UNUSUAL TOPOLOGICAL PROPERTIES
OF THE NEVANLINNA CLASS.

By JoeL H. SHAPIRO* AND ALLEN L. SHIELDS.*

Introduction. The Nevanlinna Class N is the algebra of functions f
analytic in the open unit disc whose characteristic function

T(rf)= 5= [ g™ f(re")ldr

is bounded for 0< r<1. By analogy with the classical H? spaces, a natural
metric is defined on N by setting d (f,g)=|| f— g||, where

27 .
1fll= Jim 5o [Tlog(1+] f(re")]dt.

Just as in H? theory, d is a complete, translation invariant metric on N which
induces a topology stronger than that of uniform convergence on compact
subsets of the disc. But the analogy goes no further: we show here that the
metric space N=(N,d) has some surprising topological properties which set it
completely apart from the H? spaces. In the first place, although N is clearly a
topological group under addition, its scalar multiplication is discontinuous in
the scalar variable, as noted in [1, p. 146], so it is not a topological vector space.
We show that N is not even connected: we will see, for example, that the
function

f(z)=exp =

lies outside the component of the origin. In addition we show that the

Nevanlinna Class has many linear subspaces whose relative topology is discrete.

These results are best stated in the following quotient space setting. Recall that
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every f in N has a radial limit
f(e®)=limf(re*) (r—1-)

for almost every t; and that log| f(e™)| is integrable over the unit circle unless
f=0 [4; Theorem 22, p. 17]. The Smirnov Class N* is the collection of

functions f in N for which

1' 21’1 + it\| = 2"1 + it dt
im [ log*|f(re)| = [ “log"If(e")

r—1-—

(see [4; Sec. 2.5] or [10; Ch. II, Sec. 6.5, p. 82]). The class N* is a closed
subalgebra of N, and is a topological vector space in the relative topology. Our
results show that N* is the largest subspace of N which is a topological vector
space in the relative topology. Since we are focusing on properties of N which
are not of a linear topological nature, we divide out the linear topological
properties by considering the quotient N/N*, which is a complete, metrizable
additive topological group in the quotient topology. We show that every finite
dimensional linear subspace of N/N* is discrete, but that N/N¥ itself is not.
In addition, N/N* has infinite dimensional discrete linear subspaces; and, like
N, it is disconnected. These results pull back to N, and show that every finite
dimensional subspace of N which intersects N* only at the origin must be
discrete, while N also has infinite dimensional discrete subspaces.

Our results carry over to the Nevanlinna Classes of a large family of plane
domains, including all finitely connected ones which are not just punctured
planes. The main result here is that whenever a domain G is not too badly
behaved near one of its boundary points, then the Nevanlinna Class of G, as
defined in Rudin [11, p. 46], is disconnected.

The paper is organized into five sections, the first of which consists of
background material. The next two sections treat disconnectedness and dis-
creteness respectively, while the fourth deals with the Nevanlinna Classes of
arbitrary domains. In the final section we record some open problems arising
from our work; and remark on extensions of our results to functions of several
complex variables, and to spaces of entire functions.

We wish to thank Professors L. Garbanati, R. Kaufman, T. L. McCoy, C.
F. Schubert, and D. W. Wigner for many helpful discussions during the course
of this work. In particular it was Kaufman who first suggested to us that the
Nevanlinna Class might be disconnected. In addition we are deeply indebted to
Professor Carl S. Davis for allowing us to use his elegant proof of Theorem 3.2,
which replaces a highly involved argument that we gave in an earlier version of
this manuscript.
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1. Background and Notation. We denote the unit disc [z| <1 by U, the
unit circle |z|=1 by T. If f is analytic in U, then log(1+]| f|) is subharmonic, so
the integrals

27 i
L{rf)= [ log(1+]f(re")])dt
increase with r. Thus the (possibly infinite) limit

I fil=limL(f,r)  (r—=1-)

exists, and the inequalities
log*x <log(l+x)<log2+log*x  (x>0) (1.1)

show that f belongs to N iff || f||<oo. The arithmetic properties of the
logarithm yield inequalities

If+ell<Ifli+lgl
{ I fell <l A1+ gl (1.2)

which guarantee that N is an algebra over the complex numbers, and that the
equation

d(f.g)=Ilf-ell

defines a translation invariant metric on N. From now on we use the symbol N
to denote the metric space (N,d). Clearly N is a topological group under
addition.

ProrosiTioN 1.1. N is a complete metric space whose topology is stronger
than that of uniform convergence on compact subsets of U.

