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Abstract. We show that the translation operator T : f(z) → f(z + 1), acting on

certain Hilbert spaces consisting of entire functions of slow growth, is hypercyclic in

the sense that for some function f in the space, the orbit {Tnf}∞0 is dense. We

further show that the operator T − I can be made compact, with approximation

numbers decreasing as quickly as desired, simply by choosing the underlying Hilbert

space to be sufficiently small. This shows that hypercyclic operators can arise as
perturbations of the identity by “arbitrarily compact” operators. Our work extends
that of G.D. Birkhoff (1929), who showed that T is hypercyclic on the Fréchet space
of all entire functions, and it complements recent work of Herrero and Wang, who
were the first to discover that perturbations of the identity by compacts could be
hypercyclic.

Introduction

This paper originates from two sources, one old and one new. The old one is G.D.

Birkhoff’s intriguing observation about the orbits of translation operators acting on

the space of entire functions [Bir, 1929]. To state this result precisely, we introduce

the space E of entire functions of one complex variable, endowed with the topology of

uniform convergence on compact subsets of the plane, and the operator Ta : E → E
of “translation by the complex number a,” defined by:

Taf(z) = f(z + a) (f ∈ E , z ∈ C).

Birkhoff’s theorem asserts that if a 6= 0, then there is a function f ∈ E whose orbit

{Tna f}∞0 is dense in E .
This result of Birkhoff can be viewed in several ways. Taken at face value it

provides a “universal” entire function which, over any compact set, has translates

that approximate any entire function as accurately as desired. In the language of
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dynamics, Birkhoff’s theorem states that each translation operator is topologically

transitive on E , and this is the major step in proving that these operators are

actually chaotic in one of the commonly accepted senses (see [Dev, page 50] and

[GoS, Section 5]).

In this paper, however, we are going to concentrate on the connection that Birk-

hoff’s theorem establishes between operator theory and complex analysis, with par-

ticular emphasis on the notion of cyclicity. Recall that an operator A on a Fréchet

space is cyclic if there is a vector f in the space (the cyclic vector for A) whose

orbit {Anf}∞0 has dense linear span. If the orbit itself is dense without any addi-

tional help from the linear span, we call the operator hypercyclic, and refer to f

as a hypercyclic vector for A. Thus hypercyclicity is the strongest possible form of

cyclicity, and Birkhoff’s theorem states that every translation operator Ta (a 6= 0)

is hypercyclic on E .
At first glance it might appear that the hypercyclic vectors promised by this re-

sult must grow rapidly in order to have translates that approximate every entire

function, but this is not the case. Recently S.M. Duyos-Ruiz proved that given

a 6= 0 and any preassigned transcendental growth rate, there is a hypercyclic cyclic

vector for Ta with slower growth [DuR]. This result, in turn, suggests the possibility

that translation operators might be hypercyclic on Fréchet spaces of entire func-

tions defined by such slow-growth conditions (this is not implied by Duyos-Ruiz’

theorem).

Question 1. Can Birkhoff’s theorem be extended to Hilbert spaces of entire func-

tions having “arbitrarily slow growth?”

Our preference for Hilbert space arises from a desire to emphasize properties of

operators over those of the underlying spaces. As the reader will see, our work could

as well have been set in many different kinds of Fréchet spaces of entire functions.

We will also see that “larger” spaces of entire functions tend to pose fewer ob-

stacles to hypercyclicity than “smaller” ones. There is, however, a limit that must

2



be placed on our interpretation of the phrase “arbitrarily slow growth.” No finite

dimensional Hilbert space supports a hypercyclic operator [Kit]. In other words,

polynomial growth conditions must be excluded. Thus Question 1 really asks if any

transcendental growth condition must be similarly excluded.

The second, and more modern, source of our investigation is recent work of Her-

rero and Wang [HerW] implying that on Hilbert space the identity operator (that

most non-cyclic of all operators) can be perturbed by a compact operator in such a

way that the result is hypercyclic. This result is surprising because no perturbation

of the identity by a finite dimensional operator can be hypercyclic (see section 4).

These considerations suggest:

Question 2. On Hilbert space, can “arbitrarily compact” infinite rank operators

perturb the identity to a hypercyclic operator?

The result of Herrero and Wang follows from their characterization of the operator

norm closure of the hypercyclics, but their proof seems too complicated to give any

information about Question 2. In fact additional motivation for Question 2 comes

from our desire to find naturally occurring examples of hypercyclic perturbations

of the identity by compacts.

In this paper we initiate a program that answers both questions affirmatively

(subject, of course, to proper interpretation of phrases like “arbitrarily compact”),

and raises interesting problems for future consideration. First, we extend Birkhoff’s

theorem to a natural collection of Hilbert spaces of entire functions which can be

“arbitrarily small” in the sense that the intersection of the whole collection is just

the space of polynomials. Then we show that the operator Ta − I is compact on

each of these spaces, and that its compactness intensifies as the underlying space

decreases in size. In fact, we show that the approximation numbers of Ta − I can

be made to tend to zero as quickly as desired, simply by requiring the underlying

Hilbert space to consist of entire functions with suitably slow growth.

It is not difficult to see that we can also make the norm of Ta − I as small as
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desired simply by choosing the translation vector a close enough to zero. Thus

we answer the second question as follows: The identity can be perturbed to be

hypercyclic by operators which, subject only to the restriction of infinite rank, have

arbitrarily small norm, and arbitrarily high degree of compactness. For example,

given ε > 0, we can arrange for the perturbing operator Ta − I to have norm < ε,

and belong to every Schatten p - class.

Organization of the paper. We wish to make our work readily accessible to spe-

cialists in both operator theory and complex analysis, so experts will occasionally

find well known results in their field belabored here for the sake of expository com-

pleteness.

In section 1 we define the Hilbert spaces of entire functions in which our results

are set, and develop some of their elementary properties. Section 2 establishes

the hypercyclicity of translation. The main result (Theorem 2.1) can be viewed as

a considerable strengthening of Duyos-Ruiz’s theorem, with a proof that is made

more transparent thanks to the organizational powers of functional analysis. In

the third section we study the compactness of Ta − I. Here everything is related

to the compactness of the differentiation operator, and in this regard our work is

anticipated by that of V.A. Bogachev [Bog], who discussed the compactness of

differentiation on suitably small Banach spaces of entire function defined by sup-

norm growth conditions. The paper closes with a brief section devoted to related

issues, references, and open problems.

Additional historical background. The modern study of hypercyclicity is a rela-

tively new pursuit, but as we pointed out earlier, its roots extend back at least six

decades. Thus it seems appropriate to take these last few introductory paragraphs

to fill in some more of the historical context of our work.

Thirteen years after the publication of Birkhoff’s theorem, Seidel and Walsh [SW]

imported the result to the unit disc, replacing translation by certain conformal disc

automorphisms. This idea has recently been developed in the Hilbert space context
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by Bourdon and Shapiro [BoS1] as part of an extensive program to classify the cyclic

and hypercyclic behavior of composition operators on the Hardy space H2. These

authors have obtained complete results for linear fractional maps of the unit disc

into itself, and using the linear fractional maps as “models” for more complicated

ones, have extended this classification theorem to a very general class of composition

operators [BoS2].

As for other operators, G.R. MacLane showed in 1952 that differentiation is also

hypercyclic on the space of entire functions [MacL], and recently Godefroy and

Shapiro filled in everything between the theorems of Birkhoff and MacLane by

showing that: Every continuous linear operator on E that commutes with differen-

tiation, and is not a scalar multiple of the identity, is hypercyclic [GoS, Theorem

5.1].

