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Introduction. Let ¢ be an analytic funcéion taking the open unit disc U/ into
itself. It is well known {15, Theorem 1], {5, sec. 2.6, page 29] that the composition
operator C, defined by the eguation

Coiz) = flelz)) (zn U)

is a bounded linear operator on each of the Hardy spaces H* (0 < p < ).
In this paper we study the interplay between certain geometric properties of ¢
and functional analytie properties of ', ; emphasizing for gimplicity the case
where C, operates on the Hilbert space H*. For univalent maps ¢ our results
express quantitatively the fact that €', will be a compact, and perhaps even a
Hilbert—Schmidt or trace class {(i.e. nuclear) operator if the boundary of o({7)
touches the unit circle infrequently and sharply; while it will fail to be compact
if the boundary of «{U} touches the unit circle too smoothly, even at a single
point. For example, it is easy to see that C, is compact (in fact, in the {race
class) if ¢ takes U into a disc {z| = r < 1. On the other hand, if @(z) = 2, then
€. is the identity operator, which is not compact.

Much of our work generalizes to other H” spaees, and we discuss these matters
in the last section of the paper.

The first results of this type were obtained by H. J. Schwartz {17]. First
Schwartz observed [17, Theorem 2.6, page 23] that the condition:

lele™) < 1 ae.

is necessary for the compactness of C, , but is not sufficient (here ole) =
lim.... ¢{re’”), where the limit exists a.e. by Fatou’s radial limit theorem {5,
Theorem 1.3]). In fact he showed that the function

(0.1) o(z) = (1 + 2)/2,

whieh takes U/ onio a dise internally tangent tc the unit cirele, induces a non-
compact composition operator, even though its boundary function has modulus
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1 at only a single point of || = 1 [17, page 23]. Finally he showed that C, is
compact whenever

©0.2) [ T el dt <

[17, Theorem 2.7, page 26].

In this paper we continue Schwartz’s work. Motivated by his example (0.1)
we prove in section 2 (Theorem 2.1) that €', is not compact whenever ¢ has
an angular derivative [1, sec. 299, page 32] at some point of the unit cirele. In
particular this happens whenever ¢’ is bounded and the boundary of (1)
touches the unit circle. We use this result to give examples of conformal maps
which Induce non-compact composition operators, yet take U onto domains
whose boundarnes touch the unit circle far more sharply than do internally
tangent eircles. We then give a sufficient condition for the compactness of €,
{Theorem 2.3} whieh shows that there are conformal maps which induce com-
pact composition operators on H® vet take {7 onto Jordan domains whose
boundaries touch the unit cirele smoothly (fe. with continuously turning
tangents). In fact, maps of this type can even induce Hilbert-Schmidt and
trace elass operators (Theorem 4.4, Proposition 5.2).

In section 3 we prove that Schwartz’s condition (0.2) characterizes the
Hilbert-Schmidt composition operators on H* {Theorem 3.1). As an application
we show that ', is Hilbert-Schmidi whenever (L)) is contained in a polygon
inseribed in the unit circle. The section concludes with a brief discussion of
Hiibert—Schmidt composition operators on the space of analytie functions in
U/ having finite Dirichlet integral.

In the fourth section we analyze in detail a family of univalent maps ¢,
{o > O) constructed from the functions )

w o= z(~log )" (jzg] < 1, Rez > 0).

We show that cach of the maps ¢, takes U onto a Jordan domain in {7 whose
boundary contacts the unit circle at exactly one point, and does so smoothly.
We show that the composition operator induced on H® by ¢, is compact for
all « > 0, and is Hilbert-Schmidt #f o > 2. In particular this shows that there
exist compacl composition operators on H° which are not Hilbert-Sehmidt.

In section 5 we briefly discuss trace class operators, Our main resuit is that
¢, is actually in the trace elass whenever ¢ takes U7 into a polygon inseribed in
the unit arcle. We also give examples of irace class composition operators
induced by conformal maps of U7 onto regions whose boundaries touch the
unit cirele smoothly.

In the final section we generalize the previous results to other H” spaces
{(p < w). In this context the absolutely p-summing operators {13, page 333
replace the Hilbert—Schmidt operators, and the nuclear operators [14, section
3.1.1, page 44] replace the trace class. We show that condition {0.2) charaeterizes




COMPOSITION OPERATORS ON H? 473

the absolutely p-summing operators on H” for 2 2 p < =} and is sufficient
for €', to be absolutely p-summing on H” for 1 < p < 2, and nuclear on H'
(Theorem 6.2). In addition we show that €, is a nuclear operator on H”
(1 £ p < =) whenever ¢ takes U into a polygon inscribed in the unit circle
(Theorem 6.3); and that the compactness of €, on H” depends only on ¢ and
noton p (p < «) (Theorem 6.1).

The paper begins with a preliminary seetion which sets out some definitions,
netation, and background material.

We wish to thank Professors J. Caughran, 8. Dragosh, D. Gregory, and
T. McCoy for many helpful discussions of the material in this paper. In addition,
we are most grateful to Professor J. Cima and Mr. James Thomsen for pointing
our several errors in an eariier version of the manuseript.

1. Preliminaries. Here we set out some prerequisites from each of the three
areas which occur in this paper: H” theory, geometric function theory, and
operator theory.