Proof. The comparison of topologies follows immediately from the in-
equality

log(1+|f(2)) <2l fl/(1=lal)  (ls]<L fEN), (1.3)

which in turn follows from the subharmonicity of log(1+|f]) (cf. [10, Ch. II,
Sec. 3.1, p. 57]). In particular, if (f,) is a Cauchy sequence in N, then it
converges uniformly on compact subsets of U to an analytic function f, which is
easily seen to lie in N. From the definition of ||-|| it follows readily that

I o= fll <limsup|| f, = full ~ (m—>c0),

which implies that f,—f in N; hence N is complete.
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A useful tool for studying functions of the Nevanlinna Class is the
Canonical Factorization Theorem. If k is a non-negative integer, and (z,) is a
sequence in U— {0} which satisfies the Blaschke condition

2 (1= |zl <oo, (14)

n

then the Blaschke product

Z,—R% |3,
B(z):zkH |__
n

1-2z,z2 2,

converges uniformly on compact subsets of U to an analytic function B which
has modulus <1 in U and radial limits of modulus 1 at almost every point of T
(4, Sec. 2.2, pp. 18-20].

In addition to a zero of order k at the origin, B has zeroes exactly at the
points (z,) (counted according to multiplicity). In contrast, if h is a non-

negative, measurable function on T whose logarithm is integrable, and w is a
complex number of modulus 1, then the outer function

1 27Te i'+z i
F(z)=wexp{—2—;j; ei,_zlogh(e’)dt}
is analytic in U, non-vanishing, and has a radial limit of modulus h(e®) for
almost every ¢ [4, Sec. 2.4, p. 24]. In fact the definition shows that the
reciprocal of an outer function is again outer. Intermediate between outer
functions and Blaschke products are the singular inner functions, defined by

s e [ aulo)] (15

where p is a finite, positive, singular Borel measure on T, henceforth referred to
as the measure associated with S,. Clearly S, is analytic, non-vanishing, and
bounded by 1 in U. Moreover S, has radial limits of modulus 1 at almost every
point of T. Thus singular inner functions have properties in common with both
Blaschke products and outer functions. In our work it will be reciprocals of
singular inner functions which play the dominant role.

It is easy to see that Blaschke products, outer functions, and quotients of
singular inner functions all belong to the Nevanlinna Class. In fact, each f in N
is representable as a product of such functions.

Canonical Factorization Theorem [4, Thm. 2.9, p. 25], [10, Ch. II, Sec. 6, p.
79]. If f EN then there exists a unique Blaschke product B, outer function F,
and unique singular inner functions S, and S, with mutually singular associated
measures such that f=B(S,/S,)F.
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We will frequently use the notation p=p, and »= v, to identify the
measures which occur respectively in the denominator and numerator of the

canonical factorization of the function f.
We close this section with some remarks about the space N*. Recall that f

belongs to N* iff f EN and

27 5 27 .
lim fo log*| f (re®)|di= fo log*| f(e*)lds.

r—1-—

We will need the following alternate characterization of N* (cf. [4, Sec. 2.5],
[10, Ch. V, Lemma 2.1, p. 123]).

ProrosiTioN 1.2.  For f EN the following are equivalent:
(a) f belongs to N™,

(b) 1 (T)=0,
27 5 27 :
(© lim [ log1+|f(re*))= [ log(1+|f(e*).

Proof. The equivalence of (a) and (b) is in [4, Sec. 2.5], and we omit it.
From [4, Ch. 2, p. 30, Problem 9] we see that fEN™ iff log™|f(re®)|
—log*|f(e*)| in L'(T) as r—1—. This fact, inequalities (1.1), and the Vitali
Convergence Theorem [12, Ch. 6, p. 134, Problem 9] establish the equivalence
of (a) and (c).

CoroLLaRY . N7 is a closed linear subspace of N, and a topological
vector space in the relative topology.

Proof. That N is a linear subspace of N (in fact a sub-algebra) follows
readily from Proposition 1.2 (a<>b) and the Canonical Factorization Theorem.
The equivalence of (a) and (c) shows that for each f in N* we have

I1£1= 5 [ log(1+1f(e*))de;

so the dominated convergence theorem shows that on N* scalar multiplication
is continuous in the scalar variable. Routine arguments like those employed in
L7 spaces show that N* is complete, so it is an F-space in the sense of Banach,
and therefore a topological vector space [2, IL.1.12, p. 53].

