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Cyclic Composition Operators on H>

PAUL S. BOURDON AND JOEL H. SHAPIRO

Introduction. We say that the operator T on the Hilbert space H is iy~
percyclic if there is a vector v in H {called a hypercyclic vector) whose orbit,
{T"v: n > 0}, is dense in H, and cyclic if there is a vector (called a cyclic
vector) whose orbit has dense linear span. We have undertaken the systematic
study of cyclic phenomena for composition operators on the Hardy space H 2,
In this paper, we announce our results concerning the cyclic behavior of /in-
ear fractional composition operators, composition operators whose symbols
are linear fractional maps of the unit disk U into itself. For these opera-
tors, we have answered the cyclicity question, completely determining which
are cyclic and which are hypercyclic. Qur results appear in the table below.
The general tenor of these results may be summarized in the following three
principles.

o The cyclic behavior of a linear fractional composition operator depends
critically on the fixed point properties of its symbol.

o Every kind of cyclic behavior accurs within the class of linear fractional
composition operators.

o When a linear fractional composition operator is cyclic or hypercyclic,
then it is very strongly so. When it fails to show one of these properties,
then it does so dramatically.

Although the study of cyclic operators and cyclic vectors has been a stan-
dard part of operator theory for some time, the study of hypercyclicity has
only recently piqued the interest of operator theorists. Hypercyclicity is
clearly a very strong form of cyclicity. Note that hypercyclicity has the same
connection with invariant subsets that cyclicity has with invariant subspaces.
Note also that if the operator T has a hypercyclic vector, then every element
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in the orbit of this vector is also hypercyclic for 7. Thus a hypercyclic op-
erator has a dense set of hypercyclic vectors (and hence a dense set of cyclic
vectors).

This paper is organized as follows. In the next section, we dispose of
some preliminary matters and then prove a simple necessary condition for
a composition operator to be cyclic: If C, is cyclic, then ¢ must be univa-
lent. In section 2, we restrict our attention to linear fractional composition
operators—those composition operators with the simplest possible univalent
symbols—and sketch arguments indicating how guestions regarding cyclicity
may be resolved for these operators {details will appear in [1]). In the final
section of the paper, we make a few remarks about cyclicity for composition
operators induced by more general holomorphic self-maps of U.

Summary of Main Theorem

Cyclic Behavior for Cy: g a Linear Fractional Self-map of U, Not an Automorphism’

Fixed points Co C,
of ¢ in CU {oo} Hypercyclic?  Cyclic 72 Example(s)
Interior and boundary  No? No? p{z) = T3
Interior and exterior No? Yes p(z)=z/2
p(z) =—-z/(2+z)

. 4 14z
Boundary and exterior  Yes Yes p{z) = 3
Boundary only No® Yes p(z) = 3 _1_ <

! Every nonelliptic automorphism induces a hypercyclic composition operator (Proposition 2.3).

2 Every cyclic linear fractional composition operator has a dense set of cyclic vectors. For these
operators, every vector in H? is the sum of two cyclic vectors {Sec. 1).

3 Proposition 2.2.

$ Hypercyclic implies cyclic.

% Every finitely generated C,-invariant subspace has infinite codimension {Theorem 2.7).

§ Only the constant functions ¢an be limit points of a Cp-orbit (Theorem 2.4(b)).

1. Preliminaries. The Hardy space H?, the natural functional representa-
tion of the sequence space /2, is the Hilbert space of functions holomorphic
on the open unit disk U/ whose Taylor coefficients in the expansion about the
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origin form a square summable sequence. The inner product inducing the
H%-norm is defined by

(fig)=>_fmzn) (f,gin H),
n=0

where f(n)} and g(n) represent the nth Taylor coefficients of f and g, respec-
tively. For each a € U, we let K, denote the H2-reproducing kernel for o so

that
i

Kal2) = 1 ~az

3

and
(f,Ko) = fla) forall f € H.

