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We study a class of Banach space operators patterned after the weighted back-
ward shifts on Hilbert space, and show that any non-scalar operator in the commu-
tant of one of these “generalized backward shifts” has a dense, invariant linear
manifold whose non-zero members are cyclic vectors. Under appropriate exira
hypotheses on the commuting operator, stronger forms of cyclicity are possible, the
most extreme being Aypercyclicity (density of an orbit). Motivated by these results,
. we examine the cyclic behavior of two seemingly uwnrelated classes of operators:
adjoint multiplications on Hilbert spaces of holomorphic functions, and differential
operators an the Fréchet space of entire functions. We show that each of these
operators (other than the scalar multiples of the identity} possesses a dense,
invariant linear submanifoid each of whose non-zero elements is hypercyclic.
Finally, we explore some connections with dynamics; many of the hypercyclic
operators discussed here are, in at least one of the commondy accepted senses of the
word, “chaotic.™ € 1991 Academic Press, Inc.

INTRODUCTION

A cyclic vector for a bounded operator on a Banach space is one whose

orbit under that operator has dense linear span. If the orbit itsell is dense,
the vector is called hypercyclic. The importance of cyclic vectors derives
from the study of invariant subspaces. The closed linear span of the orbit
of a vector is the smallest closed subspace, invariant under the operator,
that contains the vector. Thus an operator lacks closed, non-trivial
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230 GODEFROY AND S$HAPIRO

invariant subspaces if and only il each non-zero vector is cyclic. Similarly,
an operator has no non-trivial ciosed invariant subser il and only if each
non-zero vector is hypercyclic.

It is not known if there is a bounded linear operator on separable
Hilbert space that does not have closed, non-trivial invariant subspaces.
Enflo [14] has constructed a Banach space that supports such an operator.
More recently C. Read [27] gave a simpler construction, which he later
refined to show that such operators exist on the sequence space it 28]
Read [297 has also constructed a Banach space operator with no proper,
closed, non-trivial invariant subset. Again, it is not known i such an
example can exist on Hilbert space.

The goal of this paper is to unify and extend several different lines of
investigation into the properties of cyclic vectors. First there is classical
work of G. D. Birkhoff [5] and G. R. MacLane [23] showing that respec-
tively the operators of translation and differentiation, acting on the space
of entire functions of one complex variable, have hypercylic vectors. Later
Rolewicz [30] showed that any multiple of the backward shift on Hilbert
space by a scalar of modulus larger than | has hypercyclic vectors (see
Section 2). More recently Gethner and Shapiro {161 and Kitai [22]
independently found a sufficient condition for hypercyclicity that yields at
one stroke the results of Rolewicz, Birkhoff, and Mackane, and provides
new cxamples of operators with hypercyclic vectors.

Then there is recent work of Beauzamy [2-4] which modifies the deep
Banach space techniques of Enflo to construct a Hilbert space operator
having a dense, invariant linear manifold which, except for zero, consists
entirely of hypercyclic vectors (henceforth, we call such a manifold a hyper-
cyclic vector manifold, and make similar definitions for other types of
cyclicity). The restriction of the operator to that manifold gives an example
of a bounded lincar operator on a pre-Hilbert space with no proper, closed,
invariant subset. The guiding hope behind this effort is that the techniques
involved might give some insight into how to construct such an example on
Hilbert space.

Finally, there is the following result of Hilden and Wallen [20]: every
weighted backward shift on Hilbert space has a supercyclic vector. A vector
is supercyclic for an operator if the scalar multiples of the elements in its
orbit are dense. Thus hypercyclic implies supercyclic, which in turn implies
cychic.

In the first part of this paper we use elementary sufficient conditions for
hypercyclicity, which we present in Section 1, to establish the theorems of
both Beauzamy, and of Hilden and Wallen for large classes of operators in
very general settings. The first of these classes concerns Banach space
operators modelled in “coordinate-frec” fashion on the weighted backward
shifts for Hilbert space. Alfter a prelimineary discussion of the ordinary
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backward shift on Hilbert spuce, we define these generalizced backward
shifis in Section 3, and prove that every such operator has a dense,
invariant supercyclic vector manifold. If the shift is surjective, then every
multiple of it by a large enough scalar has a dense invariant hypercyclic
vector manifold. These results, which generalize the previously mentioned
ones of Rolewicz, Beauzamy, and Hilden-Wallen, emerge as special cases of
an even more comprehensive theorem:

THEOREM 3.6. (a) Every bounded operator, not a scalar multiple of the
identity, that commutes with a generalized backward shift B has a dense
invariant cyclic vector manifold.

(b) If the mutl space of the commuting operator contains that of B, then
this manifold can be taken to consist {except for zero} of supercyclic vecitors.

(¢} I, in addition, the commuting operaior is surfective, then all
sufficiently large scalar multiples of it have dense, invariant hypercyclic
vector manifolds.

This result yields cyclicity theorems for adjoint multiplication operators
on certain Hilbert spaces of functions holomorphic on plane domains.
However, because of its generality, it does not readily attain the best results
in such concrete situations, Thus in Section 4 we abandon backward shifts,
and instead apply our original hypercyclicity criteria directly to charac-
terize the hypercyclic adjoint multiplication operators on naturaj Hilbert
spaces of holomorphic functions (Theorem 4.5). We deduce as a corollary
that every non-scalar adjoint multiplication operator is supercyclic. Once
again, we actually obtain dense, invariant manifolds of vectors whose
non-zero elements have the desired kind of cyclicity.

In the fifth section of the paper we come the full circle by applying the
methods of Scctions | and 4 to the Fréchet space HCY) of entire functions
on C¥, obtaining a result that contains the previously mentioned one-
variable theorems of Birkhoff and MacLane: ‘

THEOREM 5.1, Every continuous linear operator on H(C") that commutes
with all translations (or equivalently, commutes with each partial differentia-
tion operator), and is not a scalar muliiple of the identity, has a dense,
invariant, hypercyclic vector manifold.

In particular, every linear partial differential operator ‘with constant
coefficients and order >0 has a hypercyclic vector.

It should be noted that although our methods produce manifolds of
cyclic and hypercyclic vectors far more easily than the methods of
Beauzamy; the operators which possess these manifolds are easily seen to
possess multitudes of closed invariant subspaces. Thus, unlike the deeper
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methods of Beauzamy, our work provides no hope for the resofution of the
invariant subspace problem for Hilbert space.

Our work suggests a tentative connection between operator theory and
dynamics, and we discuss this in the final section. Here we observe that
most of the concrete classes of hypercylic operators discussed in the
previous sections are actually chaoric in the sense of Devaney [12, p. 501,
but we give examples to show that some hypercyclic operators do not have
this property.

Reader’s Guide. The reader interested primarily in function theoretic
operator theory might wish to omit Section 3 at first reading (and possibly
forever). Then in Section 1 the generality of “hypercyclic sequences of
operators” is not needed, and the only sufficient condition required for
hypercyclicity is Corollary 1.5,

1. Cycric FUNDAMENTALS

In this section, X wiil denote a complex Banach space, and T a bounded
linear operator on X. T is called a scalar operaror if it is a scalar multiple
of the identity operator on X, Otherwise T is a non-scalar operator. Linear
subspaces of X will be called manifolds. A manifold .# is invariant under
Tif TL# < .

L1, Cyelic Vectors. For xe X, the orbit of x under T is the set of
images of x under the successive iterates of T:

Orb(T, x)= {x, Tx, T?x, .. }.

As we mentioned in the Introduction, a vector x & X is: hypercyclic {(for T)
if Orb(T, x} is dense in X, supercyclic if the set of scalar multiples of the
elements of Orb(T, x) is dense, and cyelic if the linear span of Orb(T, x) is
dense. A hypercyclic operator is one that has a hypercyclic vector. We
similarly define the notion of supercyclic, and cyclic operator,

We call a manifoild, each of whose non-zero vectors is cyclic {for T) a
eyclic vector manifold (for T). We prefer to avoid the terminology *cyclic
manifold,” which is often used to denote the linear span of an orbit. We
define supercyclic, and hypercyclic vector manifolds similarly.

All our results concerning the three kinds of cyclicity defined above will
follow from the analysis of a more general notion of hypercyclicity,
Suppose {7, :ne N} is a sequence of bounded linear operators on X (here
N denotes the positive integers). We say a vector xe X is hypercyclic for
{T,} if the collection of images {T,x:ne N} is dense in X. If such a vector
exists, we call the original sequence of operators hypercyclic. The Baire
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Category Theorem provides the following sufficient condition for a
sequence of operators to be hypercyclic. Versions of this result have
previously appeared in the work of Beauzamy [4, Sect. V, Proposition 2],
and Kitai [22, Theorem 2.17].

1.2. THEOREM. Suppose {T,:neN} is a sequence of bounded linear
operators on a separable Banach space X. Then the following conditions are
equivalent;

{a) {71} has a dense G subset of hypercyciic vectors.
(b) For every pair U, V of non-void open subsets of X, there exists a
positive integer n such that T, {U)n V£ 3.

Proof. Fix an enumeration {8, :neN} of the open balls in X with
rational radii, and centers in a countable dense subset of X. The continuity
of the operators T, insures that each of the sets

G,=\J){T, (B,):neN}
is open. Now the collection HC{T,} of hypercyclic vectors for {T,} is just

HC{T,} = {G, :meN},

so the hypercyclic vectors form a G, set. Condition (b} is equivalent to the
assertion that each set G,, is dense (this is purely set theoretic: for any sets
F and F, and any mapping T, we have T E)nF£ @ = EnT HF)# @),
ie. that HC{T,} is the intersection of a countable collection of dense open
sets. So (b) and the Baire Category Theorem imply (a): HC{T,} itself is
dense in X. Conversely, if HC{T,} is dense, then so is each set G, hence
condition (b) holds. |}

Remarks. (i) We might call a subset E of X hypercyclic for {T,} if the
union of the sets T,(F) (neN) is dense in X. Then Theorem 1.2 can be
rephrased

[T,} has a dense G ser of hypercyclic vectors whenever
every open set in X is hypercyclic for {T,}.