We remark that the metric d induces on N* the same topology as the one
defined in Gamelin [6; Chapter V, p. 122], so the preceding corollary is just a
special case of [6, Chapter V, Theorem 2.3, p. 123]. The linear topological
structure of N* has recently been studied in some detail by N. Yanagihara [15],
[16], while C. S. Davis [1] has studied iterated radial limits for the analogous
class defined on a polydisc in C".
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2. Disconnectedness. In this section we show that both N and its
quotient N/N™ are disconnected. In particular each function

f.(z)=expa }iz (a>0) 2.1)

lies outside the component of the origin, and more generally so does every f in

N whose denominator measure has a mass point. The idea of the proof is to find

a non-trivial subadditive, continuous, ‘“‘non-archimedian” functional on N.
More precisely, for w on the unit circle we define A=A, on N by

Ao(f)=A(f)=limsup (1 - 1)log™| f (re)|. (22)

r—l—
The elementary inequality
log* (x+y) <log*x+log*y+log2  (x,y>0)

shows that A is subadditive; while inequality (1.3) yields

A(f)<2lfll (finN) (23)
from which it follows that A is continuous. It is easy to see from (2.2) that
A(f+g)=max{A(f).A(g)}  EA(f)#A(g). (24)

Henceforth we refer to this as the non-archimedian property of A.
TueoREM 2.1. N is disconnected.

Proof. We actually show that if A(f)#A(g) then f and g lie in different
components of N. In particular it is easy to see that if f, is defined by (2.1) and
w=1, then A(f,)=2a; hence the functions f, (a¢>0) all lie in different com-
ponents of N, and none of them belong to the component of the origin.

So suppose f,g EN and A(g) < a <A(f). Then the set

V={hEN:A(h)>a}

contains f but not g and is open because A is continuous. We need only show
that V is closed. Fix hy €N, & V. Then for each h in V we have

A(ho) < a<A(h)=A(—h),
so (2.3) and the non-archimedian property (2.4) yield
2||hg— h|| > A(ho—h)>a.
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In other words, the open ball of radius a/2 about h lies entirely outside of V.
Thus V is closed, and the proof is complete.

CoroLLaRY 1. N is not a topological vector space.

Now N7 is a topological vector space, so it lies in the component of N
which contains the origin. In fact we conjecture that N* is the component of
the origin, but have been unable to prove this. The proof of Theorem 2.1
established that if A ( f)70 for some w€& T, then f lies outside the component
of the origin. This immediately yields:

CoroLLARY 2. A (f)=0 for each fEN* and wET.

Later in this section we will see that A,(f)=2p{w}, thus providing
another proof of this corollary. Right now, however, we want to use it to show
that N/N* is disconnected.

For fEN let f denote the coset of f+N* in N/N*, and let

| fl=inf{llgl:g€F ).

Then the translation invariant metric
d(f.g)=If-gl

induces the quotient topology on N/N*. It is well known that N/N* =(N/
N*,d) is a complete additive topological group [14, Theorem 12.3.5, p. 264].
Since the quotient map f—f is continuous, the next result actually implies
Theorem 2.1.

Tueorem 2.1'. N/N7 is disconnected.
Proof. Fix w€T and let A=A, as in (2.2). Since A is subadditive and
vanishes on N* (Corollary 2), it is constant on each coset f, so the equation
A(f)=Nf)  (feN)

makes sense, and defines a non-trivial subadditive functional on N/N* which
has the non-archimedian property. By estimate (2.3) we have

A(f)<2Ifll  (fEN),

so A is continuous. The disconnectedness of N/N* now follows just as for N,
and the proof is complete.

Of course this proof shows that if f, is given by (2.1), then the cosets f,
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(a>0) all lie in different components of N/N*, and none lies in the component
of the origin. Our conjecture about the component of the origin in N projects
onto one about N/N*.

ConjecTure. N/NT is totally disconnected.

Our next goal is to connect the functionals A, with the Canonical Factor-
ization Theorem. Recall from section 1 that if f=B(S,/S,)F is the Canonical
Factorization of f €N, then the denominator measure p is denoted by p.

Tueorem 2.2. For fEN and w €T, A (f) =2p{w}.

In particular since A, (resp. A,) is constant on components of N (resp.
N/N7), Theorem 2.2 yields the following:

CoroLLARY.  Suppose f,gEN and py{w}+# p,{w} for some wET. Then f
and g lie in different components of N, and f and g lie in different components
of N/N*.

The proof of Theorem 2.2 requires an auxiliary estimate of the rate at
which a Blaschke product can decay on a radius. This estimate, which is of
independent interest, occurs in the work of M. Heins [8, Theorem 6.1, p. 193]
in an apparently weaker, but actually equivalent form.