H” spaces. The main reference for the material is [5, Chapters 1-3]. Yor
0 < p < = the Hardy space H” is the space of functions f analytic in U =
{iz] < 1) such that

il = s /20 | ey dl < .

gxr«d

For 1 < p < o the functional || |i, is a norm which makes H” into a Banach
space, while for 0 < p < 1 the metric

df, 9 = i/ — ol

makes " into a complete linear metric space [5, Chapter 2, page 371 H™ 18
the Banach space of bounded analytic functions on U, taken in the supremum
norm:

il = sup &) (& in U).

Let o denote normalized Lebesgue measare on the unit cirele 2| = 1, and let
17 = I*g). We denote the n Fourier coefficient of a function ¢ In L' by d(n)
{n any integer). For cach function f(z) = ZO‘” a.z"in H?, the radial limit

P#e'" = lim f(re’) (¢ —1=)

exists a.e. [s} by Fatou’s theorem {5, Theorem 2.3, page 17], #* belongs to L7,
and if 7 = 1 then J*(n) = a, forn z 0, and = 0 forn < 0. In fact the map
i — {*is a linear isometry taking H” onto a closed subspace of L7 which, if
p = 1, consists of all members of 17 whose negative Fourier coefficients vanish
[5, Theorem 3.4, page 38], From now on we will always write f(e') instead of

1*(e™).
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Throughout most of this paper we will be working in H* which, by the above
remarks, is a Hilbert space in the L® inner product:

o) = [15de = S1wiey ¢, gin B,

In the last section, however, we will concern ourselves with general H” spaces,
and will require the following growth estimate.

Theorem 1.1. [5, Chapter 3, page 36]. If f belongs to H* (0 < p < w),
then

1@ = 27 il (1 — j2D77
forall z on U.

This estimate has two important consequences: it shows that evaluation
at a point of U is a bounded linear functional on H”, and that the bounded
subsets of H” are normal families.

Geometric function theory. We will frequently, and without further ex-
planation, use the Riemann Mapping Theorem |8, page 26, Theorem 1}, which
asserts that every simply connected plane domain having at least one boundary
point is conformally equivalent to the open unit disc. A one-to-one conformal
map of U onto such a domain will occasionally be referred to as a Riemann map.
We will require the following results, which give information about the boundary
behavior of Riemann maps.

By a Jordan domain we mean a simply connected plane domain whose bound-
ary is a closed Jordan curve. A famous theorem of Caratheodory {8, page 44,
Theorem 4] states that a Riemann map of U onto a Jordan domain R extends
{uniquely} to a homeomorphism of the closed unit disc onto the elosure of R.
If ¢ is such a Riemann map, then we will denote its extension to the closed
disc again by ¢, and will refer to its values at particular points of the unit
circle (e.9. “¢(1) = 1") without further explanation. The following result, which
is needed in section 2, shows how the properties of the boundary of R influence
the derivative of ¢. Recall that a plane eurve is called smooth if it has a tangent
line whieh turns continuously as the point of tangency moves along the curve
[8, Chapter X, sec. 1, page 423].

Theorem 1.2, Let ¢ be a one-lo-one conformal map of U onlo a Jordan
domain K.
(@) S, page 419, Theorem 1. If R has a rectifiable boundary, then o' is in H '
the boundary funciion ¢(e'") is absolutely continuous, and

(d/dt)e(e) = i (&) ae.

(b) 8, page 425, Theorem 5). If R has a smooih boundary, then ¢ is in H” for
all p < o,
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We will often deal with curves in the closed unit dise which have points of
contact with the unit circle and are smooth in a neighborhood of each such
point. We say that such curves touch the unit circle smoothly.

Operator theory. A linear operator on a Banach space is called compact if
it takes the unit ball into a set whose closure is compact. The same definition
is used to define compact operators on spaces hke H® (0 < p < 1). Clearly
every compact operator is bounded, and the compact operators on a Banach
space form a two-sided ideal in the ring of all bounded linear operators.

A linear operator 7 on an infinite dimensional Hilbert space 1s called a Hilbert—
Schmidt operator if there exists an orthonormal basis (e,) in H such that

(1.1 2 Te|® < «

(ef. [4, Defn, X1.6.1, page 1010}, [14, sec. 2.5, page 40], or {16, Chapter 2, page
291). It is easy to see that every Hilbert-Schmidt operator is bounded, and that
for an arbitrary linear operator T' on H the (possibly infinite} sum on the right
side of (1.1} does not depend on the particular choice of orthonormal basis
(e,) [14, sec. 2.5, page 41], (16, Chapter 2, page 29, Lemma 1]. A linear operator
T on H is said to belong to the frace class [16, Chapter 3, Theorem 5, page 42]
if there exist orthogonal sequences {e,) and (f,} in H with 2 e ||[f.]] < «, and

Tz = 3 (x, €.)fn

for each z in H. Both the Hilbert-Schmidt and trace classes form two-sided
idelas in the ring of bounded linear operators on H, both are proper subsets
of the compact operators, and the trace class is a proper subset of the Hilbert—
Schmidt class [16, Chapter 3, Theorem 2, page 41; and Theorem 5, page 42].
In section 5 we will require the following characterization of the trace class.

Theorem 1.3. [16, Chapter 3, Theorem 5, page 42]. Suppose T is a linear
operator on a Hilbert space H. Then the following three stafements are equivalent:

(a) T is in the trace class.

(b) T is the composition of two Hilberi—Schmidi operators.