In what follows, ¢ will always denote a holomorphic function that maps
the unit disk U into itself, and C, will denote the composition operator on
H? with symbol ¢, that is

(Cof)(2) = flp(z)) (feH,zeU)

Littlewood’s Subordination Principle ([8], {9]) guarantees that, without any
additional assumptions about the behavior of the holomorphic function ¢,
the operator C, is bounded on H?.

For each positive integer n, we define g, to be the nth iterate of p{p, =
pogo...op, n times); we define ol z) = z. In this paper, we will be especially
interested in linear fractional composition operators; that is, those operators
C, whose symbols ¢ are of the form

where a, b, ¢, and d are complex numbers satisfying ad — bc # 0. As we
indicated in the introduction, the fixed point properties of the symbols of such
operators play a crucial role in determining cyclic behavior. Every nonelliptic
linear fractional self-map of U has an attractive fixed point in the closure
of U/, and if the map is not parabolic, then it will have a repulsive fixed
point lying outside I/. The preceding statement regarding the existence of
an attractive fixed point in U for nonelliptic linear fractional self-maps of U
has the following remarkable generalization ({5], [10], [2]).

TueEOREM (DENJOY-WOLFF). If a holomorphic self-map of U is not an
elliptic automorphism of U, then there is a unique point p in the closed unit
disk such that ¢,(z) — p foreach z € U.

The Denjoy-Wolff theorem plays an important role in all aspects of the
study of composition operators.

We now turn our attention to cyclicity and hypercyclicity, beginning with a
few easy observations. A hypercyclic operator must have dense range (since
if f 1s hypercyclic for T H — H, then {T7f:n > 1} is dense in H). A
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cyclic operator need not have dense range (consider, e.g., the operator of
multiplication by z on H?), but the codimension of the closure of the range
of a cyclic operator must be at most 1. Hypercyclicity and cyclicity are
preserved under similarity.

The collection of cyclic or hypercyclic vectors for an operator is always G;.
A cyclic operator need not have a dense collection of cyclic vectors (the outer
functions—the cyclic vectors for multiplication by z on H?—are not dense in
H?), but as we mentioned in the introduction, a hypercyclic operator always
has a dense collection of hypercyclic vectors. Hence we have the following
amusing “zero-one” law:

o An operator has either no hypercyclic vector, or a dense Gy set of them.
From this result, Baire’s Theorem yields a couple of interesting observations:

o Every countable collection of hypercyclic operators has a common hy-
percyclic vector.

o If T is a hypercyclic operator on H, then every vector in H is the sum
of two hypercyclic vectors.

The second result was pointed out to us by Gilles Godefroy. To see why it
is true, let E denote the collection of hypercychic vectors for T, and suppose
that v € H. Since both E and v — £ are dense Gy subsets of H, they have
nonvoid intersection. To say that v; is in the intersection means that v; is
hypercyclic and that v, = v — v; for some hypercyclic vector v;.

We will rely heavily on the following sufficient condition for hypercyclicity.
Essentially the same result was presented in [6] and proved independently in

17}

TueoreM 1.1 (Sufficient condition for hypercyclicity). Suppose T is a
continuous linear operator on a separable Banach space K for which the se-
quence of nonnegative powers {T™) tends pointwise 1o zero on a dense subset
X of K. Suppose further that there is a (possibly different) dense subset Y of
K, and a (possibly discontinuous) map S: Y — Y such that TS = identity on
Y, and (S") tends pointwise to zero on Y. Then T is hypercyclic.

Cur focus on the cyclic behavior of composition operators begins with the
following necessary condition for cyclicity.

ProposiTION 1.2, If C, is cyclic, then ¢ must be univalent.

Proposition 1.2 is a conseguence of the following Lemma and the observa-
tion that the closure of the range of a cyclic operator must have codimension
at most 1. We remark that it is possible to prove a stronger version of Propo-
sition 1.2 (see [1]): If C, is cyclic, then not only must ¢ be univalent on U,
but it also must be univalent almost everywhere on 8U (meaning that there
is some set £ ¢ 8U having zero Lebesgue measure such that ¢ is univalent
on 8L\ E},
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LemMa 1.3. If ¢ is not univalent, then the closure of the range of C, has
infinite codimension in H?.