{ii) 1n practice it is often easier to use the following equivalent
sequential version of condition (b):
(b} For every pair x, y of points of X there exists a sequence {x, |
of points convergent to x, and a subsequence {n, } of positive integers, such
that T, x, - ».
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(iii} If a single operator T is hypercyclic, then it automatically has a
dense set of hypercyclic vectors. For if a vector x is hypercyclic for T, then

so is T"x for any positive integer #.

However, the following example, provided by the referee, shows that, in
general, a hypercyclic sequence of operators need not have a dense set of
hypercyclic vectors. Thus condition (b} of Theorem 1.2 is not necessary for

hypercyclicity of a general sequence of operators.
Let H be a two dimensional Hilbert space, with orthonormal basis

{e.f}. Let ix,} bea countable dense subset of H, and for each n, let y,
be a vector of norm n that is orthogonal to x,. Now define the sequence

{T,) of linear operators on H by
T, (ae+ ff)=ox,+ Py, (o Bscalars)

Clearly ¢ 3s a hypercyclic vector for the sequence, as are any of its non-zero
scalar multiples. But there are no-others, since if §#0, then

T, (ae + B2 1B Iyl =n 1B — (n— o)

hence the set {7, (xe - ff)} is not dense in H. So we have a sequence of
operators on a two dimensional Hilbert space whose collection of hyper-
cyclic vectors forms a one dimensional subspace.

(iv) Ttis easy tosee that both the collections of cyclic and supercychic
vectors for an operator I' are also G, sets [7, 36], and that the set of
supercyclic vectors is dense as soon as it is non-empty. However, the collec-
tion of eyclic vectors need not be dense: we will see an example of this
phenomenon in Section 3.2.

(v) The following result, due to Kitai [22, Coroliary 2.2] follows
from the equivalence of Theorem 2.1{b) and hypercyclicity for a single

operator:
an invertible operator is hypercyclic if and only if its inverse is hypercyclic.

The point is, on<e again, that in the statement of (b), the condition
T,(U)n V# & can be replaced by Un T, '(VY# &

The sufficient conditions for hypercyclicity that we will be using for the
rest of the paper are special cases of Theorem 1.2.

1.3. COROLLARY. A sequence (T,} of bounded linear operators on &
Banach space X is hypercyclic if- for each pair U, V of non-void open subsets
of X, and each neighborhood W of zero in X, there are infinitely many
positive integers n such that both T ,(UYs Wand T (W) V are non-empiy.
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Proof. We verify the “se 1 ion” iti
ify th quential version” (b') of condition (b) of
Tﬁlic’)r;m 1.2 that 1s indicated in Remark (ii) above. Let x and y be (po)ints
gonv;:rg?e htypothesisi czf the corollary imply that there are sequences (x})
verging to x, an x;) converging to 0, and :
positive integers such that B , * subssquence {n;} of
r

,
nkxk s O and Tnkx;(’ — .

Let x, =x; + x/. By the linearity of the operators T
"

Toxg=T, xi+ T, x/ =+ 0+y=p |

Remark. Equivalent to the hypothesi i
ypothesis of Corollary 1.3 is the apparentl
weaker requirement that the sets T, (U ‘ oty
T e AUY Wand T(W)n I be non-empty
In practice it is often easier to use i
' $ the following consequen [
Corollary 1.3, where neighborhoods are replaced by operators. auence of

14. ]
Opemmffiil_;«;; [ iﬁposg {?",,} is a seguence of bounded linear
poiniwise to zero on a dense subset of X. S
, . « ’ . u
{Z;iiﬁc {ha} {the:e br[v a {possibly different) dense subset Y g’ X, ;p; 52
e of (possibly non-linear, possibly disconti ’
such that T, S, = identity on Y for e s ot o o
S ach n, and {5,} ¢ intwi, g
on Y. Then {T,} is hypercyclic. {Su} tends pointwise o zero

nef’;;}a;f Suppose U/ fmd V" are non-void open subsets of X, and W is a
" é{insgrh?d offZ;’rg in X. The fact that {T,} tends pointwisic 1o Zero on
subset o insures that T,{U) W is i i
large n. On the other hand, the h . ST Sncaniet 3 pot
, ypotheses on {S,} guarantee a poi
! A point xe ¥
such that S, x - 0. Therefore, for all sufficiently large n, the vector §,x

belongs to W, hence x=7T,8, x
» — L an- ET}{ . 3
Corollary 1.3 are satisfied. ] ). Thus the Rypotheses of

I the latter part of this i
paper we will need only the special case of th
above corollary that deals with the sequence of powers of a fixed opc?ator‘3

lhel.S. COROLLARY. Su,?pose T is a bounded linear operator on X for which
" ‘o anY : ;
o ]secgzenc'a of powers li’." }0’ tends pointwise to zero on a dense subset of
. ,'f :/ ere 7{; a (‘Zosszbf'y different) dense subser ¥ of X, and a map 8. ¥ — Y
such thar TS == identity on Y, and {S"}F intil '
tends poinn ’
: 1a vise 10 ze
the operator T is hypercyciic. g o om T dher

Proof. The hypothese . . . .
s -y ypotheses of Corollary 1.4 are satisfied with T, = T, and
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Remarks. (a) Corollary 1.4 has stronger hypotheses than Corol-

lary 1.3, and actually gives a stronger conclusion: every subsequence of

{T.} is hypercyclic. A similar conclusion holds for Corollary 1.5, and
shows, for example, that under the hypotheses of this corollary, every
positive power of T is hyperbolic. It does not seem to be known if every
hypercyclic operator has this property {22, Remark 2.13].

(b} We have yet to use the full Banach space structure of X. The
definitions of this section could just as well have been formulated for
continuous mappings of a metric space. Theorem 1.2 only requires that this
metric space be complete, and the proofs of the resulting corollaries go
over verbatim to the setting of F-spaces (complete linear metric spaces).
We will discuss these matters further in Section 5.

(c) Kitai [22] and Gethner-Shapiro [16] independently proved
Corollary 1.5. The fact that the proof given in [16] actually yields
Corollary 1.4 was noted by Lech Drewnowski (see [16]).

2. AN ExampLe: THE BACKWARD SHIFT on HILBERT SPace

As a preview of the ideas and methods that occur in the sequel, we give
a quick proof that Rolewicz’s original hypercyclic operators actually have
dense invariant hypercyclic vector manifolds.

Let H denote a separable Hilbert space, and fix an orthonormal basis
{e, :nz0} for H. The backward shift B on H (relative to the orthonormal
basis {e,}) is the bounded linear operator B defined on H by

Be,=e,_, if nzl, and  Be,=0. (1)

Clearly this definition results in a surjective operator which has norm 1,
and therefore cannot by itself be hypercyclic. Here is the main result of this
section.

THEOREM.  For each complex number i of modulus > 1, the operator AB
has a dense, invariani hypercyclic vector manifold.

Proof. Fix {4} > 1. Our first task is to use Corollary 1.5 to show that /8
has hypercyclic vectors.
Let u denote the “forward shift” operator defined on H by

UE, =€, (n=0,1, 2, )
Clearly u is an isometry on H, and

By =identity on H.
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So if T=AB, and S=21""'u, then TS= Bu=identity on H. As n— o,
fS") =14 7" =0

Thus §7— 0 pointwise on all of H. Now if xespan{e,}, then B"'x is
eventuaily zero, hence the same is true of T"x. Thus 7" —+ 0 pointwise on
spanie,}, which is a dense subset of H, so all the hypotheses of
Corollary 1.5 are satisfied. Thus T is hypercyche.

We remark that this argument couid be replaced by a more elegant
topological one that employs Corollary 1.3, along with the fact that B takes
the unit ball of A onto itself (see proof of Theorem 3.6(c) for the details).
The argument as given serves to preview the proof of part (b} of the
Theorem 3.6.

We can now write down a dense invariant hypercyclic vector manifold
for A= 18 Let C[z] denote the coliection of polynomials in z with com-
plex coefficients (the fvlomorphic polynomials). Let x be a fixed hypercyclic
vector for 4. We claim that the manifold

M ={p(B)x:peClz]}

has the desired properties.

Clearly # is an invariant manifold for A. It is dense because it contains
the orbit of the hypercyclic vector x (for future reference we note that all
that is really required for this ts that x be cyclic). So it remains to show
that every non-zero vector in .4 is hypercyclic for 4.

To this end, fix p a holomorphic polynomial that is not identically zero.
We must show that p{B)x is hypercyclic for 4. The key is to show that
p(B) has dense range. Once this is done, then we need only observe that

{A"p(B)x ineN}={p(B)A"x :neN}=p(BY{Ax :ne N},

Since x is hypercyclic for A, {4"x 1 neN} is dense in #, hence its image
under p(B), being the image of a dense set under an operator with dense
range, is itself dense. This is what we wanted to show.

For a simple proof that p(B) has dense range, observe that for each
nz48, the matrix of B" relative to the orthonormal basis {e,} is zero,
except for the nth superdiagonal, which consists entirely of one’s {the main
diagonal is, by definition, the zeroth superdiagonal}. So the matrix of a
polynomial in B has the kth coefficient of that polynomial on the kth
superdiagonal. Thus, for a polynomial p with non-zero constant coefficient,
the matrix of p{B) has a non-zero constant on its main diagonal, and
therefore maps the hinear span ¥ of the basis vectors {e,} invertibly onto
itself.