(¢) There exists an orthonormal basis (e,) for H such that D ||[Te,|] < .

In the last seetion of the paper we will discuss the following generalizations
of Hilbert-Schmidt and trace class operators to arbitrary Banach spaces.
Suppose F is a Banach space, T is a linear transformationon F,and 1 £ p < «.
Then T is called absoluiely p-summing (13, page 3331 if there is a constant
A > 0 such that for any finite subset f, , f2, --- , Jx of F;

N N
g ||TF,|]” £ A sup ; NI,

where the supremum on the right extends over all A in the unit ball of the dual
of F. Clearly every absolutely p-summing operator is bounded, with norm
< AY"; moreover it is known that every absolutely p-summing operator on a
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reflexive Banach space is compact [13, Satz 14]. A striking result of Pelezynski
[12] and Pietsch [13, Satz 11] asserts that an operator on Hilbert space is ab-
solutely p-summing iff it is Hilbert-Schmidt. Thus the absolutely p-summing
operators provide one way of generalizing Hilbert-Schmidt operators to arbi-
trary Banach spaces.

A linear transformation T on F is called nuclear if there exist sequences
(f.) and (A,) in F and the dual of F respectively such that

(1.2) Z a1 1l < o,
and for each fin F,
(1.3) Tf = 22 2D

Note that condition (1.2) insures that the series in (1.3} converges uniformly
on the unit ball of 7, It follows from this that every nuclear operator is compact
14, Batz 3.1.6, page 471

Our definition of the trace class shows that every trace class operator on a
Hilbert space is nuclear. In fact the converse is also true (7, sec. 2.3-2.5, pp.
37-56]: an operator on Hilbert space is nuclear ¢ff it is in the trace class. We wiil
need the following theorem, which relates these classes of operators.

Theorem 1.4. (a) |13, Satz 5, page 3351, Every absolutely p-summing operaior

15 absolutely g-summing for all 1 £ p = ¢.

{(b) (13, Theorem 5, page 347]. The composition of two ab-
solutely p-summing operafors is absolutely p/2-summing.

(e) [13, Theovem 6, page 348). The composition of two ab-
solutely 2-summing operators is nuclear {cf. Theorem 1.3).

(dy [14, Setz 3.2.5 and Saiz 3.2.13). Every nuclear operaior
18 absolutely I-summing.

In addition, both the absolutely p-summing and nuclear operators form two-
sided ideals in the ring of bounded lincar operators on F ({13, S8atz 4, page 335],
and [14, Batz 3.1.7, page 47]).

We close this section with some simple but extremely usefu} results about
composition operators on H* spaces.

Proposition 1.5. Suppose I is aleft ideal in the ring of bounded linear operators
on H" (0 < p £ =), and suppose ¢ and  are analytic funciions taking U into
wtself, where ¢ is one-to-one. If C, ¢ I and ¢ (U) C (U}, then Cy ¢ 1.

For example, suppose R is a simply connected domain contained in U, If
the Riemann map of U onto R generates a compact (resp. trace class, Hilbert—
Schmidt) composition operator on H°, then so does any other analytic function
taking U into R.

Proof of Propesition 1.5, Wehave y = ¢ 0w, wherew = ¢ o is an analytic
funetion taking U into itself. Thus €'y = C,C, where €', ¢ I and €, is bounded.
Since [ is a left ideal, it follows that €', £ I; and the proof is compiete.
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Finally we record two results due to Schwartz {17] concerning compact
composition operators.

Proposition 1.6. (a) {17, Theorem 2.5, page 22]. A compesition operalor
C, is compact on H* (0 < p £ «) iff for every norm bounded sequence (,) in
H? which converges to zero uniformly on compact subsels of U, the vmage sequence
(C.1.) converges fo zero in norm.

(b) {17, Theorem 2.6, page 23], If C, s compact on H”, then |o{e™)| < 1 a.e..

We omit the details of the straightforward proofs: part {a) follows quickly
from the faet that bounded subsets of H” are normal families, while part (b) is
proved by applying €, to the functions & (n = 0, 1, 2, ...}, all of which lie
in the unit ball of H”.

2. Compact composition operators. Irom now on ¢ will always denote a
non-constant analytic funetion taking U into itself. In this section we give
sufficient conditions for beth the compactness and the non-compactness of ' |
and use these conditions to discuss some examples. We will see later (section 6)
that the results of this section are valid for general H*® spaces (p < o). For
the present, however, we consider only the case p = 2.

Our sufficlent condition for non-compactness is stated in terms of the angular
derivative of ¢. Suppose z* is a point on the unit circle. We say ¢ has an angular
derivative at z* if there exists a point w*, also on the unit circle, and a complex
number ¢ such that for any triangle A with interior contained in UV and a vertex
at z* we have

@.1) li £ — W

L =c oetzing)

(ef. [1, sec. 299, page 32]). We emphasize that w* is required o lie on the unit
cirele, 50 if ¢ has an angular derivative at 2%, then the boundary of »(I7) touches
the unit circle at the “image point” w*. The following theorem illuminates
the geometric significance of the angular derivative.

Theorem of Julia—Caratheodory [1, sec. 299, page 32], {11, sec. 5.3, page 57].
There exists a number 0 < a £ o such tha! Jor every triangle A wn U with a
verter at 1,

m | a {z— 1, z1n /).