Proor. If ¢ is nonconstant and not univalent on U, then there are points
a and b in U with a # b such that g{a) = ¢{b). Choose ¢ > 0 small enough
so that the disks B(a,&) and B{b,&) are coniained in U and have empty
intersection. Since ¢ is holomorphic, the set

G = p(Bla,&)) Np(B(b,¢))

is open; of course, G is nonempty, since it contains the point ¢(a) = @(b).
Let {w,}%, be a set containing countably many (distinct) points from G.
Let the sets {a,} and {b,} consist of points satisfying

an € @~ (wn) N B(a,&); bn € 97 H{wy) N B(b,€).
Now observe that for any positive integer n,

gn(z) = Ko, (2) — Kp,(2)

belongs to the orthogonal complement of the closure of the range of C,. Since
the set {g,}S2, is linearly independent, the proof is complete. O

In the next section, we restrict our attention to composition operators
having the simplest univalent symbols, the linear fractional composition op-
erators.

2. Results. Our results concerning the cyclic behavior of linear fractional
composition operators are summarized in the following theorem.

THEOREM 2.1 (Main Theorem). Let ¢ be a nonelliptic linear fractional
self-map of U.

{a) Suppose ¢ has no fixed point in U. Then C, is hypercyclic unless
¢ is a parabolic nonautomorphism, in which case only the constant
functions can adhere to C, orbits.

(b} C, is cyclic unless ¢ has both a fixed point in U and one on U, in
which case every finitely generated C,-invariant subspace has infinite
codimension.

For example, every nonelliptic linear fractional self-map of U without an
interior fixed point induces a cyclic composition operator. In particular, all
the parabolic self-maps of U induce composition operators that are cyclic, but
among the parabolics, only the automorphisms induce hypercyclic operators.
Composition operators with symbols that are nonelliptic disk automorphisms
have been considered by Nina Zorboska, who in her dissertation [11] shows
that every such operator is cyclic. The theorem above shows that such oper-
ators are actually hypercyclic.

Composition operators induced by elliptic linear fractional self-maps of U
are an annoyance in that they don’t fit into the classification scheme presented
in Theorem 2.1. Fortunately, they can be disposed of guickly. An elliptic
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self-map of U/ must be a conformal automorphism of U that is conjugate
by automorphisms to a rotation about the origin, A composition operator
induced by such a map must therefore be similar to one induced by a rotation.
A composition operator induced by a rotation is never hypercyclic (see the
next propoesition) and is cyclic if and only if the angle of rotation is an
irrational multiple of # {see the comments following the proof of Theorem
2.6).

Thus our study focuses quickly on nonelliptic maps. For these, the fol-
lowing result shows that the program of investigation must branch into two
separate lines, depending on whether the map in question does or does not
have a fixed point in U (henceforth an interior fixed point).

ProrosiTiON 2.2, If ¢ has an interior fixed point, then C, is not hyper-
cyelic.

ProoF. Suppose that o € U is a fixed point of ¢, and let f € H?
be arbitrary. Since evaluation at o is a continuous linear functional on H?,
any function g in the closure of the C,-orbit of f must satisfy g(a) = f(a).
It follows that no Cg-orbit may be dense in H?; hence, C, is not hyper-
cyclic. O

It therefore remains to determine which nonelliptic linear fractional self-
maps of U with no interior fixed point induce hypercyclic composition op-
erators, and which ones with an interior fixed point induce cyclic operators.
We consider hypercyclicity first (part {a) of the Main Theorem).

ProrosiTION 2.3.  If ¢ is a nonelliptic conformal automorphism of U, then
C, is hypercyclic.

SKETCH OF THE Proo¥, If ¢ is a nonelliptic conformal automorphism of
[/, then ¢ must have an attractive fixed point o on 8U. If ¢ is a parabolic,
then a is also the attractive fixed point for ¢p~!, the inverse of ¢ under com-
position. If ¢ is not parabolic, it has another fixed point § on 8U, and this
point £ is the attractive fixed point for ¢~!. In order to treat both cases
simultaneously, we write o = # if ¢ is parabolic.