Any peC[z] can be written p{z)=1z"g(z), where g has non-vanishing
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constant coefficient. Thus p(B) = B'g(B), where ¢(B) maps Y onto itself
Since B also maps ¥ onto itself, so does p(8}. Since Y is dense in H, the
operator p(B) has dense range. This completes the proof that .# is a hyper-
cyclic vector manifold for 4 =iB, §

We remark that the theorem shows that B itself has a dense, invariant
supercyclic vector manifold, since every vector that is hypercyclic for 18 is
supercyclic for B,

In the sections to follow we will improve Theorem 2.1 considerably,
replacing B by a natural Banach space generalization, and A8 by an
appropriate non-scalar operator that commutes with £ But regardless of
how the setting may change, our strategy will always remain the same,
namely:

(i} Show that every non-zero polynomial in 8 has dense range.

(i1} Show that the commuting operator has the desired kind of cyclic
veCtor.

Once these steps have been accomplished, the argument given in the last
part of the proof of Theorem 2.1 will apply directly to show that the
manifold .# defined there has the desired cyclic properties relative 1o the
commuting operator,

3. GENERALIZED BACKWARD SHIFTS AND THEIR COMMUTANTS

. Inspired by the backward shift on Hilbert space, we call a bounded
linear operator B on a Banach space X a generalized backward shift if it
obeys the following conditions:

(GBS 1} The kernel of B is one dimensional,
(GBS2) {{kerB":n=0,1,2,..} is dense in X,

The point is, of course, that if B is a backward shift on Hilbert space,
relative to an orthonormal basis {e,}, then

ker B" =span{ey, ¢,, €5, €, _, }

satisfies the two conditions above. More generally, if {e,} is merely an
orthogonal basis for H for which

Ri=sup{lle,_,fi/le,i:n=1,2,..} <o,

theln Eqs.'(l) of Section 2 still define a bounded linear operator on H,
which satisfies axioms (GBS f} and {GBS 2). Such operators are called
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weighted backward shifts on Hilbert space, the terminology reflecting the
fact each one arises as the product of an ordinary backward shift and a
diagonal “weighting” operator. A. L. Shields’ survey article [367 contains
much information about the corresponding “forward” versions of these
operators.

In order to prove the main result of this section (Theorem 3.6), we need
some algebraic results about generalized backward shifts and their com-
mutants. However, before developing these, we note an important class of
examples which shows that even on Hilbert space, generalized backward
shifts can arise naturally without explicit reference to a basis.

ExaMmpLE (The Bergman Space of Holomorphic Functions). Tet @ bea
bounded plane domain, and let 4%(Q) denote the Bergman space of £2: the
space of holomorphic functions on 2 that are square-integrable with
respect to Lebesgue area measure. 1t is well known that 47(82) is a closed
subspace of the Hilbert space L*(2), hence is itself a Hilbert space in the
L? norm. If ¢ is a bounded holomorphic function on 2, then M, the
operator of “multiplication by ¢,” defined on 4*(£2} by

(M, f)z)=0lz) flz} (feA™ ), zeQ)

is clearfy a bounded linear operator on 4%(Q). ¥ @{z)=z—u for some
complex number a, then we commit a slight abuse of notation and write
M. ., for M. The following result was suggested to us by Sheldon Axler.

3.1, PrOPOSITION.  For each point o Q, the Hilbert space adjoint of
M._, is a generalized backward shift.

Proof. Let B=(M_._,)*. Note that
Ran M., ={(z=u)/ 1 fe AH(Q)) = {f& AARQ): fla) =0},

where the last equality expresses the easily proven fact that if a function
fe A%(£2) vanishes at 2, then the holomorphic function f{z)/(z —a) is still
square integrable over 2, Since the functional of evaluation at « is con-
tinuous on A*(£2), the equation above shows that the range of M. __ is the
kernel of a bounded linear functional, and hence has codimension one.
Thus ker B=(Range M. _,}* has dimension one, so B satisfies condition
{GBS 1} To check (GBS 2), observe that if » is a positive integer, then
ker B8” is the orthogonal complement of the range of (M. .,)", which con-
sists of (and actually coincides with all) functions vanishing at « to order
z#n So i ge A°(£2) is orthogonal to the union of the kernels of the suc-
cessive powers of B, then it belongs to range of each successive power of
M._,, and musy, for each #, have & zero of order at least n at «. Thus g
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vanishes identically on €. This shows that the union of the kernels of the
successive powers of B is dense in 4%(R2), ie., B satisfies (GBS 2). |

32, Remarks. (a) We mentioned in Section 1.2, that while the sets of
hypercyclic and supercyclic vectors for an operator must be dense when-
ever they are not empty, this need not be true for cyelic vectors. The
operator M. on A% = A U) (U= unit disc) furnishes an example: the func-
tion 1 is cyclic, since the polynomials are dense in 4%, but the collection of
cyclic vectors is not dense. This follows from the fact that norm con-
vergence in A° implies uniform convergence on compact subsets of 2, Thus
if a function f& A” vanishes at a point of U, so does every member of the
closed linear span of Orb(M.. f), hence [ cannot be cyclic for M.. So
cyclic vectors vanish nowhere on [/,

Now suppose [ is a member of 47 that does vanish somewhere on ¥/
te.g, f(z)=2z) By Hurwitz' theorem [1, p.176] and the connection
between norm convergence and uniform convergence on compact subsets
of U, no sequence of functions in A” without zeros, and in particular no
sequence of ¢yclic vectors, can converge in the norm topology to £ Thus
the collection of cyclic vectors for M. is not dense in 42

(b) The argument above shows that no multipiication operator on a
non-trivial Banach space of holomorphic functions for which norm con-
vergence implies uniform convergence on compact sets can have a dense set
of cyclic vectors.

{¢} The argument of Proposition 3.1 works in any Hilbert space H of
holomorphic functions with the convergence properties just mentioned in
part {b}, on which multiplication by 7 acts as a bounded operator, and
which has the division preperty: if £ H vanishes at a point o of £, then the
function f(z)/(z — «) still lies in H. For example, Proposition 3.! remains
true for the Hardy space H? of the unit disc.

The proof of cur main result about cyclicity of operators that commute
with generalized backward shifts will require the following algebraic struc-
ture theorems. Although these are well known, we present their proofs in
order to keep the paper self-contained. The first result, a special case of
[26, p. 17, Sublemma 177 shows that every generalized backward shift acts
like an “ordinary” backward shift relative to some dense linearly inde-
pendent set, while the second discusses the matrix representation, relative
to this “basis,” for operators that commute with a generalized backward
shift,

3.3, ProrosITION (Algebraic Structure of a Generalized Backward
Shift). If a bounded linear operator B on an infinite dimensional Banach
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space X is a generalized backward shift, then there is a sequence {x,:neN}
in X such that

Bx,=x,_, Joreach n>1, (1}
and
ker B=spanix, |. (2)

Any sequence {x,:neN} that satisfies (1) and (2) for a gencralized
backward shift B also has the following additional properties:

Ker B*=span{x,, X3, v Xu} (neN), (3}
and

span{x,:ne N} is dense in X. {4)

Proof. For convenience we write ¥, =ker B”, so in particular ¥y= {0}.
Clearly, for each non-negative integer n; ¥, < Y,,,and B(Y,)c ¥, .. We
claim more, namely,

BY =Y, and dim ¥Y,=n {(n=0,1,2, ..} {5)

The second fact, of course, follows from the first, and the hypothesis that
dim Y, = 1, but it is convenient to prove both together.

By the definition of generalized backward shift, (5) holds for n= 1.
Suppose it holds for a certain n>1. Now ¥,# Y, ., since otherwise
Y,= VY, for all m> n, contradicting the reguirement that the union of all
the spaces Y, should be dense in the infinite dimensional space X. Thus

dimY,, =n+l. (6)
Now consider B as a linear operator from Y, ,, to Y, We have
n=dim ¥, [induction hypothesis]
=dim B(Y,, ) [ ¥, contains B(Y, )]
=dim ¥, —dim ker B [the “rank plus nullity” theorem
=dimVY,,,~1

In view of (6}, there is equality thoughout the above display. The last of
the resulting equalities asserts that ¥, ., has dimension »+ 1, and the
second that B(Y, .} has dimension », so must therefore coincide with ¥,,.
This induction establishes (5).
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Let x|, be any non-zero member of ¥,. Because of (5) we can inductively
choose a sequence {x,:neN} that satisfies (1), ie, Bx,=x,_, for all
n> 1. Recall that (2} is satisfied by the choice of x,. _

Now suppose {x, :neN} is any sequence that satisfies (1) and (2}. We
need only verify that the sequence also satisfies (3), from which {4) will
follow from (GBS 2). Tteration of (1) shows that B"~'x, =x,#0, and
B'x;=0 for all j<n These statements assert that x,e Y,\Y,_,, so the
vectors {x, :ne N} are linearly independent; and that

{ ¥ |
1-\13 Xoy e '\H]‘ = Yu‘

Since Y, has dimension n, the linearly independent subset x;, xa, .., X,
must span it, hence (3) holds. |

For the rest of this section, {x, :ne N} is the dense linearly independent
set promised for the generalized backward shift £ by Proposition 3.3,

Yn =Span{xl y X2y s Xn} = ker B”:

and :
Yespan{x,}={]) {¥V,:n=0,12 .1

The last result shows that the matrix for B acting on Y, relative to the basis
{x,} is identically one on the first superdiagonal and zero everywhere else.
The next result gives the corresponding information about operators that
commute with B.

3.4. ProprosiTION {Algebraic Structure of the Commutant). Suppose
A: Y= Y is a {nor necessarily bounded) linear rransformation that com-
mutes with B. Then each of the subspaces Y, is A-invariant. Suppose A #0,
Set

vamin{n—1:nelN, 4x,# 0}

Then A= B'A,, where A,.: Y — Y is a linear transformation which commutes
with B, and takes each Y, isomorphically onto itself.

Proof. The kernel of an operator is clearly invariant for anything in the
commutant, so each Y, =ker 8" is invariant for A.