Clele) — 1
li Ezwl =

Ifa < o then {2.1) holds with z* = w¥ = land ¢ = a.

This result 1mplies that a function ¢ which has an angular derivative at a
point z* on the unit circle is angle preserving there, in the sense that it maps
a curve in {7 which terminates at 2% and makes an angle 0 < a < 7 with the
anit cirele onto a curve which also terminates on the circle, and makes the same
angle with it. In particular we would espect the houndary of () to touch
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where the last integral converges because « > 1. Thus R satisfies the hypotheses
of the angular derivative theorem, 50 ¢ has an angular derivative at the point
z = 1. Thus C, is not compact by Theorem 2.1.

We will see in section 4 that the conclusion of Corollary 2.3 can fail if we
merely require ¢ = 1in the hypothesis. In addition we will see that the condition
“o' ¢ H*” in the hypothesis of Corollary 2.2 cannot be replaced by “o’ ¢ H®
for all p < «.” For some other results about the existence of the angular
derivative we refer the reader to [8, page 426, Theorem 6} and [19].

We now give a sufficient condition for the composition operator induced by
a univalent map to be compact.

Theorem 2.4. Suppose I' is a closed, rectifiable Jordan curve in the closed
unit disc which touches the unit circle at exactly one point w, , and 1s conver in a
neighborhood of this point. Suppose ¢ maps U univalently onto the region interior
to T with o(1) = wy . If there exists a set E of measure zero on the unit circle such
that

2.4) lim |/ (e = @ (¢ 0, ¢ K),
then C, is a compact operator on H*.

In seetion 4 we will use this result to give examples of univalent maps which
induce compact composition operators on H”, yet take U onto Jordan domains
whose boundaries touch the unit circle smoothly. For the proof of the theorem
we require the following generalization of the Fejer-Riesz inequality.

Gabriel s Theorem [6], [2]. If T is a convex curve in the closed unil disc, then
for every f in H?,

[ e lae) < ax i -

Proojf of Theorem 2.4. Suppose (J) is a sequence in the unit ball of H* which
converges to zero uniformly on compact subsets of U. By Proposition 1.6 we
will be done if we can show that ||C, f./]. — 0. Let ¢ = ¢’ (composition inverse).
By Theorem 1.2 we have ¢’ ¢ H', hence |¢'(e")] > 0 a.e. [5, Theorem 2.2, page
17]. It follows readily from this that ¢’ is an absolutely continuous function
of arclength on T {cf. {8, pp. 419-4211), so the usual change of variable formula
holds, and vields

@5 2w CAE = [ @ el = [ i) vl il

Let € > 0 be given. Since ¢ is absolutely continuous on the unit circle, it takes
sets of measure zero on the circle to sets of arclength measure zero on I'. Thus
we see from (2.4) that after correcting ¢ on a set of arclength measure zero
on I,

Im¢'{w) =0 (wel, w—wy),
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hence 1’| < ¢/4 on some eonvex subare T, of T which contains w, in its interior.
From this we obtain for all n:

[ ol Wi el 5 @) [ o ol s o,

where the last inequality follows from Gabriel’s Theorem, since {[f.}]. = 1.
Since (f.) converges to zero uniformly on compact subsets of U/, and T' — T,
is compaet, we have for all sufficiently large =

[, ol ww) el < @2 [ o) d] S e,

where the last inequality follows from the fact that the integral on the right is,
after a change of variable, just the integral of |dz] over part of the unit eircle.
These estimates, together with (2.5) show that ||C.f./l. < e for all sufficiently
large n, which completes the proof.

We do not know if eondition (2.4) in Theorem 2.4 can be replaced by the
condition “¢ does not have an angular derivative at any point of the unit
circle.” In fact, for arbitrary ¢ we do not know if the non-existence of the
angular derivative of ¢ at each point of the unit circle is sufficient for €, to
be compact. By Theorem 2.1 we know it is necessary.

3. Hilbert-Schmidt composition operators. In this section we show that
condition (0.2} characterizes the Hilbert—Schmidt composition operators on
H*. We give some geometric applications of this result, and discuss Hilbert—
Schmidt composition operators on the Dirichlet space.

Theorem 3.1. C, is a Hilberi-Schmidt eperalor on H* iff o satisfies condition
{0.2); that 4s, :

[ - e A < o,

FProof. The funetions

es) =2 (n=012 )

form an orthonormal basis for H? so (cf. section 1) €, is a Hilbert-Schmidt
operator on H® if

= el 21
© > 2 (}Z EIC¢e,Ai§ = UZ./; l¢(e‘t)§2" di

H

[ o= ieenma

and this completes the prood.
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Corollery 3.2. I{ ¢ takes U inio a polygon inscribed in the unit circle, then
C, is a Hilbert-Schmidt operator on H*.

Proof.  Let P denote the polygon. By Proposition 1.5 we may assume without
loss of generality that ¢ maps U univalently onto P, 1t is clearly enough to
show that the preimage of each vertex of P is the center of an arc of the unit
circle over which (I — i¢[)™" is integrable. Without loss of generality we may
suppose that our vertex is I, and that ¢(1) = 1. A standard local mapping
argument based on the reflection principie [1, sec. 351, page 104] shows that
there exists a neighborhood A of the point 1, a function % analytic and non-
vanishing on A, and & number 0 < a < 1 such that

(3.1 1 olz) = (0 — 2)"h(z)

forall zin A. Let T be a closed are of the unit circle centered at 1, and contained
in A. Then k is bounded away from 0 on A, and since |1 — &’{/8 ~» 1 as § -~ 0,
we see that there exists > 0 such that

1~ ole) z 86°

for all €’ in T. This shows that |1 — ¢|™" is integrable over T. But ¢(I') ap-
proaches the point 1 non-tangentially, so on T the function {1 — ¢ is bounded
by a constant multiple of 1 — |¢|; which shows that (1 — [¢)™ is also integrable
over I. This completes the proof.