The study of hypercyclicity for Hilbert space operators originated with S. Ro-

lewicz [Rol], who showed in 1969 that if B is the backward shift on `2, defined

by

B({a0, a1, a2, . . . }) = {a1, a2, a3 . . . },

then λB is hypercyclic for any complex number λ of modulus > 1 (note that B

itself is a contraction on `2, so it cannot be hypercyclic without some additional

help). In the work cited above, Godefroy and Shapiro placed Rolewicz’s result in

the context of adjoint multipliers on the Hardy space H2 with this result: if φ

is a bounded holomorphic function on the open unit disc U, and Mφ denotes the

associated operator of pointwise multiplication on H2, then the adjoint multiplier

(Mφ)∗ is hypercyclic on H2 if and only if φ(U) intersects the unit circle. [GoS,

section 4]. Rolewicz’s operator λB corresponds to the adjoint multiplier induced by

φ(z) = λz.

This result of Godefroy and Shapiro also shows that the adjoint multiplier induced

on H2 by the function φ(z) = 1 + εz is hypercyclic for each complex number ε. As

ε → 0, these operators converge in norm to the identity, and therefore provide
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another concrete example of norm-approximation of the identity by hypercyclic

operators. However, unlike the translation operators to be studied here, none of

these adjoint multipliers differs from the identity by a compact.

All the above-mentioned results of Bourdon, Godefroy, and Shapiro depend on a

sufficient condition for hypercyclicity that was proved originally by Carol Kitai in

her Toronto dissertation [Kit, 1982], and rediscovered a few years later by Gethner

and Shapiro [GeS]. A version of this sufficient condition (Proposition 2.2) plays a

major role in this paper as well. Unfortunately, most of Kitai’s thesis, including

the sufficient condition for hypercyclicity, was never published. Her work contains

many interesting results about general properties of hypercyclic operators, and we

will discuss some of these in section 4.

1. Hilbert spaces of entire functions

In this section we describe the Hilbert spaces of entire functions in which the rest

of our work is set, and record their most basic properties. Following Duyos-Ruiz

[DuR], let us call an entire function γ(z) =
∑

γnz
n a comparison function if γn > 0

for each n, and the sequence of ratios γn+1/γn decreases to zero as n increases to∞.

For each comparison function γ we define E2(γ) to be the Hilbert space of power

series

f(z) =
∞∑
n=0

f̂(n)zn

for which

‖f‖22,γ ≡
∞∑
n=0

γ−2
n |f̂(n)|2 <∞.

It is easy to check that each element of E2(γ) is an entire function, and that

every sequence convergent in the norm of the space is uniformly convergent on

compact subsets of the plane (see Proposition 1.4 below). We will be interested in

the operators of translation and differentiation on these spaces. In what follows, Ta

denotes the operator of “translation by a,” as defined in the Introduction, and D

denotes differentiation.
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1.1 Proposition. The operator D is bounded on E2(γ) if and only if the sequence

{nγn/γn−1}∞1 is bounded. D is compact on E2(γ) if and only if this sequence

converges to zero.

Proof: The functions

en(z) = γnz
n (n = 0, 1, 2, . . . )

form an orthonormal basis for E2(γ), relative to which the operator D is a weighted

backward shift:

Dek =
{

wkek−1, for k > 0
0, for k = 0,

with

(1) wk =
kγk
γk−1

.

With this observation, the proof becomes routine. Let R = sup{wk : k ≥ 1}. If D

is bounded, then for each positive integer k,

wk = ‖Dek‖ ≤ ‖D‖ ‖ek‖ = ‖D‖,

so R <∞. Conversely, if R <∞ then for every holomorphic polynomial f we have

Df =
∑

wk+1 < f, ek+1 > ek

where the sum has only finitely many terms, and “<, >” denotes the inner product

of E2(γ). Thus

‖Df‖2 =
∑

w2
k+1| < f, ek+1 > |2 ≤ R2‖f‖2.

Since the polynomials are dense in E2(γ), it follows immediately that D is bounded

on E2(γ), with norm ≤ R. (Note that the two halves of this argument prove that

‖D‖ = R.)
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As for compactness, suppose first that wk → 0. Fix a positive integer n, and let

Dn be the operator of rank n defined by:

Dnf =
n−1∑
k=0

wk+1 < f, ek+1 > ek (f ∈ E2(γ)).

Then for each f ∈ E2(γ),

‖(D −Dn)f‖ =

∥∥∥∥∥
∞∑
k=n

wk+1 < f, ek+1 > ek

∥∥∥∥∥ ≤ sup
k≥n

wk+1‖f‖,

hence

‖D −Dn‖ ≤ sup
k≥n

wk+1 → 0.

Thus D is the limit in norm of a sequence of finite rank operators, so it is compact.

Conversely, if D is compact on E2(γ) then, since en → 0 weakly, we have wn =

‖Den‖ → 0.

Our interest in the differentiation operator stems from the intimate connection

with translation that is exhibited by the following corollary.

1.2 Corollary. Suppose the sequence {nγn/γn−1} is bounded. Then each trans-

lation operator Ta is bounded on E2(γ), and

(2) Ta =
∞∑
n=0

an

n!
Dn,

where the series on the right converges in the operator norm.

Proof: It is well known, and not difficult to show, that (2) holds for the full space

E of entire functions, in the sense that when each term of the series on the right is

applied to a function f ∈ E , the result converges uniformly on compact subsets of

the plane to the function f(z + a). One way to see this is to note that the Cauchy

inequalities yield estimates proving that the series on the right converges pointwise

on E to a continuous linear operator, which one easily checks agrees with Ta on the

collection of exponentials eλz (cf. [GoS, Proposition 5.2]). That the two operators
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coincide on all of E follows from the fact that these exponentials span a dense linear

subspace of E .

Once we know this, it only remains to note that since D is bounded (Proposition

1.1), the series on the right side of (2) converges in operator norm to a bounded

operator on E2(γ), and since convergence in the space E2(γ) implies convergence

in E (see Proposition 1.4), this bounded operator must be Ta.

Remark: We might paraphrase this last result as follows: Ta = eaD whenever D

is bounded on E2(γ). The proof yields more; it shows that if Φ(z) =
∑

anz
n is

a function holomorphic in a neighborhood of the closed disc {|z| ≤ ‖D‖}, then

the series
∑

anD
n converges in the operator norm of E2(γ) to a bounded linear

operator on E2(γ), which we might reasonably denote by Φ(D). The real story goes

deeper, and to explore it efficiently we need to focus some more attention on the

properties of those comparison functions that render the differentiation operator

bounded.

Definition. If the sequence wn = nγn/γn−1 is monotonically decreasing, we call

γ an admissible comparison function.

Equivalently: γ is an admissible comparison function precisely when the sequence

{log(n!γn)} is concave. This contrasts with the definition of comparison function,

which merely requires that {log γn} be concave.

Since we are going to focus on small spaces, the following elementary facts, whose

proofs we leave to the reader, assert that nothing will be lost by considering only

those spaces E2(γ) where γ is an admissible comparison function. In particular,

the last statement asserts that in some sense our spaces can be “arbitrarily small.”

(1) If D is bounded on E2(γ), then there is an admissible comparison function

γ̃ such that γ̃n ≤ γn for each n.

(2) The intersection of all the spaces E2(γ), as γ runs through all admissible

comparison functions, is precisely the collection of holomorphic polynomials.
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Although its full strength is not required for the sequel, the next result provides

some useful perspective on the spaces E2(γ).

1.3 Proposition. Suppose γ is an admissible comparison function. Let τ =

lim nγn/γn−1. Then:

(a) The entire function γ is of order 1 and type τ .