Lemma 2.3. If B is a Blaschke product, then
limsup (1—7)log|B (r)|=0

r—1—

For completeness we will give an elementary proof of this result at the end
of this section. But first we use it to prove Theorem 2.2.

Proof of Theorem 2.2. Without loss of generality we can take w=1. It is
convenient to consider the functional

L(f)=limsup (1=r)log|f(r)]  (fEN),
r—>1—
and the measure

o= BT
where y; and »; are respectively the denominator and numerator measures of f,
as defined in Section 1. Since i and »; are mutually singular, at most one of
them can have any mass at 1, so p;{1} =max(o{1},0). But A(f)=max(I(f),0),
so to prove the theorem it is enough to show that

L(f)=20,{1)  (feN) (25)
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We are going to show that if f €N has no zeroes in the open disc U then a
bit more is true:

Tim (1= 7)log| £(r)| =20 (1). (26)

This will yield (2.5) for any f€&N, since if f has zeroes in U, then by the
Canonical Factorization Theorem, f= Bg, where B is a Blaschke product, gE€N,
g has no zeroes in U, and o;=o0,. Since

log| f|=1og|B| +1log| g,
equation (2.6) and Lemma 2.3 will then yield

L(f)=1(g)=20,{1}=20,{1},

as desired.
So it remains to establish equation (2.6). If f €N and f never vanishes in U,
then by the Canonical Factorization Theorem, the harmonic function

u(z) =log| f ()|
is the Poisson integral of the measure
dp(t)=do;(t)+log| f(e*)|dt/2m.
We have to show that
lim(1—r)u(r)=20;{1)} (r—>1-). (2.7)

This follows from a standard argument which we state here for completeness.
Let a=o0;{1} and let py=p — ad where 8 is the unit mass at the point 1. Letting
v denote the Poisson integral of p, we have

u(z)=v(z)+aReitz (zin U)
so to prove (2.7) we need only show that
lim(1-7)o(r)=0  (r—1-). (2.8)

Fix £¢>0 and choose an open arc I of the unit circle centered at the point 1
such that |py(I)| <e: this is possible because p, has no mass at 1. Since the
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Poisson Kernel P,(e*) tends to zero uniformly on T— I we have

fTPrdPo
<)+ [ Pl
<0(1)+2¢/(1—71)

2alo(r)| =

as r—1—, which completes the proof.

Proof of Lemma 2.3. 'We can clearly assume that B (0)#0. In addition we
can assume that the zeroes of B lie on the positive real axis. Indeed, if this is not
the case, then let (z,) denote the zeroes of B, counted according to multiplicity,
and let By(z) be the convergent Blaschke product formed with the sequence
(|z,]). An easy calculation shows that

|2l =zl | _| 2~

~ s

1—|z,2]| 1-2%,2
hence |By(r)| <|B(r)| for 0 < r< 1. Thus if we can prove Lemma 2.3 for B, then
we also have it for B (this is a special case of the “Contraction Principle”
employed in [8]).

So suppose that the zeroes of B lie in the open unit interval, and that the
conclusion of the lemma fails for B. Then there exists a constant A >0 such that

B(r)| <exp{ —A+HT 0<r<1), 2.9
P 1-7r
We are going to show that
|B(z)|<exp{—AReit§} (|2 <1). (2.10)

To see how this gives the desired result, let S be a Stolz region in U with vertex
at 1, and note that (2.10) implies that there exists a >0 such that

|B(z)| <exp[ —a/(1-|z])] (2.11)

for all z in S. Let S, be the intersection of S with the circle |z|=7 (0<r<]1).
Then (2.11) yields

2m 5 ,
f log|B(re")|dt<flog|B(re”)[dt
0 S,

< —al§]/(1-71)
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for 0<r<1, where |S,| is the length of the arc S,. But |S,|> b(1—r) for some
constant b >0, so for 0< r<1:

27 X
f log|B (re*)|dt < — ab <0.
0

But this contradicts the fact that for every Blaschke product B,

27 X
]irln log|B (re*)|dt=0
r—1— Jgo
[10; Sec. 7.2, p. 51], so the proof will be complete once we verify (2.10).
To prove (2.10), map the unit disc onto the right half-plane by the
transformation

and let C(w)="B(z). Then |C|<1 in the right half-plane, and (2.9) shows that
|C (x)|< e~
for all positive x. If Rew > 0, let

f(w)=e*“C (w).