Suppose Ax, #0, ie, v=0. Then, because ¥, =span{x,} is invariant for
A, we have Ax,=Aix, for some non-zero scalar /. Fix a non-negative
integer n. Because of the invariance of the subspaces ¥, we have

ks
Ax, =3 @

Fe

DENSE CYCLIC VECTORS 243

for some scalars a,, (ie., the matrix of 4 is upper triangular relative to the
basis {x,}). Upon applying B"~' to both sides of this equation, and using

— - ] — —1 e -1 .
AXIWAXLWABH x,,""'“B" Ax“"B“ amrxn"‘amlxi‘

This shows that the upper triangular matrix of 4 has the constant entry
A#0 on the main diagonal, so is in particular, an invertible mapping of
each subspace ¥, onto itself. This completes the proof in the case v=0.

For the general case, we construct the operator 4, from A and the
forward shift operator u: ¥ — Y defined by

UX, =X, (MEN}’
and extended linearly to Y. We claim that the linear transformation
A= Au"

maps each subspace Y, onto itselll To see this, first note that 4, commutes
with B on ¥ (just apply 4, B and B4, to each of the basis vectors x,, and
observe that the result is the same). Now

Ax =Aux,=Ax,, ,#0 [definition of v,

so by the case discussed above, 4, is invertible on each ¥,,.
The desired factorization foliows from the fact that Bu = identity on Y.
Indeed

B'A, =B"Au"=ABw'=A4. |

The proof just given shows that the matrix of 4 relative to the basis {x,}
has a constant 43 0 on the vth superdiagonal, and zeros everywhere below
that superdiagonal. Applying this observation to the operator 4 — 18", and
iterating, we could see that «ff the superdiagonals are constant, In other
words: every operator on Y that commutes with B can be represented as
a formal power series in B. Results like this have been proven for similar
classes of operators by Fleming and Jamisen {157, and Shields and Wallen
[37]. These authors consider the important question of when the formal
power series that represents 4 can be expected to converge to A in any
reasonable fashion.

While proving the theorem of Section 2, we needed a special case of
Proposition 3.4 to provide an important step in passing from cyclic veectors
1o cyelic vector manifelds. Proposition 3.4 will play the same role in our
work on generalized backward shifts, which is to provide the following
corollary.

SBO 98 2-2
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3.5. COROLLARY. Every bounded linear operator, other than zero, that
commutes with a generalized backward shift, has dense range.

Proof.  Suppose the operator 4 commutes with the generalized back-
ward shift 8. From Proposition 3.4 comes the representation 4 =8"4,, on
Y, where 4, is invertible on Y, and v is an integer =0. Thus

AYy=BA(Y)=B(Y})=Y.

The desired result follows from the fact that ¥ is dense in Y. |

We are finally ready to prove the main result of this section, which
shows that non-scalar operators in the commutant of a generalized back-
ward shilt have dense invariant manifolds whose non-zero members exhibit
various degrees of cyclicity.

3.6. Tueorem (Cyclic Manifolds for Operators in the Commutant),
Suppose B is a generalized backward shift on a Banach space X, and A is a
ron-scalar bounded operator thar commutes with B. Then:

(a) A has a dense, invariant cyclic vector manifold.

(b} If ker A =ker B, then A has a dense, invariant supercyclic vector
manifold.

(¢) If kerA=ker B and A is surjective, then Jor all scalars & of
sufficiently large modulus, the operator 34 has a dense, invariant hypercyclic
vector manifold.

Proof. We prove the assertions in reverse order.

Proof of (c}). Surprisingly, this proof requires none ol the algebraic
preliminaries of the last few sections. Let X, denote the open unit ball of
X. We are assuming that 4 is surjective, so the Open Mapping Theorem
provides a positive number ¢ so that

A(X,)DeX,.
Thus for every scalar £ of modulus > 1/& we have (A" (X))o () X, so
because |ief > 1,
X=1] (24)"(X)).
az

The last equation persists if X, is replaced on the right side by any bali
centered at the origin, and therefore by any neighborhood of zero. In other
words, if W is a neighborhood of zero, and V¥ a non-void open subset of
X, then

(AAY' (WY V# @ for all sufficiently large n, (1)
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Since 4 commutes with B and its kernel contains that of B, it is easy to
check that ker 4" > ker B” for each ne N. In particular, the set

{) ker(id)' = ] ker 4"

nzl nzl
is dense in X. Thus if U is a non-void open subset of X, and W a
neighborhood of zero, we have

(AAY (U W# @ for all sufficiently large n (2)

Expressions (1) and (2} show that the operator A4 satisfies the
hypotheses of Corollary 1.3, hence 4 has hypercyclic vectors.

We produce the required manifold of hypercyclic vectors as in the proof
of Theorem 2.1. Fix a hypercyclic vector x for A4, and set

A = {p(B)x : p a holomorphic polynomial }.

As in the proof of Theorem 2.1, 4 is a dense submanifold of X. Note that
if p is a non-zero holomorphic polynomial, then p{B}) commutes with B,
and by the matrix representation of B, p(8) is not the zero operator, since
its matrix, relative to the basis {x,} has the kth coefficient of p down the
kth superdiagonal {counting the main diagonal as the Oth superdiagonal}.
Thus by Corollary 3.5, p(B) has dense range. The proof that every non-
zero element of 4 is hypercyclic for A4 follows exactly as for corre-
sponding part of the proof of Theorem 2.1, and we omit it. This completes
the proof of part {¢) of the theorem.

Before proceeding, we note that we could obtain a larger hypercyclic
vector manifold for 24 by replacing .# by the set of vectors Cx, where C
ranges through the entire commutant of A,

In the remaining two cases, we only produce vectors with the required
type of cyclicity. The proof that there are dense invariant manifolds whose
non-zero elements have the same kind of cyclicity will then follow exactly
as above, and need not be mentioned again.

Proof of (b). The fact that ker 4 > ker B means that the integer v of
Proposition 3.4 is positive, so we have 4 = B"4,, where maps 4, each sub-
space Y, invertibly onto itself, and its therefore invertible on Y. Define
C: Y- Y by

C=4_"u", (n

where u is forward shift on ¥, relative to the basis {x,} defined in the proof
of Proposition 3.3. Then € maps ¥, into ¥, ,. Also

AC=(BANA W )=Bw'=1 (on ). (2)
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Although C need not be bounded on Y, its restriction to the finite
dimensional subspace Y, is bounded (every linear operator between finite
dimensional Banach spaces is bounded). Let o(n) denote the norm of this
restriction. Since these norms form an increasing sequence, it follows that
for each vector xe ¥,

O] = 1 CC )
<otk + (n—1))[ "~ 'x] [sinee C* HY)E Yir iy,

Solk+(n—1v)olk+(n—2)v} - alk) x|
Sfotk+(n—10)1" x| [since 6(j}<a{j+1) for all j].

Let r,o=no(n+(n—1)v)". Set T,=r, 4" and on Y define §,=r7"'C"
Then by (2} above, 7,5,=17 on ¥. Because 4 maps each Y, into a
preceding one, and Y, to {0}, we sce that for each xe ¥, the sequence
[T,x} is eventually zero. Thus, in order to apply Corollary 1.4 to the
sequence {7, }, we need only check that §,x— 0 for each xe Y. But this
follows immediately from the definition of r, and the estimate of the last
paragraph: if xe Y, then for each n 2 £,

1S, xll=r;7" 1C"x}
<y otk + (n—1)v)1" x|
<r, eln+ (n— 1)1 Ix)
= (1/n}) x},

50, as desired, |5, xff =0 as n— oo

By Corollary 1.4 there is a vector x € X such that the set {T,x:n21}1s
dense in X. Since each T, is a scalar multiple of the original operator 4,
this vector is supercyclic for 4.

FProof of (a). By part (b) we need only consider commuting operators
4 for which Ax, #0. From Proposition 3.4 we know that Ax, = ix,, where
4 15 a non-zero scalar. Since 4 is not a scalar multiple of the identity, the
operator Ay=A - Al is not zero on Y, commutes with B, and annihilates
x,. By part (b), this operator has a {super) cyclic vector x. We claim that
x is a cyclic vector for 4. This is a standard exercise (cf [17,
Problem 1667: The binomial theorem shows that

Apx=(A— )" xespanix, Ax, .., A"x},

50
span{Agx ne N} aspan{d’v:ne NJ.
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But the set on the left is dense in X, hence so is the one on the right. Thus
x is cyclic for A4, and the proof is complete. ||

3.7, Surjectivity is Necessary in Part {c¢). A simple example suffices to
show that if the requirement of surjectivity is dropped from the hypotheses
of Theorem 3.6{c), then B may not have any scalar multiple with a hyper-
cyclic vector. Let {e, : k= 0} be an orthonormal basis for a Hilbert space
H, and define, for each &k 20, the vector f; = (k1) e,. Let B be the weighted
backward shift on / defined relative to the orthogonal basis {f,}. Then a
straightforward calculation shows that | B7[ = 1/(n!), so for each scalar 4,

l;\-il]
e e
n!

H(AB8)"| = 0 (n=—0)

hence AA has no hypercyclic vector.

38, Hypereyelic Buckward Shifts. By contrast with the example above,
certain backward shifts are hypercyclic without the help of any scalar
multiplication. To see how this can happen, let us assign to each positive
valued function § on the non-negative intcgers, the Hilbert space H(f)
which consists of all formal power series

Azy=3 Fimyz",
T =

n=

where
112=Y (f)? Bin) < oc.

If B=1, then H*f) is the usual Hardy space H? of functions
holomorphic on the unit disc, while if S(#)=1/tn+ 1) (n=0, 1,2, ..}, then
H*({#) is the Bergman space of the disc, as discussed in the example at the
beginning of this section.