(b) The spectrum of the operator D is the closed disc τŪ = {|z| ≤ τ}.
(c) If Φ(z) =

∑
anz

n is a function holomorphic in a neighborhood of τŪ , then

the series
∑

anD
n converges in the operator norm of E2(γ) to a bounded linear

operator (which we henceforth refer to as Φ(D)) on E2(γ).

Proof: (a) Fix σ > τ . We are assuming that nγn/γn−1 ↘ τ , so for some N > 0

we have

γn <
σ

n
γn−1 (n ≥ N).

Thus for a constant C that depends only on σ we have

γn < C
σn

n!
(n = 0, 1, . . . ),

from which it follows that

|γ(z)| ≤
∑

γn|z|n ≤ C
∑ (σ|z|)n

n!
= Ceσ|z|

for each z ∈ C. Thus γ is of order 1 and type ≤ τ .

In the other direction, we have nγn/γn−1 ≥ τ for each n, hence

(*) γn ≥ τnγ0/n! (n = 0, 1, 2, · · · ).

Thus for r ≥ 0,

γ(r) ≥ γ0e
τr,

so γ is of type exactly τ .

(b) A computation of the sort used to prove Proposition 1.1 shows that for each

non-negative integer k,

‖Dk‖ = sup
n≥1

wnwn+1 · · ·wn+k−1 = w1w2 · · ·ωk,
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where wn = nγn/γn−1, and the last equality is due to the fact that {wn} is assumed

to be a decreasing sequence. Thus

‖Dk‖1/k = (w1w2 · · ·ωk)1/k =
(

k!γk
γ0

)1/k

,

so the spectral radius of D is

ρ(D) = lim ‖Dk‖1/k = lim(k!γk)1/k.

This limit of successive roots of the sequence {k!γk} coincides with the correspond-

ing limit of successive ratios (see, e.g., [Rud1, Theorem 3.37]), which by definition

is just τ .

So ρ(D) = τ , hence σ(D) ⊂ τŪ . To obtain equality we need only observe that,

by (*) above, whenever |λ| < τ , the exponential function eλz belongs to E2(γ).

Since this function is an eigenvector of D with corresponding eigenvalue λ, we see

that τU ⊂ σ(D). This proves that σ(D) = τŪ .

(c) This follows immediately from the fact, just derived in the course of proving

part (b) above, that ‖Dk‖1/k → τ .

Remark: In the sections to follow we will focus on spaces E2(γ) for which γ is

admissible, and on which D is compact. In view of Propositions 1.1 and 1.3 this

means we will be interested primarily in admissible comparison functions of expo-

nential type zero. On the corresponding spaces E2(γ), Proposition 1.3 asserts that

D will be quasinilpotent (its spectrum is the singleton {0}), and that Φ(D) can be

defined for every function Φ that is holomorphic in a neighborhood of the origin.

In such a case, the spectrum of Φ(D) is the singleton {Φ(0)}. This just restates

the fact that Φ(D) is invertible if and only if Φ(0) 6= 0, and this in turn reflects the

corresponding invertibility property of functions holomorphic in a neighborhood of

zero.

It will be important for us to know how restrictions on the growth of comparison

functions are reflected in the behavior of the functions in the corresponding Hilbert
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spaces. This is most naturally done by comparing the norm of E2(γ) with a Banach

space norm that is more directly related to functional values. For each comparison

function γ, and each entire function f , we define the possibly infinite “norm”

‖f‖∞,γ = sup{|f(z)|γ(|z|)−1 : z ∈ C},

and set

E∞(γ) = {f ∈ E : ‖f‖∞,γ <∞}.

Thus E∞(γ) is the space of all entire functions dominated by constant multiples of

γ. When endowed with the norm ‖ ‖∞,γ it is a Banach space for which one could

also study the properties of differentiation and translation. As we mentioned earlier,

Bogachev [Bog] has studied the problem of compactness of D on such spaces.

The next result says that the spaces E∞(γ) and E2(γ) are “almost the same,”

and that their norms are “almost equivalent.”

1.4 Proposition. (a) E2(γ) ⊂ E∞(γ) for every comparison function γ, and

‖f‖∞,γ ≤ ‖f‖2,γ

for each f ∈ E2(γ).

(b) If, in addition, the sequence {nγn/γn−1} is bounded, then

E∞(γ) ⊂ E2(z2γ(z)), and there exists a constant C <∞ such that

‖f‖2,z2γ(z) ≤ C‖f‖∞,γ .

Remarks: Part (a) of the Proposition justifies the statement made earlier that

convergence in E2(γ) implies uniform convergence on compact subsets of the plane.

The statement of part (b) sacrifices some correctness for the sake of clarity.

Strictly speaking, the function z2γ(z) is not a comparison function, because its

first two Taylor coefficients are zero. So to be completely accurate we should have

stated the theorem in terms of, for example, the function

(2) γ̃(z) = a + bz + z2γ(z),
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where a and b are appropriately chosen positive numbers. However the important

point is that the two functions have essentially the same growth as |z| → ∞. Rather

than obscure this idea with too much precision, we will allow ourselves such small

inaccuracies whenever the occasion seems to demand them.

Finally, Proposition 1.4 implies that every element of E2(γ) has order and type

no more than that of γ. In particular, if D is compact on E2(γ), then that space

consists of entire functions of exponential type zero.

Proof: (a) This part follows directly from the Cauchy-Schwarz inequality. For

f ∈ E2(γ) and z ∈ C we have

|f(z)| ≤
∞∑
n=0

|f̂(n)| |z|n =
∞∑
n=0

|f̂(n)|
γn

γn|z|n

≤ ‖f‖2,γ
( ∞∑
n=0

γ2
n|z|2n

)1/2

≤ ‖f‖2,γ γ(|z|),

where the “subadditivity of the power 1/2” has been used in the last line. The

desired result follows immediately.

(b) This inequality requires a little more care. For each fixed 0 ≤ r < ∞, the

sequence {γnrn} converges to zero, so it has a maximum value µ(r). This is the

“maximum term” of the series
∑

γnr
n. We claim that the hypothesis γn+1/γn =

O(1/n) insures that

(3) γ(r) = O(rµ(r)) (r →∞).

This is a standard result about entire functions of exponential type (see [Val, page

35] for more general inequalities, and [Ros1], [Ros2] for a beautiful probabilistic

approach to the subject). To keep our exposition complete, we will include a proof,

after first showing how the estimate yields the desired inequality.

So fix f ∈ E∞(γ), and write A = ‖f‖∞,γ . It is also convenient to adopt the

notation

M∞(f, r) = max
|z|=r
|f(z)|
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for 0 ≤ r < ∞. Now fix a non-negative integer n and apply the corresponding

Cauchy inequality to get

|f̂(n + 1)| ≤M∞(f, r)r−(n+1)(4)

≤ Aγ(r)r−(n+1)

≤ CAµ(r)r−n,

where the last line follows from estimate (3) above, at least for r ≥ γ0/γ1, and the

constant C depends on this lower bound for r (the reason for this choice of lower

bound will soon become apparent).

At this point the fact that the sequence {γn/γn−1} decreases to zero becomes

important, for it insures that

µ(r) = γnr
n for

γn−1

γn
≤ r ≤ γn

γn+1
,

where we define γ−1 = 0 to get the correct statement for n = 0. This simply

asserts that each non-negative integer n gets to be the “maximum term index”

for some r (possibly several n’s may correspond to a single r). Thus for r as in

the display above, (4) yields |f̂(n + 1)| ≤ CAγn. Since we are also assuming that

γn/γn−1 = O(1/n), this last inequality insures that f ∈ E2(γ̃), with the appropriate

inequality holding between norms, where γ̃ is the comparison function defined by

(2) above.