Since the zeroes of the Blaschke product B lie in the open unit interval, the
product converges uniformly in a neighborhood of each point of T—{1}. Thus
C is actually continuous in the closed right half-plane (in fact it is analytic
across the entire imaginary axis), hence so is f. Moreover, |f| is identically 1 on
the imaginary axis, <1 on the positive real axis, and <e4!*! for all w in the
right half-plane. Thus the Phragmén-Lindel6f Theorem [12; Ch. 12, p. 250,
Problem 6] applies to f in the first and fourth quadrants respectively, and shows
that | f| <1 in both, hence in the entire right half-plane. Thus

|C(w)| < e Rew

in the right half-plane, and this transforms back into the desired inequality
(2.10); which completes the proof.

We remark that the argument used to move the zeroes of B onto the open
unit interval could have been omitted at the expense of using a more sophisti-
cated version of the Phragmén-Lindel6f Theorem [5; Ch. 6, Theorem 6.6, p.
77].
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3. Discreteness. Suppose that f is a function in the Nevanlinna Class
whose denominator measure has a mass point: {1} >0, say. Clearly p,c= p,
for any scalar a, so if A=A, is defined as in (2.2), we obtain from Theorem 2.2
and estimate (2.3) the inequality

0<2p, (1) =A(af) <2laf .
which in turn yields
tim af]| > g (1), (3.1)

It follows from (3.1) and the translation invariance of the metric on N that the
one dimensional linear subspace spanned by f has the discrete topology.

In this section we prove that N has many more discrete subspaces: for
example every finite dimensional subspace which intersects N* only at the
origin is discrete, and there are also infinite dimensional discrete subspaces.
These facts follow from the next result, which improves estimate (3.1).

Tueorem 3.1.  If f EN then lim,_ | af || = pe(T).

We prefer to discuss the consequences of the theorem before giving its
proof. The first one follows immediately from the theorem and Proposition 1.2
(ae>Db).

CoroLraRrY 1. Suppose f EN. Then f EN™* iff the one dimensional linear
subspace spanned by f has the discrete topology.

With a bit more effort we can improve this to:

CoroLLARY 2. Every finite dimensional linear subspace of N/N* has the
discrete topology.

Proof. We define a preliminary functional m on N by
m(f)= () = lim af], (32

where the last inequality is, of course, Theorem 3.1. It follows that m is
subadditive, m(f) <|| f||, and m(af)=m(f) for each f in N and non-zero scalar
a. Clearly m=0 on N* (Proposition 1.2), so it follows from subadditivity that m
is constant on cosets f=f+N* (f in N). Thus the equation

M(f)=m(f) (finN)

defines a subadditive functional on N/N* which vanishes only at the origin and
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has the additional properties
M(f)<Ifl (33)
and
M (of )= (f) (34

for each f in N and non-zero scalar a.
Let S be a finite dimensional linear subspace of N/N™, and define

8(S)=inf{M(f):finS}. (3.5)
We want to show that
inf{|| f||:fin S } >0,

so by (3.3) it is enough to prove that §(S)>0. If dimS=1 this follows
immediately from Theorem 3.1 and the definition of M. We proceed by
induction. Suppose that (3.5) is true for every n dimensional subspace of N/N™.
Suppose S is n+ 1 dimensional, choose an n dimensional subspace V of S, and
fix s in S, s& V. By the induction hypothesis § (V) >0: we want to show that
8(S)>0 also. Suppose not. Then there is a sequence (v;) in V and a sequence
(a;) of scalars such that

limM (g, S+v,)=0  (j—>o). (3.8)

By the induction hypothesis at most finitely many of the g; can be zero, so we
may assume that none of them are. Let w; = a;” lv,. Then w; €V, so by (3.4) and
(3.6) we have

limM (s+w)=0  (j—>o0). (3.7)
Now the subadditivity of M yields
0< M (w;—w) <M (w;+s)+M(w;+s),
so for all i and j sufficiently large, we have from (3.7) that
M (w;—w;,) <8 (V).
Since w; — w; € V, this implies that for some w in V,

w;=w=w
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for all 4,] sufficiently large. So M (s + w)=0 by (3.7), and since M vanishes only
at the origin we must have s= —w € V, contradicting our choice of s. Thus
8(S)>0, and we are done.

Corollary 2 pulls back to N without difficulty, with the following result.

CoroLLARY 3. Every finite dimensional linear subspace of N which
intersects N* only at the origin has the discrete topology.

Proof. Suppose S is a finite dimensional subspace of N, and S N\ N* = {0}.
Then the quotient map f—>f is a one-to-one continuous transformation taking §
onto a subspace of N/N* which is finite dimensional, and hence by Corollary
2, discrete. It follows easily that S itself must be discrete.

Of course Corollary 2 would hold trivially if N/N7 itself were discrete.
Fortunately this is not the case.