Let B denote the backward shift defined on H*f) relative to the
orthogonal basis {z"}. That is, B{z""'}=z" il n is a positive integer, and
B(1)=0. For the boundedness of B on H*(#} it is necessary and sufficient
to have

Bla+1)
AT

(*)

The resuit we are heading for was observed in [ 16, Sect. 4] by Gethner and
Shapiro.
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PROPOSITION.  Suppose (*) holds. If, in addition, Bln)—0as n— o, then
B is hypercyelic on H3(f),

Proof.  The set @ of holomorphic polynomials (i.e., linear combinations
of monomials z"} is clearly dense in H*(f§), and for each PEP we have
B°p =0 for all sufficiently large n. Let S denote the forward shift, which is
defined at least on 2 by S(z"}=z""! (n20). Then BS is the identity map
on &, and the fact that f(n) — 0 insures that $” — 0 pointwise on 2. Thus
Corollary 1.5 applies, and shows that B is hypereyclic. |

3.9. Reference. The paper [26] of Nikolskii and Vasunin contains
calculations of the multiplicity of the spectrum for a class of operators that
contains our generalized backward shifts. In particular, Lemma 7 [26,
p.-279] implies that generalized backward shifts are cyclic, and Sub-
lemma 17 [26, p.287] implies our Proposition 3.3. Afso related to our
work is Theorem 22 [26, p. 29371,

3.10. Prologue 1o Section 4. Theorem 3.6 can be interpreted in the con-
text of the Bergman space of a bounded plane domain 2. For example, if
¢ is a bounded holomorphic function on € then for each u & {2, the corre-
sponding multiplication operator M, on A*(Q) commutes with M._,,
hence its adjoint M} commutes with the generalized backward shift M%_ .
Since ¢ is non-constant, M * is not a scalar multiple of the identity, so by
Theorem 3.6¢a): M} has a dense, invarians cyclic vector manifold.

.As in the proof of Proposition 3.2, if @ vanishes at a point 2 € G, then

ker M7 =(ran M, )" = (pA*(2))" = ((z ~2) A7(Q2))* =ker M*_,

so Theorem 3.6(b) implies: If ¢ vanishes at some point of £, then M ¥ has
a dense, invariant, supercyclic vector manifold.

Finally, if ¢ is bounded away from zero in a neighborhood of 802, then
M, is bounded below on A%(£2), and hence its adjoint is surjective. If, in
addition ¢ vanishes somewhere on £, then Theorem 3.6(c) applies, and
shows that: every multiple of MZ by a scalar of sufficiently large modhilus
has a dense, invariani, hypercyclic vector manifold,

In the next section we will use the fact that every adjoint multiplication
operator has a rich supply of eigenvectors to obtain a much stronger result:
If @ is a non-constant bounded holomorphic function on Q, then the operator
MX¥ on AXQ) has a dense, invariant hyperevelic vector manifold if and only
if () intersects the unit circle. In particular, every M ¥, for ¢ bounded
and non-constant, is supercyclic.

We will prove results like these for Hilbert spaces of holomorphic
functions on domains in €, assuming only minimal hypotheses,
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4. HYPERCYCLIC ADJOINT MULTIPLIERS ON
HILBERT SPACES OF HOLOMORPHIC FUNCTIONS

In this section £ denctes a domain { = connected, open set} in C¥, and
H is a Hilbert space of functions holomorphic on 2, subject only to the
following two restrictions:

= Non-triviality: s {0}
« Bounded point evaluations: For each -e £, the evaluation func-
tional f— f{z) is continuous on H.

The second hypothesis asserts that convergence in H implies pointwise
convergence on 2. By the boundedness of holomorphic functions on com-
pact sets, along with the uniform boundedness principie, this amounts to
requiring that norm convergence imply uniform convergence on compact
subsets of 2. So the restrictions above are satisfied in every naturally
occurring situation.

At the end of the last section we used our analysis of generalized back-
ward shifts to provide information about the cyclic behavior of adjoints of
multiplication operators on the Bergman space of a bounded plane
domain. We now adopt & different method, which leads to much stronger
results for the more general spaces H described above. Our main result
{Theorem 4.5) requires some preliminary discussion, all of which is well
known.

4.1. Kernel Functions. For each 7 e 2, the boundedness of point evalua-
tions and the Riesz Representation Theorem provide a unique function
k.e H, called the reproducing kernel for z, for which

fey=<fky {feH)

The reader should note that since we are rot assuming that the functions
in H separate points of @, it is possible that different points z of 2 could
give rise to the same reproducing kernel. In fact, H could consist only of
constant functions, in which case k.= 1 for each : e 2.

We will find the following notation convenient. If £ is a subset of £, then

He=spanik. ze EL.

4.2, PROPOSITION.  [f the closure of E contains an open subset of 82, then
H . is dense in H.

Proof. If fe H is orthogonal to k_ for every - ¢ £, then f vanishes iden-
tically on E, and hence on its closure. Since this closure contains an open
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set, and since 2 is connected, =0 on 2. Thus [span{k.:ze V}]* = {0},
as desired. |

4.3. Multipliers. A complex “valued function ¢ on £ for which the
pointwise product ¢f e H for every fe H is called a multiplier of H. Each
multiplier of H determines a linear multiplication operator M, by the
formula

M,f=0f (feH)

The boundedness of point evaluations and the Closed Graph Theorem
insure that M, is a bounded operator on H. ln practice the muitipliers of
H may be difficult to characterize. Nevertheless, every multiplier must
possess the following important properties.

4.4. Propostrion. (a)  Every multiplier is a bounded holomorphic func-
tion on £2.
(b) o isamutplier, and z€ 2, then M3k, = {2}k,

Proof {Compare [37, p. 782, Lemmas 3 and 4]. (a) We are assuming
that A contains a holomorphic function f that does not vanish identically
on . Suppose z e £ is not a zero of /. Then for each positive integer #

ot )" L) = IM feN < TCM O Lk ST IMII T Bk
sHM "I &

Upon taking nth roots in the line above, letting # — oo, and using the fact
that f(z)# 0, we obtain

lolz)l < IM,|.

Thus |@| <M, I oo Q' =0\ {zeros of f}. Since ¢ is a multiplier, there
exists ge H such that ¢f =g, so ¢=g/f is holomorphic on £, and
bounded on that set by §Af_|. The multivariable version of Riemann's
theorem [32, p. 62, Corollary] asserts that ¢ has a holomorphic extension
to £, which is necessarily also bounded by | M . This completes the proof
of part (a). Before proceeding, we note that this proof actually shows that
lo| is bounded by the speciral radius of M.

{by Foreach fe H and 1 €0 we have

(MEhk, [ym ko, My o= oy @f = 0(2) Fl2)
=o(2) k., f o= oz k., 15 1

We now come to the main result of this section: a sufficient condition for
adjoint multipliers on H to be hypercyclic.
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4.5. THEOREM. Suppose ¢ Is a nonconstant multiplier of H. Then M} is
hypercyclic whenever @(82) intersects the unit circle.

Proof. The existence of a nonconstant multiplier ¢ guarantees that His
infinite dimensional. For we are assuming that H contains a function / that
is not identically zero (although it could be identically constant), and
repeated muitiplication of this function by ¢ produces the infinite linearly
independent set {/, of, ¢, ..} = H.

Now suppose ¢{{2) intersects the unit circle. Since ¢ is non-constant,
¢{2) is open, so the open sets

V={zeQ jp(z)| <1} and W={ze:|p(z)]>1}

are both non-empty. By Proposition 4.2, the linear subspaces H, and H,,
are dense in H. For notational convenience, write 7= M *. Since

" ={M)*=adjoint of multiplication by ¢",
we have from Proposition 4.4(b)

T =@y k. {(n=0,1,2,..).

If ze ¥, so {@(z)] <1, then this yields
1Tk =0 (71— o),

hence the sequence of operators (T} converges pointwise 1o zero on the
dense subset /7, spanned by the kernel functions {k_:ze V}. Thus half
the hypotheses of Corollary 1.5 are verified. For the rest, we need to find
the “good” right inverse of T.

To see what is involved in this, let us first consider the special case where
the collection of reproducing kernels {k.:ze W} is linearly independent.
In this case, we can define a linear map §: H, — H, by extending the
definition

Sk.=o(z) k. (zeW)

linearly to H .. Since [p(z)| > 1 for cach ze W, there is no possibility of
dividing by zero, and moreover,

Stk .=@(z)"" k. =0 in Hasn— w.

By definition, 75 =identity on the dense subset H, of H, so all the
hypotheses of Corollary 1.5 are fulfilled, hence T= M} has a hypercyclic

vector.
In case the reproducing kernels are not linearly independent, a little

more care is required. Enumerate a countable dense subset W = {z, :n2 1}
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of W, and inductively choose a subsequence {w.} as follows. Let z, =w,.
Delete all points ze W, for which the kernel function k. belongs span
{k.,}. Call the resulting set #,. Denote the first element of W, by w,. Let
W, be the set obtained by deleting from W, all points z for which k.,
belongs span {k,,, k., }, and let w, be the first element of W;. The infinite
dimensionality of H insures that this process never terminates, s0 continue
it indefinitely. The result is an infinite subset Z = {w,} of W for which the
corresponding set of kernel functions is linearly independent, and spans a
subspace H, which coincides with H# wy» and is therefore dense in H by
Proposition 4.2. The operator S can now be defined exactly as in the last
paragraph, with H in place of H,. This completes the proof. §

Since the image of any non-constant holomorphic function on £ is an
open subset of the complex plane, some multiple of this image must inter-
sect the unit circle, Thus:

4.6. COROLLARY. For every non-constant multiplier ¢ of H, the operator
M} has a hypercyelic scalar multiple, and is therefure supercyclic,
In the previous sections, we emphasized cyclic vector manifolds. The

present situation is no different. The next result shows that the existence of
cyclic vectors implies the existence of cyclic vector manifolds,

4.7. PROPOSITION. If ¢ is a non-constant multiplier of H, then the
operalor M * has dense range.
/4 @ 4

Proof. 1If ¢ is a non-constant muitiplier of H, then M, is one-to-one,
hence
{0} =ker M, = [ran MX1

that is, ran M ? is dense in &, |

Using the techniques of the previous sections, the reader can now fiil in
manifold versions of Theorem 4.5 and Corollary 4.6. For a convenience, we
state and prove the first of these.