This proves part (b) of the Proposition, subject to verification of estimate (3)

above. For this, observe that the condition γn/γn−1 = O(1/n) insures, via Stirling’s

formula, that for some constant C <∞, independent of n,

γn ≤
C

n!
≤ C

( e

n

)n
.

Now fix 0 ≤ r <∞, and let N denote the unique integer for which

2er < N ≤ 2er + 1.
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Then
∞∑
n=N

γnr
n ≤ C

∞∑
n=N

(er

n

)n
< C

∞∑
n=N

2−n ≤ C,

so

γ(r) ≤ C +
N−1∑
n=0

γnr
n ≤ C + Nµ(r) ≤ C + (2er + 1)µ(r),

from which (3) follows, since µ(r)→∞.

2. Hypercyclicity

From now on we consider only admissible comparison functions γ. We remind the

reader that by Proposition 1.1 and Corollary 1.2, the operators of differentiation

and translation are therefore bounded on the Hilbert space E2(γ). The following

result is the goal of this section.

2.1. Theorem. For each admissible comparison function γ, the translation oper-

ator Ta is hypercyclic on E2(γ) for every 0 6= a ∈ C.

The full strength of admissibility is not going to be used in the proof of this result.

In fact the result itself yields something a lot more general.

Corollary. Suppose a 6= 0 and X is any Fréchet space of entire functions with

the following properties:

(1) X contains the holomorphic polynomials as a dense subset.

(2) The topology of X is stronger than the topology of uniform convergence on

compact subsets of the plane.

(3) Ta is continuous on X.

(4) E2(γ) ⊂ X for some admissible comparison function γ.

Then Ta is hypercyclic on X.

Proof of Corollary: By Theorem 2.1 there exists f ∈ E2(γ) such that the

orbit {Tna f} is dense in E2(γ). By (2), and an elementary argument involving the
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Closed Graph Theorem, the topology of E2(γ) is stronger than that of X, and this,

along with (1) shows that the orbit of f is also dense in X.

Upon taking X = E in this corollary, and recalling that for any comparison

function there is an admissible one with smaller coefficients, we obtain Duyos-Ruiz’s

improvement of Birkhoff’s theorem [DuR]: If 0 6= a and γ is a comparison function,

then there is a hypercyclic vector for Ta on E that belongs to E2(γ) (or, equally

well, because of Proposition 1.4, to E∞(γ)).

We will break the proof of Theorem 2.1 into several parts. First of all, we need

a sufficient condition for hypercyclicity.

2.2. Proposition. Let A be a bounded linear operator on a separable Banach

space X. Suppose there exists a sequence {rk} of positive integers, strictly increas-

ing to ∞, corresponding to which there is:

(1) A dense subset X0 ⊂ X such that ||Arkx|| → 0 for every x ∈ X0, and

(2) A dense subset Y0 ⊂ X and a mapping B : Y0 → Y0 such that AB = identity

on Y0, and ||Brky|| → 0 for every y ∈ Y0.

Then A is hypercyclic on X.

Separability of the underlying space is clearly a necessary condition for hyper-

cyclicity. The first result of this type was discovered by Carol Kitai in her 1982

Toronto dissertation [Kit]. Kitai never published the theorem, and it was rediscov-

ered a few years later by Gethner and Shapiro [GeS], who used it to unify the proofs

of the theorems of Birkhoff, MacLane, and Rolewicz, and to discover hypercyclic

behavior in many other settings. Since then the result has figured prominently in

subsequent studies of hypercyclicity ([BoS1], [Bos2], [GoS], [Her], [HeW]). The

version stated here is Corollary 1.4 of [GoS]. For completeness, we will provide a

proof at the end of this section.

In order to appreciate the problems that arise in using this sufficient condition

to prove Theorem 2.1, let us first sketch how it yields Birkhoff’s theorem for the

operator T1 of “translation by one,” acting on the space E of all entire functions.
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Although not a Banach space, E is a Fréchet space, and that is all that is really

needed for Proposition 2.2, if you interpret the “norm” of an element to be its

distance to the origin. In the hypotheses of Proposition 2.2, take A = T1, and

B = T−1 (the inverse of A in this case). Set

X0 = span {eλz : Re λ < 0},

and

Y0 = span {eλz : Re λ > 0}.

An elementary duality argument proves that X0 and Y0 are dense subspaces of E
(see [GoS; section 5], for example). These spaces have been constructed specially so

that Ak → 0 pointwise on X0, and Bk → 0 pointwise on Y0. Thus the hypothesis of

Proposition 2.2 are satisfied, so A = T1 is hypercyclic on E . The case of translation

by other non-zero complex numbers can either be done in similar fashion, or reduced

easily to this special case.

This argument works as well for those Hilbert spaces, like E2(ez), that contain

exponential functions. However our interest here lies in much smaller spaces E2(γ);

those for which the comparison function γ is of exponential type zero. In this case

Proposition 1.4(a) shows that none of the exponentials eλz used above to generate

the crucial subspaces X0 and Y0 can belong to E2(γ), so we must construct these

subspaces by different means. We will employ operator theory to reduce the problem

to one in function theory, which we then solve by a classical construction.

To introduce the relevant operator theory, recall formula (1) occurring in the

proof of Proposition 1.1, which represents the operator D of differentiation as a

weighted backward shift relative to the orthonormal basis

en(z) = γnz
n (n = 0, 1, . . . )

for E2(γ). A little calculation shows that the adjoint operator D∗ is, relative to the

same basis, a weighted forward shift:

(1) D∗en =
(n + 1)γn+1

γn
en+1 (n = 0, 1, . . . ).
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Since our viewpoint is that comparison functions become more interesting as they

grow more slowly (i.e. as their Taylor coefficients γn tend to zero more rapidly),

the most interesting comparison functions will satisfy the hypotheses of the next

theorem, which is something of a landmark in the theory of weighted shifts. Its

dual form will provide the approximation theorem that we seek.

To state these results, let A be a bounded operator on a Hilbert space H, and

suppose that relative to some orthonormal basis {en}, A has the representation

Aen = wn+1en+1 (n = 0, 1, . . . ),

where {wn} is a bounded sequence of complex numbers. Then A is called a weighted

(forward) shift with weights {wn} ( relative to the basis {en}). A subset S of H is

called A-invariant if AS ⊂ S.

2.3. The Unicellularity Theorem. If wn ↘ 0 and
∑

w2
n <∞, then the only

closed, A - invariant subspaces of H are {0} and the closed subspaces spanned by

the basis elements

{en, en+1, . . . } (n = 0, 1, . . . ).

This result was originally proved by Donoghue [Don] for the weight sequence

wn = 2−n. Later Nikol’skǐi [Nik], and independently to Parrott and Shields (see

[Shl, Cor. 1, page 105], proved the result under the weaker hypothesis of `p summa-

bility of the monotonic weight sequence for some p <∞. Further results and refer-

ences on this, and many other topics pertaining to weighted shifts can be found in

Shields’ survey article [Shl]. For completeness of exposition we will provide a proof

of Theorem 2.3 at the end of this section, but we will say nothing more about the

stronger “`p result.”

Here is the “dual form” of Theorem 2.3.

2.4. Corollary. Suppose nγn/γn−1 ↘ 0, and

∞∑
n=1

(
nγn
γn−1

)2

<∞.
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Then every function in E2(γ) that is not a polynomial is a cyclic vector for D.

Proof: Suppose f ∈ E2(γ) is not cyclic for D. We must show that f is a poly-

nomial. Let M denote the closed linear span of the successive derivatives of f .