CoroLLARY 4. N/N™ is not discrete.

Proof. We need only find a non-zero sequence in N/N™ converging to
zero. Let

g =epi(1EE)  (n>0)

(s0 g, =f1/n in the notation of (2.1)). By Theorem 3.1
1

li ==

lim Jlag,[|= 2
so we can find non-zero scalars a, such that ||a,g,||>0. Now let h,=a,g,.
Then

0 <[ | <17y —0

as n— oo, which completes the proof.

We now present Davis’ proof of Theorem 3.1. It hinges on the following
standard characterization of the Nevanlinna Class which is an easy consequence
of the Canonical Factorization Theorem and [13, Theorem 3.3.5, p. 46].

Lemma 3.2. A function f analytic in the open unit disc belongs to the
Nevanlinna Class iff log* | f| has a harmonic majorant. If f €N then the least
harmonic majorant of log™|f| coincides with the Poisson integral of the
measure

doy(t)=log* | f ()| dt/2m + dyy, (3.8)

where u, is the denominator measure of f.
e
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We also need the fact that if w is a subharmonic function in U which has a
harmonic majorant, then its least harmonic majorant W is the Poisson integral
of a measure w on T, and

lim if()z"w(re“)dt=W(0)=w(T).

rol— 27

If in addition w has radial limits

w(e)= lim w(re™)

r—1-—

for almost all ¢, then the absolutely continuous part of dw is w(e™)dt/2m [13,
Sec. 3.2].

Proof of Theorem 3.1. Fix fEN. We will denote the least harmonic
majorant of log™| f| (resp. log(1+| f])) by o[ f] (resp. w[ f]). If p is a finite Borel
measure on T we will denote its Poisson integral evaluated at z by P[du](2).
Thus o[ f]=P [dpf], where P is the measure in equation (3.8), and w(f]
= P[d,Bf] for some positive Borel measure Bf.

Now it follows from (1.1) that

o[ fl<w[ f]<v[ f]+1og2,
that is,
P[dp;] < P[dp;] < P[ dp;+ (log2)df /27

so the same inequality must hold among the respective measures, and therefore
among their singular parts. This shows that p; and B; have the same singular
part, which by (3.8) is p, the denominator measure of f.

Now suppose that 0 <a < 1. Then a little arithmetic yields

loga+log(1+]f]) <log(1+al f]) <log(1+|f),
loga+ w[ f]<w[af]<w[ f],

from which it follows, as in the last paragraph, that the singular part of B
(which is i) coincides with that of 3. By the remark following the statement
of Lemma 3.2 we obtain from all of this:

dBys (t)=log(1+al|f(e*))dt/2m + dpu(t),
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hence

lafll= i (T)= 3 [ og(1-+alf(e*)de+ wy(T).

By the Lebesgue Dominated Convergence Theorem the integral on the right
tends to zero as a—0+, so

al_i’f(a llafll =1U‘f(T)

which completes the proof.

We close this section by noting that the finite dimensional subspaces of
N/N* are not the only ones with the discrete topology.

ProposiTIoN 3.3. N/N* has infinite dimensional discrete linear sub-
spaces.
Proof. For each w€E€ T let

w+2z
w—2z

g.(z)=exp

Clearly the cosets Z, are linearly independent as elements of N/N™, so they
span an infinite dimensional linear subspace S. We claim that S has the discrete
topology.

To see this, suppose that w,,...,w, are distinct points of T, and a,...,q,
are non-zero scalars. Then

g= 2 ajgwfak(-)'
=1

Without loss of generality we can assume that w,=1. Since the functions
8., -1 &, are each bounded in a neighborhood of 1, we have as in the proof of
Theorem 2.1" that

211gll> A\(g)= limsup (1—r)log™| g(r)| =2
(the limsup is actually a limit in this case). Thus || || > 1 for every non-zero g in
S, which shows that S has the discrete topology and completes the proof.

4. Arbitrary Domains. For a plane domain G the Nevanlinna Class
N(G) is the algebra of functions f analytic on G for which log*|f], or
equivalently log(1+ | f|) has a harmonic majorant [11; Sec. 1.5, p. 48]. Denoting
the least harmonic majorant of log(1+|f|) by V[f], we again exploit the
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analogy with H? spaces [11, Sec. 2.6, pp. 49-50] and define
LFIl= V[ f1(p); (4.1)

where p is a point in G which is fixed for the remainder of the discussion. This
functional induces a metric which turns N(G) into a complete additive topo-
logical group (see [9, p. 11] for the analogous proof for H? spaces). Harnack’s
inequality shows that the topology on N(G) does not depend on the choice of p.
The spaces N(G) are conformally invariant in that if ¢ is a one-to-one
conformal map of G onto a domain G’, and p’=@(p) is the point used in the
definition of the metric on N(G’), then the composition operator f—f°@ is an
isometric isomorphism of N(G’) onto N(G). If G is the unit disc and p =0, then
(4.1) is the same functional used to metrize N=N(U) in the previous sections.