4.8. COROLLARY. Suppose ¢ is a non-constant multiplier of H and ¢{Q)
intersects the unit circle. Then M & has a dense, invariant hypercyelic vector
marnifold.

Proof.  Just as in Sections 2 and 3, the result follows from Theorem 4.5
and Proposition 4.7. If [ is a hypercychic vector for M2, then, as before, the
manifold

M ={p(M})f: p a holomorphic polynomial}
has the desired properties. J
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The converse of Theorem 4.5 holds in many naturally occurring spaces.
Recall from Proposition 4.4 that every multiplier ¢ of H is a bounded
holomorphic function on 2, with

Hollo. =sup{lo(z) :ze 2] <M. (1}

For many spaces H, every bounded function is a multiplier, with equality
in (i). This is the case, for example, if / is the Bergman space of a
bounded domain; or the Hardy space H* of either the unit ball [32,
Chap. 51 or the unit polydisc [31, Chap. 3]. It is not, howeverl, the case _for
ali spaces. For example, the Dirichlet space @ of the unit disc U wh;c‘h
consists of all functions f holomorphic on U for which the derivative f” is
square integrable over U, when taken in the norm

=101+ ] 11 da,

obeys the hypotheses of this section, but not every bounded function on U
is a multiplier. In fact, the characterization of the multipliers of 2 is com-
plicated, having been achieved only in the last decade by Stegenga ~[38].
For more examples, and background on the theory of multipliers on
spaces of holomorphic functions on the unit disc, and its connection with
weighted shift operators, we refer the reader to Shields” article [367].

4.9, THEOREM. Suppuse every bounded function o on @ is a multiplier of
H, with |M | = ¢l ... Then for each such « the operatar MY is hypercyclic
if and only if @(£2) intersects the unir circle.

Proof. Since £2 is connected, so is @(£2). So i »{Q2) does not in_ters_ect
the unit circle, then it lies entirely inside, or entirely outside the unit disc.
In the former case,

HM I =M =llel. <1,

so M * cannot be hypercyclic. In the latter case, /¢ is holomorphic on Q,
and bounded there by 1, so by the first case, M §  =the inverse of M* is
a contraction on H, hence not hypercyclic. Thus MY itself is not hyper-
eyclic, by part (b) of the remarks foliowing Theorem 1.2. The converse
implication is a special case of Theorem 4.5. |

4.10. Remarks. {a) The argument just given occurs in more generality
in Carol Kitai’s thesis {227, where it is the key step in a more comprehen-
sive result {Theorem 2.8): if T is a hypercyclic operator on a Banach space,
then every component of the spectrum of T has non-emply infersection
with the unit circle.
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(b} The idea of using a large supply of eigenvectors to produce cyclic
behavior goes back to Clancey and Rogers [117], who make a connection
between cyclicity and spectral synthesis, as introduced into operator theory
by Wermer [39]. Recently Bourdon and Shapiro [8] employed a related
concept to produce common cyclic vectors for adjoint multiplications on
the spaces considered in this section, thus generalizing earlier work of
Wogen [40] and more recent results of K, C. Chan {9]. We do not know
if there is a common supercyclic vector for the adjoint multipliers on H,

{c} The results of this section also raise the following question: Does
every operator, not a scalar multiple of the identity, that eommutes with a
generalized backward shift, have a supercyclic vecior? In other words, is the
hypothesis “ker 4 2 ker 8 of Theorem 3.6(b} really needed? Here is a
more specific question: Suppose B is a quasinilpotent backward shift, like the
one defined in Section 3.7, Is I+ B supercyclic? Hypercyelic? We noted in
part (a) that the spectrum of every hypercyclic operator must intersect the
unit circle. Hence Af+ B, whose spectrum is the singleton {1}, cannot be
hypercyclic for any scalar 4 of modulus 1. But perhaps it is always super-
cyclic.

By contrast, if a generalized backward shift is surjective, then the eigen-
vatlue method used above leads to an improvement of Theorem 3.6(b), at
least for the most naturally occurring operators in the commutant,

4.11. TueoreM. If B is a surjective generalized backward shift on a
Banach space X, and F is a non-constant Junction  holomorphic on a
neighborhood of the spectrum of B, then the operator F{B) has a dense,
invariant supercyclic vector manifold.

Proof. The point here will be that, quite in contrast with the quasi-
nilpotent case, the spectrum of B will contain a disc of eigenvalues. Since
B is surjective, the Open Mapping Theorem provides a positive number r
such that for each ye X there exists xe X with Bx=y and |xf<riy|.
Thus, starting with

xpeker B (I}

we can choose inductively a sequence {x,}Z such that for each > 1,

anzxn—i! (2)

and
e ez, b (3)

The last inequality shows that

“"cn” “<- e n""UH (H =O, 1' 25 )a
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hence for each scalar o of modulus <, the series on the right side of the
definition

converges (absolutely) in B, to the vector k,e X. Moreover, {1) and (2}

above show that
Bk, = ak, {lal < r). (4;

The proof now proceeds exactly like that of Theorem 4.5. The first order of
business is to show that for every open subset ¥ of the disc rUU= {|a| <r},
the linear subspace

X, =spanik,: aeV}

is dense in X. To see this, suppose 4 is a bounded linear functional on X
that annihilates &, for each a € V. Then the holemorphic function 4 defined

on rl/ by

Aoy = Alk,}= 5 a"A(x,) {eerll)
=0

vanishes on V¥, and therefore vanishes identicaily on rI/7. Thus A{x,) =0 for
all n. By (1) and (2) above, and Proposition 3.3, span{x,} is dense in X,
s0 A =10 on X. By the Hahn-Banach theorem, the subspace X is therefore
dense in X,

Now suppose F is a nen-constant function helomerphic on the spectrum
of B. Then the range of F contains the open set F(rU). Suppose for the
moment that F{rU) intersects the unit circle. Then proceeding as before, let

Ve{aerlU: [Fla)j <1} and WefaerU: |Fla)l > 1}

Since F(B)k,=Fla)k, for each aerl, we see that the sequence {f’?{B}”}
tends pointwise to zero on the dense subspace X, while the right inverse
operator § defined on Xy by

1
SAzxﬁgAI (GH’EW)

(the vectors k, are easily seen to be linearly independent) has the properties
required for Corollary 1.5. Thus F(8) has a hypercyclic vector.

It follows quickly from the density of the space X,, that each such
holomorphic function of B has dense range, hence the usual argument
shows that F{B) has a dense, invariant hypercyclic vector manifold.

Finally, if F{rU) does not intersect the unit circle, then ZF(rl/) does for
some scalar 4. So the corresponding operater AF(#) has a dense, invariant
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hypercyclic vector manifold, which is the required supercyclic vector
manifold for F(B). |

5. HYPERCYCLIC DIFFERENTIAL OPERATORS

We now apply the methods of Sections 1 and 4 to the Fréchet space
H(C"} of entire functions on C%, endowed with the topology of uniform
convergence on compact subsets. For 1<k <N let D, denote complex
partial differentiation with respect to the kth coordinate, and for ae C¥,
let 1, denote translation by «

o fz)=flz+a)  (feH(C"), zeC).
Both classes of operators are continuous linear transformations taking
H(T") into itself.

As we noted in the Introduction, G. D. Birkholf showed in 1929 that
every translation operator is hypercyclic on H(C) [5], and G. R, MacLane
obtained the same conclusion in 1952 for the operator of differentiation
[23]. These appear to be the first hypercyclicity theorems for linear
operators, Thus it seems only [itting to present the following generalization
of the theorems of Birkhoff and MacLane.

5.1. THEOREM, Suppese L is a continuous linear operator on H{CV) that
commures with each of the translation operators 1, (aeC"), and is not a
scalar mudtiple of the identity. Then L has a dense, invariant hypercyclic
vector manifold.

Note that this result has no Banach space analogue, For it implies that
every scalar multiple of a non-scalar operator that commutes with transla-
tions is hypercyclic. But on a Banach space, every multiple of a bounded
operator by a sufficiently small scalar is a contraction, and therefore not
hypercyclic.

Every linear differential operator with constant coefficients commutes
with transtations. More generally, the operators on H(C") that commute
with translations have a weil known representation, which we require for
the proof of Theorem 5.1, as “infinite order” differential operators.

3.2, PROPOSITION.  For a continuous linear operator L on H(CY), the
Sollowing conditions are equivalent:
{a} L commutes with every rranslation operator ©, (3 e CV).

(b) L commutes with each of the differentiation operators D,
{(t<k<N)
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(c) There is a complex Borel measure u on CV with compact support
such that

Lfz)=| flz+wyduw)  (zeCP)

{d) L=@{D), where @ is an entire function on CV of exponential
type.

5.3, Remarks. Part{d) of Proposition 5.2 requires some explanation.
Here @(D} is the operator that results, in the obvious way, from sub-
stituting

D= (D, D, ..., Dy} for z=1(z;,72, v Zn)

in the power series representation for @.
More precisely: to say that @ is of exponential type means that there
exist positive constants 4 and B such that

iP(z) <A (zeCP).

A straightforward computation with power series, and the Cauchy
inequalities [ 21, p. 277 show that this happens if and only if the coefficients
in the power series representation

Bz} = Z a,z’

=0

obey, for some R >0, the estimate

Fef
la) <= (v20), (1)
Vi

{cf. £33, Chap. VII, Sect. 7] for the one variable case), where we adopt the
standard notation,

va{vy, vy, ., V) 18 an N-tuple of non-negative integers (a mudii-
index),

vl = v | 4+ Jvab + -+ 4 |v,] is the “length” of the multi-index v,

AU TS PRI

U ryey oz, where z=2(2;, 25, ., 24)eC", and v is a multi-
index.