Since f is not cyclic, M is a closed, proper, D-invariant subspace of E2(γ), so its

orthogonal complement M⊥ is a non-trivial D∗-invariant subspace. By Theorem

2.3, M⊥ contains the basis vectors en, en+1, . . . for some non-negative integer n.

Since f is orthogonal toM⊥, it has to be a polynomial.

Remarks: (a) In Corollary 2.4 the operator D can, of course, be replaced by any

backward weighted shift with weights satisfying the hypotheses of Theorem 2.3. In

this generality, the role of the “polynomials” is taken over by the (finite) linear

combinations of basis vectors {en}. One can readily check that in this generality

Corollary 2.4 is in fact equivalent to Theorem 2.3. Since every such linear combina-

tion is clearly non-cyclic for backward shifts, we see that the converse of Corollary

2.4 is also true.

(b) In view of the remarks following the statement of Theorem 2.3, the conclu-

sion of Corollary 2.4 still holds if one only assumes pth power summability in the

hypothesis, for some p < ∞. We will see later (Remarks following Prop. 3.1) that

this condition is equivalent to membership of D in the corresponding “Schatten p -

class.”

(c) Specialists have known versions of Corollary 2.4, in the context of various

“small” Fréchet spaces of entire functions since at least the 1960’s [Tay], and such

results are periodically rediscovered (see [Iyr] and [Grb] for this result set in the

space of entire functions of exponential type zero). In this regard, it is worth noting

that the conclusion of Corollary 2.4 holds for any Fréchet space of entire functions

that obeys the hypotheses of the Corollary of Theorem 2.1, and is the union of those

spaces E2(γ) (γ as in Corollary 2.4) that it contains. For example, the reader can

check that this is true of the space of entire functions of exponential type zero, and

the space of entire functions of order zero.
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With Corollary 2.4 in hand we can outline the strategy to be used in proving

Theorem 2.1. First observe that we need only consider the operator T1 of “trans-

lation by one.” For once this special case has been established, the general version

follows from the fact that the dilation operator

Ua : f(z) 7→ f(az)

establishes a unitary equivalence between Ta acting on E2(γ) and T1 acting on

E2(γ(|a|z)) (explicitly: Ta = U1/aT1Ua).

Next, by the argument of the Corollary to Theorem 2.1, it suffices to prove

Theorem 2.1 for “small spaces,” specifically the spaces E2(γ) where γ satisfies the

hypotheses of Corollary 2.4.

So suppose γ satisfies the hypotheses of Corollary 2.4, and write T = T1. We

claim that in order to show T is hypercyclic on E2(γ), it suffices to find a single

f ∈ E2(γ) such that ||T rkf ||2,γ → 0 for some sequence {rk} of positive integers that

increases to ∞. Note that such a function f is necessarily transcendental. Once it

has been found, Corollary 2.4 will guarantee that the subspace X0 = span {Dnf}∞0
is dense in E2(γ). Since each operator Dn is continuous on E2(γ) (Proposition 1.1),

and commutes with T , it will follow that T rk tends to zero pointwise on X0. Clearly

the same will hold for the sequence of operators {(T−1)rk} on the dense subspace

Y0 = span {Dnf(−z)}∞0 . Thus the hypotheses of Proposition 2.2 (the sufficient

condition for hypercyclicity) will be satisfied with A = T and B = T−1, and this

will establish that T is hypercyclic on E2(γ).

One final reduction: To produce the function f of the last paragraph, it is enough

to show that for every comparison function γ there exists f ∈ E2(γ) such that

||T rkf ||∞,γ → 0 for an appropriate sequence {rk}. For once this has been estab-

lished, then each time we are given γ, we will be able to find f and {rk} so that

||T rkf ||∞,γ̃ → 0, where γ̃ is a comparison function for which γ̃ = O(γ(r)/r2). Then

by Proposition 1.4(b), the function f will belong to E2(γ), and its translates will

have the desired behavior in the norm of that space.
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In summary, Theorem 2.1 will be proved in complete generality once we establish

the following result.

2.5. Proposition. For each comparison function γ there exists a sequence {rk}
of positive integers, strictly increasing to ∞, and a function f ∈ E2(γ) such that

||T rkf ||∞,γ → 0 as k →∞.

We are still a little way from being able to start the proof of this result. The

function f we are going to produce will be an infinite product. We need a prelimi-

nary lemma to help us estimate the size of this product and its translates. Suppose

for the moment that {rk}∞1 is any sequence of positive numbers, with

1 < r1 < r2 < r3 < · · · ↗ ∞,

and αk is a positive integer, to be regarded as the multiplicity of rk. For 0 ≤ r <∞
let n(r) be the number of points rk that lie in the interval [0, r], where rk is counted

with multiplicity αk. More precisely, for each positive integer k,

(2) n(r) = α1 + α2 + · · ·+ αk for rk ≤ r < rk+1.

We call n(r) the counting function for the sequence {rk}, with multiplicities {αk}.
With these definitions, our fundamental growth estimate can be stated as follows.

2.6. Lemma. If n(r) = O(log r) as r →∞, then for some ρ0 > 0,
∞∏
k=1

(
1 +

r

rk

)αk
≤ e2n(r) log r

for all r ≥ ρ0. Here the constant ρ0 depends only on the sequences {rk} and {αk}.

Proof: (cf. [Boas, section 3.5]). Let H(r) denote the infinite product to be

estimated. Then

log H(r) =
∞∑
k=1

αk log
(

1 +
r

rk

)

=
∫ ∞

1

log
(
1 +

r

t

)
dn(t)

= r

∫ ∞
1

n(t) dt

t(t + r)
,
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where the last line follows from an integration by parts, with the disappearance of

the boundary terms aided by our growth hypothesis on the counting function. Note

that the integral is allowed to start at 1 because the counting function vanishes

on the interval [0, r1), and r1 > 1. The hypothesis on n(r) states that there exist

positive constants ρ0 and C such that

(3) n(r) ≤ C log r for r ≥ ρ0.

Now fix r > ρ0 and split the last integral into two parts:

I(r) =
∫ r

1

n(t) dt

t(t + r)

≤ n(r)
∫ r

1

dt

t(t + r)

=
n(r)

r

[
log(1 + r)− log 2

]
<

n(r)
r

log(1 + r) ,

and

II(r) =
∫ ∞
r

n(t) dt

t(t + r)
≤ C

∫ ∞
r

log t dt

t2
= C

1 + log r

r
,

where the inequality is a result of (3) above. Thus for r > ρ0,

log H(r) ≤ r
[
I(r) + II(r)

]
< n(r) log(1 + r) + C(1 + log r)

< 2n(r) log r,

where, because n(r) ↗ ∞, the last line holds upon suitable enlargement of the

constant ρ0.

Proof of Proposition 2.5: Since the Taylor coefficients of γ are strictly positive,

γ is not a polynomial, and γ(r) is the maximum modulus of γ(z) on the circle |z| = r.

Thus

(4)
γ(r)
rk
→∞ (r →∞)
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for each positive integer k, so the numbers

(5) µk = sup
r≥1

(4r)2k+1
γ(r)−

1
2

are all finite, and clearly they tend monotonically to ∞. We can therefore choose a

sequence of integers {rk}, each larger than 1, so that for any positive integer k,

rk+1 > 3rk ,(6)

rk >
√

kµk ,(7)

rk > e2k+1
,(8)

log γ(rk) > 16 · 2k log rk,(9)

where (4) guarantees that the last choice is possible.