In the next section we will use Theorem 3.1 fo exhibit univalent maps ¢
with jlelle = 1 which induce Hilbert—Schmidt operators on H*, yet take U
onte Jordan domains with smooth boundaries. In section 5 we will show that
the hypothesis of Corollary 3.2 actually guarantees that ', is in the frace class.
Right now we are going to use Theorem 3.1 to derive a crude, but useful geo-
metrie sufficient condition for ', to be a Hilbert-Schmidt operator.

Corollary 3.3. Suppose R 1is a simply connected domain in U such that

(3.2) ffﬁ (1 — )P dedy < .

If ¢ takes U into R, then C, is Hilberi-Schmadt.

Before giving the proof we note that this result makes it easy to exhibit
many domains B not contalned in inseribed polygons for which €, is Hilbert-
Schmidt whenever ¢(U) C R. For example, it is easy to construct a ribbon R
in the unit disc which spirals out to the unit circle and satisfies (3.1}; or a simply
connected domain R with infinitely manyv spikes terminating at the unit circle,
which satisfies (3.1). On the other hand, note that Corollary 3.3 is not adequate
to prove Corollary 3.2, since {1 — [2]}"® is not integrable over any inseribed
polygon.
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Proof of Corollary 8.3, We first introduce some notation. If j(z) = 3, a.2"
is analytic in U with f{0) = 0, let

33) s = f[ wras = Talak,

where 4 is planar Lebesgue measure, normalized so that A(U) = 1. Thus if
fe H* and f(G) = 0O, then [|fl, £ Hpr -

Now without loss of generality we may assume that 0 ¢ R, »(0) = 0, and
(Proposition 1.5} ¢ maps U univalently onto R. Letting e,(z) = 2", we have

I:Crpen!EZ = ”C«;BNHD (T’L = 1} ?: )r

hence

S el 14 5 1Cal

1+ LT_, E!@“iii

1

o Uv (i " E“”lmm) le'” d4

HA

1+ 2 ffb I = |7 I d4

i

142 ffﬁ (1 — [~ dA(w)

where the last line follows from the fact that |¢'” is the Jacobian of the trans-
formation w = ¢(z). This completes the proof.

The quantity [|f{l," is usually called the Dirichlet integral of f, and the space
D of functions f analyticin U with [{0) = O and |iflj, < o« is called the Dirichlet
space. Clearly D is a Hilbert space with norm {|-{|, . The definition of Hilbert—
Sehmidt operator given in section 1 generalizes immediately to operators
between different Hilbert spaces [14, sec. 2.5, page 40], and it is easy to see
that the caleulation which occurs in the proof of Corollary 3.3 actually shows
that C, is a Hilbert-Schmidt operator from H® to D iff

[[a = e it dudy < .

If we consider operators from D into H, and D into itself, then using the ortho-
normal bagis

8,,(2) = zﬂ/nlﬂ (n =12 -- )

for D, we obtain the following result, whose straightforward proof we omit.
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Proposition 2.4. (a) Suppose {0} = 0. Then C, is o Hilberl-Schmidi
operator on D ¢ff

3.4) ff (U — Py lo'P dedy < .
.

(t) C, is a Hilberl-Schmidt operator from D to H® iff
¥
3.5) f log (I — lole)) dt > — .
o

These results have amusing consequences. For example, suppose ¢ is univalent
and ¢(0) = 0. Then letting B = (I7) and w = u -+ i = (2}, we transform
condition {3.5) into

3.6) ffﬁ (1 — w2 dydo < .

The quantity on the left side of (3.6) is just the hyperbolic area of R [18, Chapter
X1, sec. 1, page 509, so we obtain:

Corollary 3.5. If o 1s univalent and fires the origin, then C, is a Hilbert-
Schmidt operator on D iff (1) has finile hyperbolic area.

On the other hand, Rudin and Delecuw have proved that ¢ is an exfreme
potnt in the unit ball of H” iff condition (3.5} fails [5, Theorem 7.9, page 1251
Thus Proposition 3.4(b) can be rephrased as follows: €, 15 a Hilberi~Schmidi
operator from D into H® il ¢ is not an extreme point of the H™ unit boll.

4. Composition operators constructed from the functions z{—log z)*. In
this section we study 2 family ¢, (& > 0) of univalent maps taking U into
itself, which are constructed in a natural way from the functions

(4.1) f.(2) = z(—log 2)® (Rez > 0, |2| < 1),

where both the logarithm and power functions have branch line the negative
real axis {(note that —log z has positive real part for {2l < 1). We show that
each ¢, maps U onto a Jordan domain whose boundary approaches the unit
circle smoothly, that each ¢, induces a compact composition operator on H*,
and that ¢, induces a Hilbert-Schmidt eperator on H* iff @ > 2. In particular
this shows that there exist compaet composition operators on H® which are
not Hilbert-Schmidt; and that there are univalent maps which generate Hilbert-
Schmidt composition operators on HY, vet take I7 onto domains whose boundaries
touch the unit circle smoothly.