Let A, be the set of functions holomorphic in a neighborhood of the closed
unit disk that vanish at a, and define Ay similarly. It’s not difficult to verify
that these sets are dense in H? (e.g., one could apply Beurling’s Theorem)
and that the hypotheses of Theorem 1.1 are satisfied with X = 4,, ¥ = A4g,
T=CpandS=C,.. O

All remaining guestions regarding hypercyclicity for linear fractional com-
position operators are answered by the following theorem.

THEOREM 2.4. Suppose ¢ is a linear fractional self-map of U that is not
an automorphism, and that has no interior fixed point.
(a) If ¢ is not parabolic, then C, is hypercyclic.
(b) If ¢ is parabolic, then C, is not hypercyclic, in fact, only the constant
Junctions can occur as limit points of Cg-orbits.
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SkercH oF THE PROOF. The function ¢ has its attractive fixed point a on
au.

(a) Suppose that ¢ is not parabolic. The operator C, is similar to an
operator C,, where y has its attractive fixed point at a and repulsive fixed
point # {|f| > 1) on the ray originating at « and passing through the origin.
Let A be the disk whose boundary passes through o and £ and is tangent
to the unit circle. Note that U ¢ A. It is not difficult to verify that ¥ is a
conformal automorphism of A; hence, the operator C,,: H%(A) — HZ(A) is
hypercyclic by Theorem 2.3. Since H%(A) is contained in H2(U) as a dense
subspace (the holomorphic polynomials are dense in both spaces) and has a
stronger norm, the operator Cy,: H?(U) — H?(U) must also be hypercyclic.
Because hypercyclicity is preserved under similarity, C, must be hypercyclic.

(b) We now assume that ¢ has a unigue fixed point, necessarily on the
unit circle. Without loss of generality, we may assume that this fixed point
is 1. We compute ¢ explicitly by employing the change of variable w =
(14 z)/(1 — z), which sends U to the right half-plane II, the fixed point 1 to
oo, and ¢ to the translation map

Puwy=w+a (w1,

where Rea > 0, the strict inequality reflecting the fact that ¢ is not an
automorphism of 7. Pulling back to the unit disk, we obtain

o(z) = (2~ajyz+a

= Tarrpra U

and more generally, for n =0, 1,2,...; the nth iterate ¢, of ¢ is obtained by
replacing a by na in (1).

By referring to the half-plane realization of ¢, as translation by na, we
see that the @-orbit of any point in I/ converges nontangentially 1o 1, These
orbits, however, approach 1 rather slowly as n — oo:

) lim Al - pu(z) =3 (z€ ).

We show that this slow approach to 1 prevents C, from being hypercyclic.
(This situation should be compared 1o that involving the composition oper-
ator induced by, say, 1(z) = (1 + z)/2: 1 has attractive fixed point 1 on U,
7(z) tends to 1 at an exponential rate (z € U), and C; is hypercyclic by part
(a).)

Now fix f € H? and z € U. Write 5, = ¢,(0) and 1, = ¢,(z). The
Cauchy-Schwarz inequality shows that

oy — Il
If (Z}l - (i —|Z§)3/2:

from which follows

170 = fw)| < Il

w»-—W {z,w< Uz} < lwi).
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Using this last estimate along with (*) above, one may show that

if'(trz) - f(&n)% < Cn_”2

for some constant (. Thus,
nlingo[f(in) — flsa)] = 0.

Now, suppose g € H? is a cluster point of the sequence {f o ¢,). Then
some subsequence fog,, convergesto g in i 2, hence pointwise on U. Thus

¢(2)~ §(0) = lim [£(pr,(2)) - /(5s, (O]
= nlg&[f(zn) - f{sn)]
=0,

and thus g(z) = g(0), regardless of our choice of z € U. This completes the
proof. [

The proof of part {a) of the Main Theorem is now complete, save for
some details that we omitted in the sketches of proofs above. We now turn
to the proof of part (b). We have just seen that a parabolic nonautomorphism
mapping U into itself induces a nonhypercyclic composition operator. Such
operators are nevertheless cyche.