In this section we carry the results of Secs. 2 and 3 over to a large class of
plane domains having non-trivial Nevanlinna Classes. Among these are all
finitely connected domains which are not just punctured planes.

We begin by recalling that a non-negative harmonic function on G is
quasi-bounded if it is a pointwise increasing limit of non-negative bounded
harmonic functions [9, p. 7]. The quasi-bounded harmonic functions in the unit
disc are precisely the Poisson integrals of non-negative integrable functions on
the circle, and it is easy to see that fEN™ iff log™|f| has a quasi-bounded
harmonic majorant on the disc. This motivates the following: '

Definition. N*(G) is the class of functions f analytic in G such that
log™ | f| has a quasi-bounded harmonic majorant.

As in the case of the unit disc, N*(G) is a closed subalgebra of N(G). In
fact most of these elementary results for N(G) and N*(G) can be deduced
from the case G = U by standard uniformization arguments, [11; Sec. 2.2] which
we briefly present now. It is well known that N(G) contains non-constant
functions iff the boundary of G has positive logarithmic capacity [11; Theorem
1.6, p. 48]. In this case the Uniformization Theorem [7; Chapter VI, Sec. 1]
provides a covering map ¢ taking U onto G with ¢(0)=p, and a covering group
I consisting of all conformal automorphism of U which leave ¢ invariant. For
fEN(G) the function f= feog is in N(U), and is T-invariant:

fle)=f(») (ginTl, zinU),

and the map f-—)f is an isometric isomorphism of N(G) onto the closed
subalgebra of N(G) consisting of I'-invariant functions (see [4; Sec. 10.5] or [11;
Sec. 2.2] for the analogous proofs for H? space). The same map takes N*(G)



932 JOEL H. SHAPIRO AND ALLEN L. SHIELDS.

onto the subalgebra of I-invariant functions in N*. This follows from the fact
that a non-negative harmonic function v on G is quasi-bounded iff 4=u- ¢ is
quasi-bounded on U. Clearly @ is quasi-bounded if u is. Conversely, if @ is
quasi-bounded, then % =1limB,, where (3, is the greatest harmonic minorant of
v, =min(i,n). Since v, is I-invariant, so is B, (cf. [11; proof of Theorem 1.6]),

so B,=Db, for some non-negative bounded harmonic function b, on G, and
b,tu, which completes the proof.

Since N(G) and N*(G) can be identified in this way with closed subspaces
of N and N* respectively, their completeness is immediate, as is the fact that
N*(G) is a topological vector space. In addition, Theorem 3.1. yields an
immediate corollary, which we state as

ProrosiTION 4.1, Suppose f EN(G). Then
1irr(1)||af||=0 iff fEN*(G).
a—

The proof of Corollaries 2 and 3 of Theorem 3.1 now yield:

CoroLrLaRrY. Every finite dimensional linear subspace of N(G)/N*(G) is
discrete, as is every finite dimensional subspace of N(G) which intersects
N*(G) only at the origin.

The trouble with these results is that we do not know if N(G) is always
different from N*(G) whenever N(G) is non-trivial. The next result shows that
as long as some part of the boundary of G is not too pathological then
N(G)#N™*(G): in fact N(G) is disconnected. More precisely, we call a
boundary point { of G normal if it lies in a non-degenerate boundary com-
ponent K, and is not a limit of points lying in other boundary components.

Tueorem 4.2, If the boundary of G has a normal point then N(G) is
disconnected.

Proof. As in the proof of Theorem 2.1, we need only construct a non-
trivial continuous, subadditive functional A on N(G) with the non-archimedian
property (2.4). Suppose the normal point { of G belongs to a boundary
component K. By a preliminary conformal mapping of C— K onto the unit disc
we may assume that G C U, K is the unit circle, and { =1 (recall that N(G) and
N*(G) are conformally invariant). So there is an open disc of radius ¢ >0
centered at 1 whose intersection with U contains no point of the boundary of
G. In particular the line segment (1 — ¢, 1) lies entirely in G, so it makes sense to
define

A(f) = limsup (1 7)log* | £ (7)

r—>1—
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for fEN(G). Letting p=1—¢/2 and applying Harnack’s inequality in the disc
|z—p| <1—p we obtain

u(r)<2u(p)/(1—7) (p<r<1)

for each non-negative function w harmonic in that disc. In particular if
fEN(G) and o[ f] is the least harmonic majorant of log*| f|, then

log* | f(r) <2o[ f]()/(1=7)  (p<r<1).