The following lemma isolates the properties of {, which are crucial for our
PUrpOSes.

Lemma 4.1. For e > 0 let
H{e) = {]z] < ¢ Rez > 0].
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For each o > O there exisis 0 < e, < 1 such that:
(a) the function {. defined by equation (4.1) maps H{e,) univalently onte a

Jordan domain R, contained in the open disc |w — 1| < 1; and the boundary
of B.. touches the circle |w — 1] = 1 only at the origin;
(b) the boundary of R, touches the cirele |w — 1| = 1 smoothly, and s conver

n a neighborhood of the origin;
(c) there exist numbers 0 < m < M such that

(4.2) m < (1— (1= 1, y(~log )" = M
forall @ <y = ¢, .

We defer the proof of this lemma to the end of the section, and proceed
immediately to the construction of the maps ¢. . Let g, be a one-to-one con-
formal map of U onto H(e,}, with g,(1) = 0, and let

(4.3) vel2) = 1 — falgale)) (zin U).

Thus ¢.(1) = 1, and it follows from Lemma 4.1 that ¢, maps U univalently
onto a Jordan domain in U whose boundary touches the unit circle only at
the point 1, does so smoothly, and is convex in a neighborhood of 1.

Theotem 4.2. C., is a compact operator on H® for all & > 0, and is a Hilbert—
Schmidt operator iff & > 2.

Proof. Fix & > 0. For convenience we will drop the subseript a throughout
this proof; hence . = f, ¢. = ¢, €. = ¢, and B, = R. Since the boundary of
R touches the unit circle only at the point 1, and is convex in a nelghborhood
of 1, it follows from Theorem 2.4 that the compactness of €, will follow once
we verify that

(4.9) lim Jo(e")] = .

Clearly {f'(y)| — « as y — 0, and the reflection principal guarantees that g
extends conformally to a neighborhood of the point 1. Thus ¢ is bounded
away from 0 near 1, so (4.4) follows from the chain rule, establishing the com-
pactness of €, .

Since ¢(e) is continuous and has modulus <1 for all & = 1, it follows
from Theorem 3.1 that C, is a Hilbert-Schmidt operator on H® iff (1 — le|d™?
is integrable over an arc of the unit circle centered at 1. Let h be the (composition)
inverse of g. By the reflection principle & extends eonformally to a neighborhood
of the origin, so both /4’ and its reciprocal are bounded on an interval [—18, 18] of
the imaginary axis (5 > 0). Choosing & smaller than the number ¢ = ¢, of
Lemma 4.1, performing the change of variable § + iy = ¢(z), and using the
boundedness of 4" and its reciprocal on [—13, i8], we see that C, s Hilbert-
Schmidi iff

5

L [T~ {1 —flim] " dy < .
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Now f{—1in) = f(in), so by inequality (4.2) of Lemma 4.1, the convergence of
the integral above 1s equivalent to

&
L pH—log )" dn < w,

which holds precisely when « > 2. This completes the proof.

Corollary 4.3. There exist compact composilion operalors on H * which are
not Hilbert-Schmidl.

By rounding off the corners that H{e,) has at the points == Ze, in such a
way that the new domain has a smooth boundary and still contains an interval
of the imaginary axis centered at the origin, we ecan modify the maps ¢, 50
that they satisfy Theorem 4.2, and now take U onte Jordan domains with
smooth boundaries. Thus we obtain:

Corollary 4.4. There exist univalent maps ¢ such that C, vs a Hilbert-Schmidt
operator on H?, yet ||ell. = 1 and o(U) kas a smooth boundary.

In the next section we will show that Corollary 4.4 remains true with “trace
class” replacing “Hilbert—Schmidt”, Note that if ¢ is one of the maps mentioned
in Corollary 4.4, then ¢’ ¢ H® for all p < « by Theorem 1.2(b). This shows
that Corollary 1.2 fails if the hypothesis “¢’ ¢ H™" is replaced by “¢’ ¢ H” for
all p < «.” In addition, it is easy to check that ¢, maps U onto a domain
whose boundary, near the origin, has an equation of the form (2.3) with o = 1.
Thus Corollary 2.3 fails for ¢ = 1.

We now turn to the proof of Lemma 4.1. Although the analysis of {, is com-
pletely elementary, the factor (—log 2)° seems to complicate matters when
a ¥ 1, and makes the proof rather lengthy.

Proof of Lemma 4.1. As in the proof of Theorem 4.2 we drop the subseript
a, and write § = f., elc. For 0 < e < 1 formula (4.1) defines f on the closure
of H{e), except at the origin. By defining f(0) = 0 we extend { continuously
to the closure of H{e).

We are going to show that the conclusion of Lemma 4.1 holds with ¢ = e,
chosen so that

(4.6) r{—log )*™" £ min (277, 27°7Y,
and
@ —log ¥ Z 2a + (n/2),

whenever 0 < r = e For the rest of the proof we assume e has been so chosen.
We write H = H(e), and denote the closure of H (with respect to the plane)
by Cl (H). We denote the argument of —log z by ¥(z). Note that y(2)] < =
for z in the complex plane slit along the negative real axis. For z in Cl (H) we
have the following important estimate on v(2):

{4.8) [v(z)| < min (1, v/4e) (2 in Ci (H)).
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To prove this, note that

y(2)] = ltan ()| = [(arg 2)/log [z| | & (n/2)/(2a + =/2),
where the last inequality follows from (4.7). This immediately yields (4.8).