Moreover, the Cauchy formulas for derivatives [21, p.27, For-
mula 2.2.37 show that for each multi-index v, each fe H(CV), and each
=0,

22 S
ooy, <= Mla (2)
V. ¥
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where
Ik = sup{|f(z) : lzlsr, | S/EN) (3}

These estimates show that if, for each non-negative integer k we write

Puiz)= Y a4,z

vl <k

then for every fe H(C™), the sequence

DD)f =3} a,Df {4}
fel gk
converges uniformly on compact subsets of C* e, | @.(D)} converges
pointwise on H(C"). We denote the limit operator by P(D}). It is easily
seen to be continuous on H(CV),
As an example of the implication (a)=> (d) of Theorem 5.1, the reader

might find it amusing to verify that, according to the conventions described
above,

Ta=exploy D + oy Dy - b, D),

where a=(a;, 2,, ., 2,)eC This relationship yields the implication
(a)= (b} of Proposition 5.2. The converse follows from the easily proven
fact that if e, denotes the kth standard unit vector for C¥, then the
operator {1, —I}/4 tends pointwise to Dy on H(C™).

In order to keep the paper self-contained, we will sketch proofs of the
other implications of Proposition 5.2. But first we show how this result
figures in the proof of Theorem 5.1

Proof of Theorem 5.1. Suppose L is a continvous linear operator on
H(C"¥) that commutes with ¢very translation operator. Then by Proposi-
tion 5.2(d) there exists an entire function

O)=Y a2 (zeC)

on ©" of exponential type, such that L=®&(D), in the sense described
above,

In order to use the methods of Section 4, we need a generous supply of
cigenfunctions. For each point o = {a,, a5, ..., ayle CV let

ez} =exp(z o + zy0, + ce oz {ze CM).
Then for each 1 <& <N,

Dkez = xke:n
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so for each multi-index v,
DYe =u'e,,
which, along with (4) above shows that

Le,=®{a}e, (eeC") (5)

We claim that for each open subset V of C~, the linear subspace
H,=span{e,ac ¥} (6)
is dense in H(CY). To see this, suppose 4 is a continuous linear functional

on H(CY) that vanishes on each eigenfunction e, (x e V). Since the collec-
tion of open sets

{Fe HIEEM) ) fl, <&} {z and r>0)

forms a basis for the neighborhoods of zero in H(E"’g, [hi lin}e{arh fung;i;;lcag
i -#,. By the Hahn-Bz

L must be bounded in one of ﬂ’i? norms -4, : Ba

Theorem and the Riesz Representation Theorem, there is a_(non umqueg

comptex Borel measure g, supported in the closed ball of rgdlus r, centere

at the origin in C" such that

AN =] Fan  (feHEM)
In particular,
()m/!(eg)xjez di (ze V). (7}
Define F: CY - C by
F(a}zj e dy (zeCY)

. . ”

Differentiation under the integral sign shows that F is holomorphic on €7,
with

DFo)= [ ez} dulz)  (aeC), (8)

for every multi-index v. By (7}, the entire function F yanisht?s on the opeﬁ
set V, so it vanishes identically. In particular, all of its derivatives vanis

at the origin, so by (8),

0= D"F{0)= f 2 dulz)=L{z") {v a muiti-index).

SHOG8 2-3
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So L annihilates every monomial, and hence all of H{C"). By the Hahn-
Banach Theorem, the linear span H, of the original set of exponentials
{e,:aeV} is dense in H(C"), which proves our claim,

Before proceeding further, note that the work of the last paragraph
shows that L has dense range whenever it is not the zero operator. For
then @ is not identically zero, so the set of points c& C" at which @ does
not vanish is open and non-empty, hence the set of e,’s corresponding 10
these points spans a dense subspace of H{C"), and each of these eigenfunc-
tions belongs to the range of L.

Now suppose L is not a constant multiple of the identity, so that the
entire [unction @ is not constant. Thus the open sets

Ve {ze TV |P(z)] <1} and Wel{zeQV i d(z)] > 1}
are both non-empty. For e ¥V,
Le,=8{n) e, ~ 0

as # -» oo, Thus the sequence of operators {L"};° tends pointwise to zero
on the dense subspace H, of H{CY)

As in the proof of Theorem 4.5, to obtain the appropriate right inverse
S demanded for L by Corollary 1.5, we extend the definition

i
Se,=——¢ W
e, CD(o:)(’ {ae W)

linearly to the dense subspace H,, =span{e, :ae W}. The resulting map S
takes H,, into itseif, and LS is the identity map on H,,. Since [@{a}i > 1
for each a e W, the sequence {S"} tends pointwise to zero on {e, 1 oe W},
and therefore on H .

The hypotheses of {the Fréchet space version of) Corollary 1.5 are all
fulfilled, so L has a hypercyclic vector f. We saw above that every operator
that commutes with the translations has dense range, so this is true of
every operator p(L), p & holomorphic polynemial. So as in the work of
Section 2 and 3,

A ={p{L) [ p a holomorphic polynomial }

is a dense, invariant linear submanifold of H(C") whose non-zero members
are all hypercychic vectors for the operator L. |}

Remark, As we pointed out above, if L is a continuous linear operator
on H{CY) that is not identically zero, and commutes with translations, then
elementary arguments show L has dense range, and even a densely defined
right inverse. In fact much more is true. In the mid-1950’s Ehrenpreis [13]
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and Malgrange [24] independently showed that L is surjective, a result
recently improved by Meise and Tavlor [25] to read: I has a continuous
{everywhere defined) right inverse.

Proof of Proposition 32 {Compare [35, Sect. 23]). The equivalence of
{a) and (b) has already been noted.

(a)=>(c). We are assuming that L is a continuous linear operator on
H(C™) that commutes with every translation 7. Thus the linear functional,
defined on H(C") by

Af = LA(0)  (fe H(CY)),

being the composition of L with the continuous functional of evaluation at
the origin, is itself continuous. As in the proof of Theorem 5.1, the Hahn—
Banach Theorem and the Riesz Representation Theorem supply a complex
Borel measure p on C% with compact support, which represents A4 in the
sense

Af={fdn  (feHICY))

So for each ze C" and fe H(C™),
(LiNz)= (. L/ HO) = (Lt f }HO) [L commutes with 7.}

= A f)=] ./ dy

= f Sz +w)du(w),

which is (¢).

{(c}={d) We are given that the measure y has compact support. Fix
zeC¥ The power series expansion for f, with center at z, converges
upiformly on the support of g, so we can interchange integration and
summation in the formula provided by (c),

Lf(z)= j Sz +w) dulw) =f (Z 9—5{—’ w") du(w)

=3 & D), (9)

vl
where for each multi-index v,

o= Jﬁ w' du{w}
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Now for some R>0, the s ies i
; upport of u 1 ;
1SE< N}, so for each multi-index v, #Jes dn the polydisc {iz;| <R,

i < RM ).

Q‘i(z)ng—;z“ (ze CY)

is entire, of exponential type. B : i
% . . By the result of calculation (9) . G
L=®(D) in the sense described in Remarks 3.3. This eslabléshcé (Bd)db(?\’f-‘,
{d)=(a). This follows from the pointw; ‘
; ntwise
the series for @(D), and the chain rule? ] onvergence, on fI(CT), of

wai.:.s}g?;ogg:ck?mgd f/ﬂﬂ‘; or H{C). The definition of generalized back-
L in section 3 could just as well have been made [ ¢
spaces. The reader can easily check th "HE) of s
' at on the space M(C) of enti
functions of one com ari ) ; - <hire
plex variable, the operator of differentiation i
or ' . N ntatio ¢
tg;r;er.dl:z{;d backward fshnft. Now parts (a} and {b) of Theorem 3.6 ;lenilsailj
0 the context of Fréchet spaces, with just g I '
\ ttle more care bei
needed to prove part {b). However Fof pan or cxens
. » the proof of part (c) d
past the Banach setting. Accordin orern 36001
. 2 to Theorem 5.1, The 3 i
nevertheless true for operators that co i i o, o) s
: e f mmute with differentiation, and thi
raises the possibility that t i i et
s y he result might be true in general for Fréche:
bag:\);ﬁ;e?ht‘gs Bisdn?t t}ée case: Theorem 3.6{c} is not true for the ordinary
; c . . .
Tho e tnea on H{C} relative to the monomial basis {z"} .

Hz)— A0
Bf(z}:—%)—:[u (fe H(C), ze ).

PROPOSITION.  No scalar mulri }
Isperorci nultiple of the backward shift B on H(CT) is
Proof. Fix ie and J& H(C). Then for every r>4 14 we have from

the Maximum Principle,

487, ;= max [£Bf(z)] = max [iBfiz) < 214 ﬁfﬁ"*im»’é.

leisr I r 2

Upon iterating this inequality » times,

WABY' L <21, (r>4qa)).
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Thus for every scalar 4, the sequence of powers {(AB)"} converges
pointwise to zero on H(C). In particular, the operator AB is not hyper-
cyclic. |

5.5, Remarks. (a) In addition to his work mentioned in Remarks 4.10
on common cyclic vectors for adjoint multiplications on Hilbert spaces of
helomorphic functions, Chan has shown [10] that the collection of linear,
constant coefficient partial differential operators of finite (positive} order
has a common cyclic vector. Using spectral synthesis methods, Bourdon
and Shapiro [8] generalized this result as well to the class of non-scalar
operators that commute with translations. Just as for adjoint multiplica-
tions, it would be of interest to know if this class of operators, each of
which has just been proven hypercyclic, has a common hypercyclic vector.