THEOREM 2.5. Every parabolic linear fractional self-map of U induces a
cyclic composition operator.

SKETCH OF THE PROOF. We have seen that nonelliptic disk automorphisms
induce hypercyclic composition operators. Suppose that ¢ is a parabolic self-
map of U that is not an automorphism. Without loss of generality, we may
assume that 1 is the fixed point of ¢; then, as we pointed out in the proof of
Theorem 2.4 above, there is a complex number ¢ with Rea > O for which

(2—-a)z+a

viz) = ~az+(2+a)

(ze Ul
For our purposes, a more convenient expression for ¢ is
(1) ¢(z) =7 +aKg(z),

where 7 = (a+2)/a, @ = 4/(a®+2a), f = a/(2+a), and Kp(z) = (1 —Bz) L.
The fact that Rea > 0 insures that none of the denominators in the definitions
of &, B, and y are zero. In addition, it guarantees that § € U so that K is
the H2-reproducing kernel for 8.

We show that ¢ itself is a cyclic vector for the operator C,,. Suppose that
/€ H? is orthogonal to the C,-orbit of ¢ so that

{2) {fion) =0 for n=12,....
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Since the sequence of iterates {¢,} is uniformly bounded and pointwise con-
vergent to 1 on the unit circle, it converges to 1 in the H? norm. It follows
from (2) that

(3) 0=(f,1) = f(0).

Using (3), (f,¢) = 0, and the expression {1} for ¢, we find f(f) = 0. More
generally, f(#,) = 0, where 8, = na/(2 + na). However, {#,} is not a
Blaschke sequence; hence, f = 0, and ¢ must be cyclic for C,. D

REMARK. It is possible to show that the collection of cyclic vectors for a
composition operator induced by a parabolic linear fractional self-map of U
is dense in H? (see [1]).

Our work so far has shown that every linear fractional self-mapping of
U7 with attractive fixed point on the boundary induces a cyclic composition
operator on H2. We now turn our attention to mappings with an interior fixed
point. Necessarily this fixed point is attractive, and since such a mapping
cannot be parabolic, there is a repulsive fixed point somewhere outside U/,
either on AU/, or outside the closure of U/. Each of these cases gives rise to
different cyclic behavior for the induced composition operator,

THEOREM 2.6. If a linear fractional self-map has an attractive fixed point
in U and a repulsive fixed point outside the closure of U, then the induced
composition operator is cyclic on H.

SKETCH oF THE PROOF. Suppose ¢ is a linear fractional map with a fixed
point in the interior, but none on the boundary. Without loss of generality
we may assume the fixed point is the origin. In this case ¢ can be written
out explicitly as

z
az+b’

where, by the Schwarz Lemma, || > 1.

We claim that for any a € U, the reproducing kernel K, is a cyclic vector
for Cy. The proof of this claim may be carried out using techniques similar
to those used in the proof of the preceding theorem. It is possible to show
that a function f orthogonal to the Cy-orbit of K, must vanish on a sequence
of points with limit point in /. We omit the details.

Another proof of Theorem 2.6 may be based on the fact that the coliection
of eigenvectors of the operator C, is dense in H? (see [1]). This alternative
proof reveals that C, must have a dense collection of cyclic vectors. O

The reproducing kernels are also ¢cyclic vectors for composition operators
induced by rotations through an irrational multiple of n. For if ¢ is such
a rotation, and y is its inverse, then f is orthogonal to the C,-orbit of K,
if and only if f{y,{a)) = 0 for » > 0. Since ¥ is an irrational rotation,
the points {y,{a)} are dense in the circle of radius |of in U, and so / must
vanish identicaily.

p{z) =
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Regarding the proof of our Main Theorem 2.1, only one case remains:
that of composition operators induced by linear fractional maps having both
interior and boundary fixed points. Such operators are highly noncyclic.