Now choose the point p used to define the metric in N(G) (Eq. 4.1) to be p.
Then the last inequality yields

NH)<2fl (FEN(G)), (42)

so at least A is finite on N(G). It is easy to see that A has the non-archimedian
property (2.4); and that A is subadditive, hence continuous by (4.2). So we need
only find a function f in N(G) such that A(f)#0, and as usual we turn to

_ 1+2
f(z)—expl_z‘

Since A(f)=2, the proof is complete.

CoroLLARY. If G is a finitely connected domain other than a punctured
plane, then N(G) is disconnected.

5. Further Remarks and Open Problems. The phenomena we have
observed in the Nevanlinna Classes of plane domains can also be studied in
several complex variables. For example consider the polydisc

Ur=UXUX:--- XU  (ntimes)
and the ball
B ={(21,...,3,): |7 + - - +|z,P<1}

in C". The classes N and N* can be defined for these domains just as in one
variable, with integration over the circle |z| = r replaced by integration over the
polycircle |z,|=7 (1< j< n) or the sphere |z)|*+ -+ - +|z,|*=r respectively. If
fEN(U™) then the least n-harmonic majorant of log™| f] is the Poisson integral
of a positive measure ; on the distinguished boundary T", and f EN™(U") iff
this measure is absolutely continuous with respect to Lebesgue measure on T"
[13; Theorem 3.3.5, p. 46]. A similar statement holds for N(B") with
“harmonic” replacing “n-harmonic,” and the topological boundary of B" re-
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placing T", [3; Theorem 4.5, p. 125]. In both of these cases, Davis’ proof of
Theorem 3.1 shows that

lirr(l) [|af || = total variation of p,, (5.1)
a—>

where p is the singular part of . Corollaries 1-3 of Theorem 3.1 therefore hold
for N(B") and N(U"). For B", however, we encounter the same problem we
had with arbitrary plane domains: we do not know if N(B") is different from
N*(B™).

Problem 5.1. (a) Is N(B")#N*(B") for n>1? (b) If G is a plane domain
for which N(G) is non-trivial, is N(G)#N*(G)?

No such difficulties arise with N(U™). In fact the map P defined by
Pf(z)=f(z,0,0,...,0) (fEN(U™))
takes N(U") continuously onto N(U), so it follows from the disconnectedness of
N(U) that N(U™) is also disconnected.
Problem 5.2. What is the component of the origin in N(U™)?

We conjecture that the answer is N*(U™), but as remarked in Sec. 3 we
have not been able to prove this, even for n=1.

Another line of inquiry involves growth conditions other than bounded
characteristic. For example, let

I(x)=log(1+x),
M (r.f)= max|f(z)|

lal=r

and consider the algebra E, of entire functions of finite order, with metric
induced by the subadditive functional

I fll= fggl(l(M(nf)))/logr- (5.2)

It is easy to see that E, is a complete additive topological group under this
metric. Here the role of N* is taken over by the space E, of entire functions of
order zero: E, is a complete linear topological space—in fact it is even locally
convex.

TueoreM 5.3.  E, is the component of the origin in E,.
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Proof. Let p(f) denote the order of f, so
p(f)= limsupl (1(M (r.f) /logr.

Clearly p is subadditive and continuous on E, has the non-archimedian
property (2.4), and annihilates E,. It follows as in Sec. 2 that each fEE, of
order >0 lies outside the component of the origin. Since E, is connected, it
must therefore be precisely this component.

For 0<p < oo a similar result holds for the space E, of all entire functions
which are of growth (p,7) for some 7 < co; that is, of order <p, and if of order
p, then of type < 7. Here the metric is induced by the functional

I fll= fg};l(M(f,f))/r",

and the subspace E, , consisting of entire functions of growth (p,0) is a closed
subspace which is a locally convex topological vector space. The functional

7(f)=limsupr~"logM (r,f)

r—>00

is continuous, subadditive, non-archimedian, and vanishes precisely on E_
hence E, , is the component of the origin in E,,.

It might be of interest to investigate similar questions for other growth
classes of entire functions and functions analytic in the unit disc.

MicHIGAN STATE UNIVERSITY AND UNIVERSITY OF MICHIGAN.
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