Proof of part (a). We are going to show that § is one-to-one on Cl (H}, hence
{ maps H univalently onto a Jordan domain. For this it is enough to show that
Re f' > 0 on H. For once this last inequality has been established, then given
z, and z, distinet points in Cl (H) — {0] we write

2l) =tz + (1 — iz, 0=t = 1),
and get

[f(z2) — fz1)] 1 fo 1 020 dti

I

2 = 2]

[ 1) ds1

I

o= al [ " Re /() dt.

Now if 0 < £ < 1, then (1) = H, hence Re f'(z(t)) > 0. Thus the last integral
is not, ero, so f(z;) = f{z1), as desired. Clearly f(z) = 0iff z = 0, so { is univalent
on Cl (H). To see that Re J > 0 on H we compute {, and cbtain

4.9) arg 'z} = (& — L)v(z) + arg (—a — log 2}.
It follows from (4.7) that
Re{—a —logz) 2 /2 > Im (—a — log 2),
so that
arg {(—a — log z) < »/4.

Ha < 1, then (& — Dvy{z) and arg (—a — log 2) have different signs, and
since they are both less than »/2 in magnitude we have larg {'(z)] < #/2. On
the other hand, if @ = 1, then

larg 1) < [(o — Dy + 7/4 < 7/4 + 5/ = n/2,
where the last inequality follows from (4.8). Thus for all @ > 0 we have
larg f'1 < w/2, thatis, Re{ > O on H.

We complete the proof of part (a) by showing that f maps Ci (H) — {0}
into the open dise w — 1 < 1, First we show that the intervals [—i¢, 0) and
(0, 7¢] of the imaginary axis go into this disc. Since j{8} = f(z), it is enough to
consider the point f{iy) for 0 < ¥ = & ¥For such y we employ the simplified
notation ¥ = Re [(iy), v = Im f{iy), and v = vy(iy). Now
(4.10) u = -~y |log iy|® sin ay

v = y {log y]” cos ay,
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and we note that v < 0, so v > 0. We claim that

{4.11) 1zuz 24

From this it follows easily that

(4.12) - wf £ (1 —w +u/2< - (w9 <1,

hence {(Zy} lies in the desired dise.
To prove (4.11) recall that z 2 sinz 2 22/w for 0 £ 2 < /2. Since fay] <
#/4 by (4.8), we have

{4.13) sina by 2 2/mely] 2 (2/7)a sin |yl
But
(4.14) sin |y| = (v/2)/|log iy},

so from {4.10), (4.13), and (4.14) we obtain

u/v* z sin a lyl/y llog 2y]*
Now (4.7} implies that
(4.15) flog iy| £ 2(—log y),
and the last two inequalities yield

w/v* 2 a/2° " y(—log y) .

By (4.6), the right side of this inequality exceeds 2, which proves the second
inequality in (4.11). To prove the first, note that u < y log " by (4.10),
so by (4.15),

uw £ 2% (~log )" = 2%y(~log y)**,

where the last inequality follows from the fact that —log ¥y = 1, which in turn
follows from (4.7). By (4.6) the last quantity in the above inequality is =1,
which completes the proof of (4.11).

So far we have shown that { maps the part of the boundary of H which lies
on the imaginary axis, except for the origin, into the dise w — 1] < 1. We
now show that for all zin Cl () — {0} the point {(2) lies in this disc. Because
H2) = f(z) we may assume that Im z £ 0, Write z = re”", where 0 £ 6 < /2.
We will show that If(2)] £ [f(—ir)| and arg #(z) = arg f(—ir). Since both Hz)
and f(—1r) lie below the real axis, and {(—4) is in the dise e — 1} < 1, s0is
f{z}, and we will be done. Now

f@ = rl(—logr) + 16" < r [(—logr) + ir/2/°

which proves the assertion about the moduli. To study the arguments it is
helpful to consider the right triangles with vertices {0, ~log v, —log (—ir)}
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and {0, —log r, —log 2}, noting that —log z lies on the side joining —log r
and ~log (—ir). Since y(z) S v(—7r), and tan z/r increases with x for 0 £ = <
#/2, we see that

. tan v(2) /v(2) = tan y(—ir)/y(—r).
From the triangles we have

’ tan v(z) = 8/{~logr) and tan~y{—iwr) = (x/2)/(—log 7),
S0

8/v(z) £ (x/2)/y{(—r).
Thus
(=) — v(@)/v(—¥r) £ (n/2 — O)/{x/2),

and it follows easily from this and the fact that ay{—¢r) £ =/4 (inequality
{4.8}) that

afy(—ir) — vig)] = (=/2) — 8,
that 1s,

oy(—ir) — (v/2) S av(@) — 6.

But the left side of the last inequality is arg f{z), and the right side is arg f(—1r),
so the proof of part {a} is complete.