THEOREM 2.7. Suppose ¢ is a linear fractional self-map of U that fixes
both an interior and boundary point of U. Then C, is not cyclic; in fact, the
closed linear span of any orbit has infinite codimension in H?.

Qur proof of Theorem 2.7 is based on the following proposition, which
is a generalization of the fairly well known fact that the adjoint of a cyclic
operator may have only simple eigenvalues.

ProrosITION 2.8. Let T be a bounded linear operator on a Hilbert space.
If the adjoint of T has an eigenvalue of multiplicity > m > 1, then any invari-
ant subspace for T generated by k < m vectors has codimension 2 m — k.

SKETCH OF THE ProOF oF THEOREM 2.7. By Proposition 2.8 we need only
find an cigenvalue for C; that has infinite multiplicity. We may without loss
of generality suppose that the fixed points of ¢ are located at 0 and 1. In
this case the change of variable w = (1 + z)/(1 ~ z) converts ¢ into a linear
fractional map of the right half-plane that fixes 1 and oo, and therefore has
the form w — sw + 1 — s for some 0 < 5 < 1. Pulling this mapping back to
the unit disk, we obtain

sz

03 = oz

{z € U
If s = 1, then p(z) = z, and 1 is an eigenvalue of infinite multiplicity for
C,. If 0 <5 < 1, it is possible to represent C; as a combination of Toeplitz
operators and a composition operator (see [4]). Using this representation of
C,, one finds that the functions fi(z) = z(1 - z)*, which belong to H? for
Rel > —1/2, are eigenvectors for C; with corresponding eigenvalues sAHE
Now suppose 4, with Re i > —1/2, is fixed. For each integer k, set
. 2mik

/‘L{k} = A “ﬂ;’é—;
Then one checks easily that the collection of H? functions {fiy,: k € Z} is
linearly independent, and

Cq;ﬁ{k) — S}.(k)+lﬁ(k} — SA.*-E_){,‘{(}()-

Thus s**! is an eigenvalue for C, that has infinite multiplicity, so the desired
result follows from Proposition 2.8. O

3. Concluding remarks. We have seen that the cyclic behavior of a linear
fractional composition operator depends critically on the fixed point proper-
ties of its symbol. In particular, a linear fractional composition operator C,
is not cyclic if its symbol has both an interior and a boundary fixed point.

Unfortunately, this result does not hold for more general symbols. We have
constructed an example of a cyclic composition operator C, whose symbol
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has both an interior and a boundary fixed point. Hence, any scheme classi-
fying the cyclic behavior of general composition operators must be based on
more than just fixed point behavior. Our construction of C,, recalls Cowen’s
remarkable model for holomorphic self-maps of U [3] (as does the proof of
our Main Theorem). We have also used this model to show that if ¢ maps
U univalently onio a domain whose boundary is a Jordan curve lying in U,
then C, is cyclic. It appears that further progress toward a more general
theory of the cyclic behavior of composition operators will require a detailed
understanding of the workings of Cowen’s model.

ADDED IN Proor. Since submitting this paper, we have obtained gener-
alizations of several of our results concerning hypercyclic behavior. Call a
holomorphic map ¢: U — U a Jordan map if it extends continuously to a
univalent map ¢: U — U. Let ¢ be a C* Jordan map with Denjoy-Wolff
point 1 such that ¢{U\{1}) ¢ U. We have shown that if ¢’(1) < 1, then C,
is hypercyclic. If /(1) = 1, an elementary argument shows that Re¢”(1) > 0;
and in this case, C, is hypercyclic when ¢”(1) is pure imaginary but not hy-
percyclic when Regp”(1) > 0. (The C? requirement on ¢ can be weakened
at the expense of complicating the statements of these results; proofs will
appear in [1].)

We have also shown that the hyperbolic composition operators considered
in this paper are chaotic—they fulfill the three criteria for chaos given by
Devaney in Introduction to Chaotic Dynamical Systems; namely, they have a
vector with dense orbit, possess a dense set of periodic points, and display
sensitive dependence on initial conditions.
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