber algebras as in Lemma 2.5, we now localize to
smaller sets. For me M, let A,, be the closed subalgebra of C(suppm) defined by

Ay={fI(suppm): fe H"} .
Itis easy to see that the maximal ideal space of 4,, can be identified with M,,, where
M, ={ve M:suppvCsuppm}.

For every me M ~ D, suppm is considerably smaller than any of the fibers M,
(z€e dD), so the following proposition is stronger than Theorem 1.4.

Proposition 2.10. There is a constant ¢ such that distgyo(f, VMO)=csup
{)/area f(M,,):me M ~D} forall fe H*.

The proof of Proposition 2.10 consists of simply carefully examining the proof
of Theorem 2.4. A change needs to be made in only one place — in the proof of
Theorem 2.7. In that proof, consider only representing measures supported on X
(rather than on M), and when Alexander’s spectral area estimate (Lemma 2.2) 18
used, apply it to the algebra A,, (with maximal ideal space equal to M,,) rather than
to the fiber algebras.

In addition to supports of representing measures, maximal anti-symmetric setS
play an important role in the study of function algebras. Consider the algebra
H® + C, whose maximal ideal space is equal to M ~ D. For E a subset of X which1s



Putnam’s Theorem 179

a maximal anti-symmetric set for H* + C (from now on we call such sets just
maximal anti-symmetric sets), define Ay and My by

Ag={f|E:fe H*},
Mg={meM :suppmCE}.

The operator theory techniques of Sect. 1 can be coupled with the methods of
[4, Sect. 7], (which require transfinite induction) to localize to the maximal anti-
symmetric sets, which are much smaller than fibers. More precisely, the right hand
side of the inequality in Proposition 2.10 could be replaced by

csup{]/areaf(Mg): E is a maximal anti-symmetric set} .

For each me M ~ D, there exists a maximal anti-symmetric set E such that M,,
CMyg, so the estimate given by the paragraph above is not stronger than
Proposition 2.10. It is reasonable to believe that the techniques of Sect. 1 should
lead to the same results as the techniques of Sect. 2, so perhaps this adds a slight bit
of evidence for an affirmative answer to the following question: For every maximal
anti-symmetric set E, does there exist me M ~D such that E=suppm? This
question has been raised before; see the discussion at the end of [23] for some
comments about its connection with the Chang-Marshall Theorem.

3. Putnam’s Theorem and the Quantitative Hartogs-Rosenthal Theorem

Let H be a Hilbert space and let Z(H) denote the set of bounded linear operators
from H to H. An operator Se #(H) is called subnormal if there exist a Hilbert
space X containing H and a normal operator N € #(X) such that N(H)C H and
N|H =S. Our goal in this section is to give an easy proof to the following theorem.

Theorem 3.1 (Putnam’s Theorem for Subnormal Operators). Let S be a subnormal
operator. Then
[|S*S —SS*| < (area sp(S))/x .

An operator S € #(H) is called hyponormal if $*S — SS* is a positive operator.
The class of subnormal operators is strictly contained in the class of hyponormal
operators, so of course Theorem 3.1 follows immediately from Putnam’s Theorem
(Lemma 1.1). The easiest proof of Putnam’s Theorem [8, p. 294] relies heavily on
the Berger-Shaw Theorem for hyponormal operators. Recently Hadwin and
Nordgren have simplified the proof of the Berger-Shaw Theorem which appears in
[S], but even with these improvements the Berger-Shaw Theorem still has a
difficult proof.

Mathematicians working with subnormal operators have suspected that the
hypothesis of subnormality (in place of hyponormality) should lead to easier
proofs. In his book on subnormal operators, Conway [8] makes the following
Statement in the introduction to the chapter on the Berger-Shaw Theorem and
Putnam’s Theorem: “It would seem that if subnormality were assumed instead of

Yponormality, easier proofs would be achievable. Unfortunately, only the proofs
for tf}e hyponormal case exist.” In this section we partly remedy this situation by
Providing a proof of Putnam’s Theorem for subnormal operators which is easier
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than the proofs for hyponormal operators. We thank Jim Dudziak for a suggestion
which slightly shortened our original proof. .

For K a nonempty compact subset of the complex plane, let R(K) denote the
closure in C(K) of the set of rational functions with poles off K. The Hartogs-
Rosenthal Theorem states that if K has area zero, then R(K) = C(K). Note that by
the Stone-Weierstrass Theorem, R(K)=C(K) if and only if Ze R(K), so the
following lemma can be called a quantitative version of the Hartogs-Rosenthal
Theorem.

Lemma 3.2 (Alexander). Let K be a nonempty compact subset of the complex plane.

Th
“ distc(Z, R(K)) =)/ (area K)/ .

Alexander used Lemma 3.2 as one of the main tools in proving his spectral area
estimate (Lemma 2.2). We will use Lemma 3.2 to prove Putnam’s Theorem for
subnormal operators. Proofs of Lemma 3.2 can be found in Alexander’s papers [1,
Lemma 2], and [2, p. 5]. We believe that the proof of Lemma 3.2 is considerably
easier than the proof of the Berger-Shaw Theorem (which we will not use).
Furthermore, using Lemma 3.2 rather than the Berger-Shaw Theorem seems to
give some insight as to why Putnam’s Theorem is true, at least for subnormal

operators.
For K a nonempty compact subset of the complex plane and  a positive finite

Borel measure on K, let R*(K, u) denote the closure of R(K) in L*(K, p).