Let n(r) be the counting function for the sequence {rk} just chosen, where the

point rk is assigned multiplicity 2k. Thus by (2) above,

n(r) = 2 + 22 + · · ·+ 2k = 2k+1 − 2 (rk ≤ r < rk+1),

so inequality (8) implies that

(10) n(r) < log r (r ≥ 1).

Similarly, inequality (9) provides the estimate that links n(r) with γ(r);it implies

that

n(r) = 2k+1 − 2 <
log γ(rk)
8 log rk

(rk ≤ r < rk+1).

Now the Hadamard Three Circles Theorem asserts that log M∞(γ, r), which in this

case is just log γ(r), is a convex function of log r. This implies that log γ(r)/ log r,

which is unbounded because γ is transcendental, is an increasing function of r for

all sufficiently large r, say r > ρ1. So, because n(r) is constant on each interval

rk ≤ r < rk+1, the last inequality yields the estimate

(11) n(r) <
log γ(r)
8 log r

(r > ρ1).
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At this point, let ρ be the largest of the numbers ρ0, ρ1, and 1, and note once and

for all that ρ depends only on the comparison function γ.

With the estimates for n(r) in hand, we can now construct the function f that

is the goal of this proof. We claim that it is given by the infinite product

f(z) =
∞∏
k=1

(
1− z

rk

)2k

.

Note that condition (6) (or even better, (8)) insures that
∑

2k/rk < ∞, so the

convergence of this product to an entire function is not in doubt. The fact that

this function belongs to E∞(γ) will emerge as a byproduct of our estimates on its

translates.

We begin these estimates by fixing a positive integer n, and a point z ∈ C with

|z| > ρ.

For the purpose of estimating ||T rnf ||∞,γ we consider the factorization f =

Pn−1QnRn+1, where

Pn−1(z) =
n−1∏
k=1

(
1− z

rk

)2k

,

Qn(z) =
(

1− z

rn

)2n

,

and

Rn+1(z) =
∞∏

k=n+1

(
1− z

rk

)2k

.

In dealing with these products, a little algebraic identity will prove very useful

(cf. [DuR]):

(12) 1− z + b

a
=
(

1− b

a

)(
1− z

a− b

)
.

When applied to the tail end of the product for f , this identity yields

Rn+1(z + rn) = Rn+1(rn)
∞∏

k=n+1

(
1− z

rk − rn

)2k

.
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Now each term in the product for Rn+1(rn) is a positive number < 1, so the last

equation yields, for every z ∈ C,

|Rn+1(z + rn)| ≤
∞∏

k=n+1

(
1 +

|z|
rk − rn

)2k

.

According to condition (6), for k ≥ n + 1 we have

rk − rn > rk − rk−1 > rk−1,

so the inequality above yields

|Rn+1(z + rn)| <
∞∏

k=n+1

(
1 +

|z|
rk−1

)2k

≤
∞∏
k=1

(
1 +
|z|
rk

)2k+1

.

The product on the right is formed from the sequence {rk} where the point rk has

multiplicity 2k+1 (twice its original multiplicity). The counting function for {rk}
with these new multiplicities is 2n(r), which according to condition (10) satisfies

the hypothesis of Lemma 2.6. This Lemma, along with the last inequality, yield

(13) |Rn+1(z + rn)| < e4n(|z|) log |z| < γ(|z|) 1
2

where the final inequality follows from (11).

Having satisfactorily estimated the tail of the infinite product for f(z + rn), we

concentrate attention on the front end, and again use identity (12) to obtain:

|Pn−1(z + rn)| = |Pn−1(rn)|
n−1∏
k=1

∣∣∣∣1− z

rk − rn

∣∣∣∣2k

≤
n−1∏
k=1

[
(1 + rn)(1 + |z|)

]2k
≤ (4rn|z|)2+4+···+2n−1

= (4rn|z|)2n−2,
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where we have used in the second line the fact that rn − rk > 1 (as in the previous

case, from (6)), and in the third line the fact that both rn and |z| exceed 1. Thus

|Pn−1(z + rn)| |Qn(z + rn)|

≤ (4rn|z|)2n−2

∣∣∣∣ z

rn

∣∣∣∣2n

<
(4|z|)2n+1

r2
n

<
µnγ(|z|) 1

2

r2
n

<
1
n

γ(|z|) 1
2 ,

where the last two inequalities follow respectively from (5) (the definition of µn)

and condition (7) that was placed on the sequence {rk}. Thus (13) and the last

inequality yield

(14) |f(z + rn)| = |Pn−1QnRn+1(z + rn)| ≤
1
n

γ(|z|)

whenever |z| > ρ.

For |z| ≤ ρ we use (14) (with |z| = ρ) along with the maximum principle and the

fact that γ(r) is strictly positive and increasing on [0,∞] to get:

|f(z + rn)| ≤ max
|ζ|=ρ

|f(ζ + rn)| ≤
1
n

γ(ρ) <
1
n

γ(ρ)
γ(0)

γ(|z|).

This inequality, along with (14) gives the desired result:

||T rnf ||∞,γ ≤
1
n

γ(ρ)
γ(0)

→ 0

as n→∞. This completes the proof of Proposition 2.5, and with it, that of Theorem

2.1.

Appendix: Two proofs. We close this section with the proofs that were promised

for Proposition 2.2 and Theorem 2.3. We emphasize that these proofs are presented

for purely expository reasons, and no originality is being claimed.
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Proof of Proposition 2.2: Recalling that the Banach space X is separable, let

{Oν} be an enumeration of its open balls that have rational radii and centers in

some fixed countable dense set. The collection of hypercyclic vectors for A (which

we want to show is non-empty) can then be written as⋂
ν

⋃
n

A−n(Oν)

where ∪nA−n(Oν) is an open set, because the operator A is continuous. We claim

that each of these open sets is dense in X. By the Baire Category Theorem this

will yield the desired non-emptyness of the set of hypercyclic vectors for A (in fact,

it will show this set to be a dense Gδ).

To this end, fix a non-empty open subset O of X. We have to show that for

each index ν, the intersection of ∪nA−n(Oν) with O is non-empty. So fix the index

ν, and note that by the assumed density of the sets X0 and Y0 there exist points

x0 ∈ X0 ∩ O and y0 ∈ Y0 ∩ Oν . For simplicity, write Ak for Ark , and define Bk

similarly. Then by the definition of Y0 we have Bky0 → 0, so upon writing

xk = x0 + Bky0

we obtain from the linearity of A, the fact that AB = identity on Y0, and the

definition of X0:

Akxk = Akx0 + y0 → y0 (k →∞).

Thus for k sufficiently large, xk ∈ O and Akxk ∈ Oν , hence O ∩ A−rk(Oν) 6= ∅, as

desired.

Proof of Theorem 2.3: The argument is best split into two steps, the first of

which contains most of the work.

Special Case. If f ∈ H and < f, e0 >6= 0, then f is cyclic for A.

To see why this is so, write f =
∑

anzn, where a0 6= 0. Without loss of generality

we may assume a0 = 1. Write f0 = e0, and for n = 1, 2, . . . set

(1) fn =
Anf

w1w2 · · ·wn
= en +

∞∑
j=1

wj+1wj+2 · · ·wj+n
w1w2 · · ·wn

ajej+n .
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Now recall that the weight sequence {wn} decreases monotonically, so

(2)
wj+1wj+2 · · ·wj+n

w1w2 · · ·wn
≤ w2w3 · · ·wn+1

w1w2 · · ·wn
=

wn+1

wn
.

Thus

(3)
∞∑
n=1

‖fn − en‖2 ≤
‖f‖2
w2

1

∞∑
2

w2
n <∞ .