{b) As a consequence of Theorem 5.1 we have the following: every
partial differential eperator on R”, not a scalar multiple of the identity,
is hypercyclic on C*=(R"). To see why this is true, it helps to introduce
the restriction operator # which associates to each entire function
f(z,, 22, wn 2y) its real restriction f(x,, Xy, .., xy). & maps H(C") con-
tinwously into C”(R"}, takes the collection of holomorphic polynomials
onto the polynomials in x,, x,, .., Xy, and intertwines the corresponding

partial differentiation operators,

gjfi__a_gg (j==1,2,.., N}

s fy.
a‘j (“YJ'

It follows that the same relation holds for polynomials in these operators.
From these facts, the reader can easily check that if p is a non-zero
holomorphic polynomial, and f a hypercyclic vector for p(D) (acting on
the space of entire functions), then #f is hypercyclic for the operator

plo/ax,, 8/8x,, .., 8/0xy), acting on C*(BY).

6. CHaoTIC LINEAR OPERATORS

In this final section we discuss some aspects of our work that are
suggested by dynamics. Devaney [12, p. 50] has proposed that a con-
tinuous mapping of a metric space be called chagotic if it is topologically
transitive (some element has a dense orbit), has a dense set of periodic
points, and posseses a certain “sensitivity to initial conditions.” Since
topological transitivity is, in our setting, hypercyclicity, it makes sense to
ask if the operators considered here are actually chaotic. We will show that
this is the case for most, but not all, of the exampies discussed so far.

We dispense with the issue of sensitive dependence on initial conditions
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by observing that every hypercyclic operator on an F-space {compiete
linear metric space) has a dramatic form of this property.

6.1. PROPOSITION. Suppose X is an F-space, and T a hypercyclic operator
on X. Then for every xe X there is a dense G ser of points S(x) < X, such
that the set of orbit-differences {T"x—T"y :n 20} is dense in X for every
y&S(x)

Proof. According to Remarks {iii) following Theorem 1.2, and (b}
following Corollary 1.5, the set HC(T) consisting of all hypercyclic vectors
for T is a dense G subset of X, hence so is its translate S{x}=x+ HC(T)
for cach x& X. For every y & S{x), the vector y — x is hypercyclic for T. The
property desired of y follows from this hypercyclicity and the linearity
of . 1

Observe that if & is the metric on X, and m (possibly = «0 ) denotes the
supremum of distances d(x, p), where x and y run through X, then the
proposition implies that corresponding to each point x € X there is a dense
G5 set of points y for which

limsup (T"x, T"y)=m.
e,
Thus in Fréchet spaces, hypercyclicity implies a somewhat stronger version
of “sensitive dependence on initial conditions™ than is defined in [12,
p- 491

The point is that according to Proposition 6.1, a hypercyclic operator is
chaotic if and only if it has a dense set of periodic points. The next result
shows that this is true of most of the concrete examples of hypercyclic
operators discussed so far.

6.2, THEOREM. The following linear operators are chaotic:

{2} The adjoint multipliers MY of Section 4, whenever @ is non-
constant and {382} intersects the unit circle.

(b) Every continuous linear operator on H{C"), not a scalar multiple
of the identity, that commutes with every transfation (¢f. Section 5},

Proof. By the main results of the sections indicated, each such operator
is hypercyclic, so we need only establish the density of their periodic points.
For simplicity we concentrate on the one dimensional case, so for example
in part (a), 2 is a plane domain.

{a) Suppose H is a space of functions holomorphic on @ that obeys
the hypotheses of Section 4. Lel ¢ be a multiplier of #/ whose image inter-
sects the unit circle. The domain @ can be exhausted by an increasing
sequence of relatively compact open sets, so we can choose one of these,
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call it G, so that @(G} intersects the unit circle. Since @(G) is an open
subset of the plane, this intersection contains a non-trivial arc of the circle,
which in turn contains infinitely many roots of unity. The preimages of
these roots of unity form an infinite subset £ of & which (since G is
relatively compact in ) has a limit point in £. Just as in the proof of
Theorem 4.5, the subspace Hy=span{k.:ze E] is therefore dense in H.
By Proposition 4.4(b), if ¢(z) is a root of unity, for example if ze E, then
the reproducing kernet k_ is a periodic point for M *. Since linear combina-
tions of periodic points are again periodic, the dense subspace H consists
entirely of periodic points. Thus M* is chaotic, as desired.

(b) The proof here is entirely analogous to the one above. One need
only replace the reproducing kemnels k. by the eigenvectors e, introduced
in Section 5. We leave the details to the reader.

In higher complex dimensions the proof is complicated by the fact that
the level sets of holomorphic functions are never discrete. Keeping the
notation of the proof of part (a), suppose ge H is orthogonal to the
periodic point subspace Hy. Then g vanishes identically on E, and we
need to show that this implies g= 0. Fix a point zge E, and let L be any
complex line through z, on which the restriction of ¢ is non-constant. Then
o(L ) is an open subset of the plane that intersects the unit circle, so
by the previous argument for part (a) we see that L n £ has ag infinite set
of preimages of roots of unity, and this set has an interior limit point. Thus
g vanishes identically on L ~ 2. Since ¢ is non-constant on L~ €2 for all
but a finite number of lines L through z, (by the Weierstrass Preparation
Theorem [32, pp. 290-2917, for example), g vanishes identically on a dense
subset of 2, and therefore on 2 itself. Thus, as before, H 1s dense in H.
A similar refinement establishes the higher dimensional form of

part (b). 1]

Using the same kind of argument, the reader can easily check that the
hypercyclic operators occurring in Section 2, Theorem 3.6{c), and more
generally in Theorem 4.11 {actually, in its proof), are also chaotic. These
resufts might lead one to wonder if every hypercyclic operator is chaotic.
However, this is not the case; it is even possibie for a hypercyclic operator
to have no periodic points, other than the obvious fixed point at the origin.
This is the message of the next result, which concerns the backward shift
operator B acting on the space H*(f}) introduced in Section 3.8. Tt shows,
for exampie, that the “Bergman” backward shift, corresponding to weight
sequence f{n}= 1/(n+ 1), is hypercyclic, but not chaotic.

Let us recall that the operator B is defined relative to the corthogonal
basis {z"} by

B(z")=z""" (n=1,2,.) and B(1)y=0,
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and that in order to insure

: its b 2
addition that oundedness on H(f

Bln+1)

sup < co, {*)

az0 ﬁ(ﬂ)

" 6.)3. 'gHEOREM. Suppose thar f§ satisfies (
n) =0 as n— oo, Then the following sta
H¥B) are equivalen. s

(2} B has a periodic point #0,
(b) Xy Bln) < co.

(c} B is chaotic.
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- pose B has a non-trivial pertodic point £ This
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F=0
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, : ‘ sum
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] ‘ g r f non negatl [+

(b)—(c). Since Bin) =0, we kn i
. =0, ow from Section 3.8 that & ish -
cyclic, and therefore }§als, in addition, the sensitivity to initial condi{gilrs
guarantee.d l?y Proposition 6.1. So it remains to show that 8 has a d
set of periodic points. e
The summability of £ insure

s that for each comp]
modulus €1, the power series Pt number o of

s

ko (z)= Y (@z)

FECRt

) we must require in

N , :
) above, and in addition that
ements about the agetion of B on
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belongs to H2(B). Clearly k,, is an eigenvector for B corresponding to the
eigenvalue @, so it is therefore a periodic point of B whenever w is a o0t
of unity. We claim that

V(R)=span{k, :w a root of unity}

is dense in H*(p). The proof is entirely similar to that of Theorem 4,11,
Suppose ge H*(#) is orthogonal to k,, for each root of unity w. For each
complex number w of modulus <1, define

oy
Flo)={g k,y= ) §n)o"B(n).
jm0
The summability of § and the Cauchy-Schwarz inequality insure that F is
a continuous function on the closed units disc that is holomorphic on the
interior. The orthogonality assumption on g means that F vanishes at each
root of unity, hence on the entire unit circle. Thus Flw) =0 for each @ in
the unit disc, so each power series coefficient g{n) f{n) is zero. Since ff >0,
we conclude that g =0, which proves the claim, and establishes (c).
The implication (c} — (a) is trivial, so the proof is complete. |

64. Closing Remarks. (a) Domingo Herrero [18] has recently given
a spectral characterization of the closwre of the coliection of hypercyclic
operators on {separable, infinite dimensional} Hilbert space. One conse-
guence of his result is that the identity operator belongs to the closure of
the hypercyclics. Herrero also shows {cf Theorem 6.3 above) that it is
possible for a hypercyclic operator to have only the origin as its periodic
point subspace ([18, Proposition 4.7(v)], for example), and he asks if the
periodic point subspace of a hypercyclic operator can have finite, non-zero
dimension. In [197 Herrero and Zong-yao Wang answer this question by
showing that for each non-negative integer » there is a hypercyclic operator
with periodic point subspace of dimension ». This result has been obtained
independently by the second author {unpublished), who finds the desired
operators in the commutant of a quasianalytic bilateral shift.

{(by In [19] Herrero and Wang show that for Hilbert space, every
operator in the norm closure of the hypercyclic operators can be written as
a perturbation of a hypercyclic operator by an arbitrarily small compact
operator. Since the identity operator is in the closure of the hypercyclics
(see (a) above) this leads to the somewhat surprising conclusion that some
compact perturbation of the identity is hypercychic.

(c) Examples such as those of Section4 lead one to believe that
perhaps the adjoint of a hypercyclic operator on Hilbert space cannot be
hypercyclic. However, Hector Salas [34] has recently shown that this is
not the case; there exist hyperevclic hilateral weighted shifts whose adjoints
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are also hypercyclic. Necessarily such operators can have no eigenvalues,
and therefore can not have non-trivial periodic points. Salas is able
to modify his construction to provide yet another proof that for each
non-negative integer # there exist hypercyclic operators with periodic point
subspace of dimension n.

{d) In [6, 7], Paul Bourdon and the second author study chaotic
behavior for composition operators on the Hardy space #2 This work
includes a complete classification of the chaotic composition operators
induced by linear fractional transformations of the unit disc into itself, as
well as results for more general mappings,
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