Proof of Theorem 3.1. First consider the case where Sis a subnormal operator ona
Hilbert space H with a rationally cyclic vector. This means there is a vector f € H

such that. _ )
{r(S) f:r is a rational function with poles off sp(S)}

is dense in H. By a standard representation theorem for subnormal operators
with a rationally cyclic vector (see [8, Theorem II1.5.2]), there is a positive finite
Borel measure u on sp(S) such that S is unitarily equivalent to the operator of
multiplication by z on R3*(sp(S), 4). So we can assume that H=R*(sp(S), #) and
that Sg = zg for all ge R*(sp(S), p).
Let P denote the orthogonal projection of L*(sp(S), p) onto R*(sp(S), u). For
g, he R*(sp(S), u) we have
(S*g,hy ={g,Sh) ={g,zhy =<2, h) =(P(Zg), h) ,
so S*g=P(zg) for all ge R*(sp(S), ).
Consider g € R*(sp(S), ) with ||g||,=1. Then
((S*S—58*)g, 9> =Sg|I*— |1S*gll*
=|zgl*— |1 PC)II?
= | zg|1>— | P(Zg)|I*> = lI(1 - P) (zg) *
= [diSth(sp(S),u)(Z-g’ RZ(SP(S)a H))]Z
<[inf{|lZg—hgl ,: he R(sp(S))}1*
<[inf{||Z—h| . : he R(sp($)}]*
<(area sp(S))/n (by Lemma 3.2).
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Since the above inequality holds for each unit vector g € R*(sp(S), u), we have
|S*S —SS*|| <(area sp(S)/n), completing the proof in the case where S has a
rationally cyclic vector.

Now suppose S is an arbitrary subnormal operator on a Hilbert space H, not
necessarily with a rationally cyclic vector. Fix fe H with || f||=1. Let Y denote the
closure of

{r(S)f:r is a rational function with poles off sp(S)}

in H. Obviously S(Y)C Y. Define T: Y— Y by T =S]Y. Itis clear from the definition
of T that sp(T) Csp(S) and that f is a rationally cyclic vector for T. Let Q denote the
orthogonal projection of H onto Y. For all ge Y we have

(T*f,9>=X1Tg>=L1.89>=<S*f, )
={Q(S*f), 97+
so T* f=QS* f. Now
(S*S—=SSN) L f>=ISfI* = IS*fII?

<ISfII>—10s*f1I*
=|TfI>=IT*f|?
=UT*T-TT*) 1./
SIT*T-TTH|

<(area sp(T))/n (by the first case)
<(area sp(S))/m.

Since the above inequality holds for each unit vector f in H, we have
|5*S — $S*|| < (area sp(S))/=, and we are done.

Of course, it would also be nice to have a proof of the Berger-Shaw Theorem for
subnormal operators which is easier than the proof for hyponormal operators. It
seems to us that Alexander’s spectral area estimate (Lemma 2.2) and the
quantitative Hartogs-Rosenthal Theorem (Lemma 3.2) are excellent candidates
for the tools which might be used in such a proof.

Additional Remarks

T. Gamelin and the referee have pointed out that the ingredients we have
assembled can be used to give a more efficient proof of Theorem 1.4 and the non-
ISfOtroplc case of Theorem 2.4. We now sketch these ideas, returning to the notation
of Sect. 2.

The proof of Lemma 1.6 contains the inequality
distgyo, (f; VMOy) < c dist, (f; H*(B) + C(0B)) (18)

for fe H=(B). (As in the case of the unit disk, the projection P : [*(0B)—H?*(0B)
;est ricts to a bounded operator from L*(0B) to BMOy on the n-sphere. This fails
or the isotropic BMOy; see [17].)
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Next, we need the equality
dist,(f;, H*(B) + C(0B))=max {dist(f|M,, A,) : £ € 0B}, (19

where we recall that A, is the fiber algebra { f|M,: fe H*(B)} and the distance on
the right is computed in C(M ). For n=1, this equality was proved by Sarason in
Sect. 5 of [21]. Since H®(B)+ C(0B) is also an algebra for n> 1 (see [20, Theorem
6.5.5]), Sarason’s proof also works for the case, where n>1.

Now suppose fe€ H*(B) and £edB. Let K.= f(M). Alexander’s use of the
functional calculus [2, proof of Theorem 1, p. 6] can be applied to the function
algebra A, to show that

dist(F|M, A <dist(Z, R(K ).

By applying Lemma 3.2 (Alexander’s quantitative Hartogs-Rosenthal
Theorem) and Lemma 2.5(d) to the right hand side of the above inequality, we

obtain
dist(fIM, A;) <(areacl(f; &)/m)"/*. (20)

Combining (18), (19), and (20) gives the desired result.

T. Gamelin (private communication) has extended these results to the context
of smoothly bounded strictly pseudoconvex domains in C". He has also observed
that Putnam’s Theorem can be used to give a proof of the quantitative Hartogs-
Rosenthal Theorem.
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’.V ote added in proof: The above-mentioned comments of Gamelin have been incorporated in his
leceilt paper On an Estimate of Axler and Shapiro (preprint). Charles S. Stanton of the University
of California, Riverside, has communicated to us an entirely function-theoretic proof of

Co

rollary 1.5. The main ingredient of Stanton’s proof is a generalization due to him of Lehto’s

Il’r”ondple of majorization for counting functions (Thesis, University of Wisconsin-Madison,
782). Stanton points out that his argument works as well for the unit ball in higher dimensions,

fu

and that his result is actually more general than our corollary 1.5: it does not require the H>
Niction f with BMO boundary function to be bounded.