A well-known theorem of Paley and Wiener [PW, page 100] asserts that the se-

quence {fn}, which (3) exhibits as asymptotically just a small perturbation of an

orthonormal basis, is in fact a Schauder basis for H, so in particular its closed linear

span is dense (see also [You, Theorem 10, page 38], [Woj, II.B, Prop 15], and [Hal,

Problem 12]). Thus f is a cyclic vector for A.

To understand the idea behind the Paley-Wiener theorem, suppose that the sum

on the left side of (3) is < 1. Then a simple argument shows that the operator S

defined initially from span {en} to H by Sen = fn (n ≥ 0) extends to a bounded

operator on H with ‖S − I‖ < 1. Thus S is invertible on H, so the sequence {fn}
inherits the basis property of {en}. In case this sum is ≥ 1, one applies this result

to the linear span of the vectors {en, en+1, · · · } for n sufficiently large, and deals

separately with the remaining subspace of dimension n.

The general case. Suppose M 6= {0} is a closed subspace of H that is invariant

for A. Then the formula

ν = inf{n :< f, en >6= 0, f ∈M}

defines a non-negative integer for which M ⊂ Hν . We will be finished if we can

show that M = Hν .
Now there exists f ∈ M with < f, eν >= 0. Apply the Special Case with

H replaced by Hν and A by its restriction to Hν . Conclusion: The vectors

{f, Af, A2f, . . . }, all of which belong to M, span a dense subspace of Hν . Thus

M = Hν .

28



3. Compact Perturbations of the Identity

Having proved the hypercyclicity of translation operators on “admissible” spaces

E2(γ), we now examine the compactness of their differences with the identity.

We will show that by controlling the rate at which the sequence {nγn/γn−1} tends

to zero (i.e., by controlling the size of the space E2(γ)), we can make the difference

Ta − I “as compact as desired.” Our first goal is to describe precisely what this

means.

How to measure compactness. Let A be a bounded linear operator on a Hilbert

space H. For n a non-negative integer, the n-th approximation number of A, de-

noted by αn(A), is defined to be the distance, measured in the operator norm, from

A to the closed subspace of operators on H of rank ≤ n. More precisely, if L(H)

denotes the collection of bounded linear operators on H, then

αn(A) = inf{||A− F || : F ∈ L(H), rank F ≤ n}.

According to our definition, α0 = ||A||, and the sequence of approximation numbers

is monotone decreasing. Its limit is zero if and only if A is compact; this just restates

the fact that an operator is compact if and only if it is a norm-limit of finite rank

operators. Here is an extreme case: the sequence of approximation numbers is

eventually zero if and only if the operator is of finite rank. Thus it makes sense

to regard one operator as being “more compact” than another if its sequence of

approximation numbers tends more rapidly to zero.

After the finite rank operators, the two best known sub-classes of compact opera-

tors are the Hilbert-Schmidt class (
∑

αn(A)2 <∞), and the trace class (
∑

αn(A) <

∞). More generally, if 0 < p < ∞ and
∑

αn(A)p < ∞ then we say A belongs to

the Schatten p-class. According to the view being advanced here, as p decreases,

the compactness of the operators in the Schatten p-class increases.

Approximation numbers of the differentiation operator. As an instructive example

that will be important later on, let us estimate the approximation numbers for the

differentiation operator on E2(γ).
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3.1. Proposition. If γ is admissible, then

αn(D) ≤ (n + 1)γn+1

γn

for any non-negative integer n.

Proof: Recall that “γ admissible” means that the sequence wn = nγn/γn−1 is

monotonically decreasing. From last line of the proof of Proposition 1.1, we see

that ||D −Dn|| ≤ wn+1 where Dn is an operator of rank n. Thus αn(D) ≤ wn+1

as desired.

This result shows, for example, that D is in the Schatten p-class on E2(γ) when-

ever
∞∑
1

(
nγn
γn−1

)p
<∞.

Note that for p = 2 this condition is precisely the hypothesis of Corollary 2.4, the

crucial approximation result of the last section.

In fact, more is true: there is equality in the statement of Proposition 3.1, so

the condition above is also necessary for D to be in the Schatten p-class. We do

not emphasize this fact since it is not required for the sequel. Nevertheless the

full story is this: if A is a compact operator on Hilbert space, then the sequence

of eigenvalues of the positive compact operator A∗A, when arranged in decreasing

order, coincides with the sequence squares of approximation numbers of A (see [DS,

Part II, Chapter XI, section 9], or [Woj, sec. III.G] for the details). Recall from

section 2 that the backward shift representation of D gives rise to a corresponding

forward shift representation for the adjoint operator D∗. Taken together, these

representations show that relative to the orthonormal basis {en}, the operator D∗D

has the diagonal matrix {0, w2
1, w2

2, . . . }, where wn is the weight given by (1) above.

Thus αn(D) = wn+1 for each non-negative integer n.

Approximation numbers of Ta − I. This brings us to the main result of this

section, most of whose proof asserts that the approximation numbers of Ta − I

decrease to zero at the same rate as those of D.
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Theorem 3.2. Suppose {ωn} is a sequence of positive numbers that tends mono-

tonically to zero, and ε > 0 is given. Then there exists a comparison function γ

and a positive number δ such that on E2(γ) the operator Ta is hypercyclic for each

a 6= 0,

αn(Ta − I) = o(ωn) as n→∞,

and ||Ta − I|| < ε for all |a| < δ.

Proof: Define the sequence {γn} by: γ0 = ω0 and for n positive,

γn+1 =
ω2
nγn

n + 1
.

Then
(n + 1)γn+1

γn
= ω2

n,

so γ(z) =
∑

γnz
n is a comparison function such that Ta (a 6= 0) is hypercyclic on

E2(γ) (Theorem 2.1), and by Proposition 3.1, the differentiation operator D has

approximation numbers αn(D) = w2
n = o(wn).

Now the function

Ψ(z) =
eaz − 1

az
=
∞∑
k=0

(az)n

(n + 1)!

is entire, so by Proposition 1.3 the series

(2) Ψ(D) =
∞∑
k=0

(aD)n

(n + 1)!

defines a bounded operator on E2(γ). By Corollary 1.2,

Ta − I = eaD − I = aDΨ(D).

Thus

||Ta − I|| < |a| ||DΨ(D)|| < ε

as long as |a| < ε/||DΨ(D)||, which proves the statement about operator norms.

31



The assertion about approximation numbers follows from the easily verified fact

that if A and B are bounded operators on Hilbert space, then for each n,

αn(AB) ≤ ||B||αn(A).

This, along with (2) above shows that

αn(Ta − I) ≤ |a| ||Ψ(D)|| αn(D) = o(ωn),

as desired.

This result, along with Theorem 2.1, accomplishes the operator theoretic objec-

tive of this paper, which for completeness we state as the next result.

Corollary. Suppose H is a Hilbert space, {ωn} is a sequence of positive numbers

that tends monotonically to zero, and ε > 0 is given. Then there exists a compact

operator K on H such that: ||K|| < ε, αn(K) = o(ωn), and I + K is hypercyclic on

H.

4. Concluding remarks and open problems

Hypercyclicity vs. finite rank. Because of the following result of Kitai [Kit, Cor.

2.4], these two concepts are “mutually orthogonal.”

4.1. Proposition. Suppose T is a bounded linear operator on Hilbert space. If

the adjoint of T has an eigenvalue, then T is not hypercyclic.

Proof: According to the hypothesis, there is a non-zero vector y ∈ H, and a

complex number λ for which T ∗y = λy. Now if x ∈ H is hypercyclic for T , then

the collection of complex numbers {< Tnx, y >}∞0 will be dense in the plane. But

for each non-negative integer n,

< Tnx, y >=< x, T ∗ny >=< x, λny >= λ̄n < x, y >,
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and one easily checks that the set of complex numbers defined by the right side of

this equation, as n ranges through the non-negative integers, is not dense in the

plane.

Though we prefer stay within the friendly confines of Hilbert space, this result,

as well as those immediate consequences discussed here, hold for Banach spaces,

and with suitably modified proofs.

To get some idea of the utility of Proposition 4.1, observe how readily it shows

that no finite dimensional Hilbert space supports a hypercyclic operator [Kit, The-

orem 1.2]. (Proof. The dual space is also finite dimensional, so the adjoint of any

operator on the original space has an eigenvalue.) Similarly, no finite rank operator

can be hypercyclic, and with a little more work one can show that the same is

true of compact operators. Thus our standard assumption that γ is an admissible

comparison function of exponential type zero (i.e., nγn/γn−1 ↘ 0) implies that the

operator D is not hypercyclic on the space E2(γ), simply because it is compact on

that space.

The result below, which was mentioned in the Introduction, belongs to the same

circle of ideas.

4.2. Corollary. On Hilbert space, no perturbation of the identity by a finite

rank operator is hypercyclic.

Proof: Let F be a finite rank operator on H, and write T = I + F . Then T ∗ =

I+F ∗, and F ∗ is also a finite rank operator. By our remarks about finite dimensional

spaces, we may without loss of generality assume that H is infinite dimensional.

Thus F ∗ has a non-trivial null space, so 1 is an eigenvalue of T ∗. By Proposition

4.1, the operator T is therefore not hypercyclic.

Paul Bourdon has obtained a variant of Proposition 4.1 (unpublished): If the

adjoint of a bounded operator has a bounded orbit, then the original operator is

not hypercyclic. Bourdon has also shown that no finite dimensional real Banach

space supports a hypercyclic operator. The proof is more difficult than for the
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complex case, since eigenvalues are not so readily available.

Hypercyclicity and spectra. It follows from Propositon 1.3 that the operators Ta−I

that figure in Theorem 3.2 are, in addition to being compact, also quasinilpotent.

The next result shows that this is no accident.

4.3. Proposition. If K is a compact operator on Hilbert space, and I + K is

hypercyclic, then K is quasinilpotent.

Proof: The adjoint operator K∗ is also compact, so by the Riesz theory, if it

had any non-zero spectral points, these would be eigenvalues. But this cannot

happen, since eigenvalues of K∗ would give rise to eigenvalues of (I + K)∗, and by

by Proposition 4.1, this would contradict the hypercyclicity of I +K. Thus only the

point zero belongs to the spectrum of K, so ‖Kn‖1/n → 0 by the spectral radius

formula.

Now Kitai [Kit, Theorem 2.8] has shown that if an operator is hypercyclic, then

its spectrum must intersect the unit circle (Kitai actually proves that every compo-

nent of the spectrum must intersect the circle). Thus hypercyclic perturbations of

the identity by compacts have the minimal spectrum allowed a hypercyclic operator:

a single point on the unit circle.

Hypercyclicity for other differential operators? We return to E2(γ), under the

assumption that γ is an admissible comparison function of exponential type zero.

By Propositions 1.2 and 1.3, the operator D is therefore compact and quasinilpotent

on E2(γ). Moreover, if Φ is a function that is holomorphic in a neighborhood of

zero, then Proposition 1.3 (for the case τ = 0) guarantees that the operator Φ(D)

obtained by substituting D for z in the power series expansion of Φ is bounded on

E2(γ). Now Φ(z) = Φ(0) + zΨ(z) where Ψ is holomorphic in a neighborhood of

zero, so

Φ(D) = Φ(0) + DΨ(D)

where Ψ(D) is a bounded operator on E2(γ). Since D is quasinilpotent, so is

DΨ(D), hence the spectrum of Φ(D) is just the singleton {Φ(0)}.
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By the result of Kitai mentioned above, Φ(D) has a chance to be hypercyclic only

if |Φ(0)| = 1. Section 2 of this paper has been devoted to proving hypercyclicity in

the special case Φ(z) = eaz. What about all the other cases? Nothing seems to be

known; we do not know, for example if the operator I + D is hypercyclic on E2(γ).

Large Hilbert spaces. In the Introduction we commented that large Hilbert spaces

E2(γ) pose fewer obstacles to the hypercyclicity of translations than do small

ones. By way of explanation, consider the comparison function γ(z) = ez. Then

nγn/γn−1 = 1, so translation is bounded on E2(ez), and more generally, by Propo-

sition 1.3, Φ(D) is a bounded operator on E2(ez) whenever Φ is holomorphic in a

neighborhood of the closed unit disc Ū . In this case the differentiation operator

is most assuredly not compact on E2(ez), since (for example) every point λ of the

open disc U is an eigenvalue (for the eigenvector eλz).

In this situation it is easy to modify our proof of Birkhoff’s theorem to give the

following result, which is reminiscent of the adjoint multiplier theorem of Godefroy

and Shapiro that was mentioned in the Introduction: If Φ(z) is holomorphic in a

neighborhood of the closed unit disc, and Φ(U) intersects the unit circle, then the

operator Φ(D) is hypercyclic on E2(ez).

Thus, for example, every scalar multiple of Ta (a 6= 0) is hypercyclic on E2(ez),

whereas the remarks above show that if g is of exponential type zero, then only

multiples of Ta by unimodular constants can be hypercyclic (the proof of Theorem

2.1 shows that all such multiples actually are hypercyclic).

By a slightly modified argument we can also show that D itself is hypercyclic on

E2(ez) (in Proposition 2.2 take X0 to be the span of the exponentials eλz where

|λ| < 1, but take Y0 to be the collection of polynomials). This raises the following

question: If the Φ-image of the closed unit disc intersects the unit circle, is Φ(D)

hypercyclic on E2(ez)? For example, we do not even know if the operator (I +D)/2

is hypercyclic on this space.

Paley-Wiener spaces. If translation is bounded on some “reasonable” Hilbert
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space of entire functions, then must it be hypercyclic? As shown by the following

example, the answer is “no.”

For τ > 0 let W 2
τ denote the space of entire functions f for which the collection

of horizontal L2 means ∫ ∞
−∞
|f(x + iy)|2 dx

is bounded for all real numbers y. This is the Paley-Weiner space, and it is well

known that the restrictions of its elements to the real line form a closed subspace

of L2(R). Thus W 2
τ is a space of entire functions that can be regarded as a closed

subspace of the Hilbert space L2(R) (the key to this result is the Paley-Wiener

theorem, which asserts that the complex Fourier transform establishes an isometric

isomorphism of L2([−τ, τ ]) onto W 2
τ [Rud2, Ch. 19]).

Once this is established, it becomes clear that translation operators Ta for a real

act boundedly on W 2
τ . In fact, they are all isometries, so none is hypercyclic!

General hypercyclic operators. Some very basic questions about the general notion

of hypercyclicity remain to be answered. For example, Kitai asks if the square of

a hypercyclic operator is hypercyclic [Kit, Ch. 2, page 2-9], and Herrero (personal

communication) posed the same question about the direct sum of a hypercyclic

operator with itself.

If an operator A satisfies the hypotheses of our sufficient condition for hyper-

cyclicity (Proposition 2.2), with the sequence {rk} equal to all the positive integers,

then it is easy to check that its square and its direct sum with itself also satisfy

these hypotheses, so both these operators are hypercyclic. Most of the operators

previously considered in the literature satisfy these stronger hypotheses.

In the other direction, Hector Salas [Sal] has shown that the direct sum of two

(different) hypercyclic operators need not even be cyclic. This construction has also

been described in [Her].
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