Proof of part (b). Let R = f{H). Since the line from the origin to f(iy) has
slope —etn y{fy) for 0 < |y| < ¢ and since v(iy) ~» 0 as y — 0, it follows that
the boundary of R has a vertical tangent at the origin, We are going to show
that arg f'(7y) increases to zera as y decreases to zero. Since the angle between
the horizontal and the line tangent to aR at f{¢y) is just »/2 + arg {'(¢y), and
since R is symmetric about the horizontal axis, this will show that the boundary
of R is convex and touches the circle jw — 1| = 1 smoothly at the origin. Let

pliy) = arg (—a — log i),
50 by (4.9) we have
(£.16) arg "{iy) = avy(iy) + WGy) — v()]

for 0 < y < e Writey = v{iy) and ¥ = ¢{iy); and note that both v and ¢ are
negative. Now consider the triangle whose vertices are 0, —log 7y, and «
Clearly the angles at the vertices 0 and --log iy decrease to zero as y decreases
to zero. But these angles are just —y and v — ¢ respectively, hence by (4.16)
we have arg f{iy) T 0 as y | 0, which completes the proof of part b.

Proof of part {¢). Asin the proof of part {a) we use the notation u = Re {(iy),
v = Im f(iy), and v = v(iy) (0 < y £ €. In addition we write { = {(iy). Finally,
if F and @ are positive functions on (0, €], we write F ~ 7 to denote the fact
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that both F/G and G/F are bounded on (0, ). Note that the relation ~ is
reflexive, symmetric and transitive. We want to show that

1= 1 = fl~y(—logy)=".
First we claim that

{4.17) ol == ~u
Indeed, we saw in (4.12) that
1=l <1 -/ <1
The first of these inequalities yields
u/d < 1 - {1 — f],
while the fact that |1 — f] < 1 gives
H=1>1 = >1- 24,
which proves (4.17). Now (4.13), (4.14), and (4.15) imply that
sin ay ~ asiny = ar/2 |log iy} ~ 1/({~log ¥),
so from (4.10}, (4.15), and {4.17) we obtain the relations
1— 1 —ff~u~y(—log )" sin ay ~ y(—log y)" ™,

which completes the proof of the lemma.

5. Trace class composition operators on H®. In section 3 we saw that every
analytic function taking U into a polygon inscribed in the unit circle induces
a Hilbert-Schmidt composition operator on H® (Corollary 3.2). The main
result of this section (Theorem 5.1) is that such a function actually induces
a trace class operator. In addition we prove an analogue of Corollary 3.3 which
gives a geometric sufficient condition for a composition operator to be in the
trace class, and we exhibit a univalent ¢ such that C, is in the trace class, but
d¢(U) touches the unit cirele smoothly.

Theorem 5.1. If ¢ takes U inio a polygon inscribed in the unit circle, then
C, 48 a trace class operator on H”.

Proof. Suppose P is the polygon. We are going to find one-to-one conformal
maps x and ¢ of U into polygons inseribed in the unit eirele such that
P = x{$(U)). Suppose for the moment this has been done. Then it follows
from Corollary 3.2 that €, and C, are Hilbert-Schmidt operators on H®, so
Cyov = C,C, isin the trace class by Theorem 1.3(b}, hence so is €, by Propo-
sition 1.5,

To find x and ¢ we proceed as follows, For each pair of adjacent vertices
of P choose a point on the unit circle strictly between them, and let @ be the
inscribed polygon whose vertices are those of P and the points just chosen.
Thus @ has twice as many vertices as P, and except for its vertices the closure
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of P lies in (the interior of) Q. Let x be a one-to-one conformal map of U onto
Q, and let B = x'(P). Then R is a Jordan domain contained in the unit disc
whose boundary touches the unit circle only at the inverse images by x of the
vertices of P, We are going to show that R lies in a polygon inscribed in the
unit circle. Then we will be done, since letfing ¢ be a Riemann map of U onto
R we will have

. x(W(U)) = x(R) = P,

where v and ¢ map U into inseribed polygons.

T'o prove that R lies in an inscribed polygon we need only show that whenever
&R touches the unit circle, it does so non-tangentially. Suppose 9R touches
the unit cirele at z, , and let 8= be the interior angle of @ at the vertex x{20),
s0 0 < B < 1. Since x takes U conformally onto Q, a standard local mapping
argument based on the reflection principle shows that at 2, the map x multiplies
all angles by 8 [1, see. 3531, page 104]. Now at x{z,) the sides of P make strictly
positive angles « and v with the sides of @, so the boundary curves of R at 2,
make strictly positive angles «/8 and v/8 with the unit cirele. This completes
the proof.

The next result strengthens Corollary 4.4 and shows that there exist simply
connected domains R in the unit disc nol contained in any inseribed polygon,
for which €, is in the trace class whenever ¢(U) C R.

Proposition 5.2. There exisls a one-fo-one conformal map of U into itself
which induces a trace class composition operator on H®, yet takes U onto @ Jordan
domain whose boundary touches the unit circle smoothly.

Proof. Tixea > 2,let ¢ = ¢, © ¢, (Where ¢, is the map defined in section 4),
and let R = ¢(U). Then ¢ is a one-to-one conformal map of U into itself, dR
touches the unit eircle only at the point 1, and €, = €, is in the trace class
by Theorems 1.3 and 4.2. 8o we will be done if we show that the boundary
of R is smooth in a neighborhood of the point 1. Since ¢, is analytic in a deleted
neighborhood of the point 1, so is y; hence 8R is smooth in a deleted neighbor-
hood of 1, and we will be done if we can show that its tangent turns continuously
at 1. But this follows quickly from the fact that arg ¢.’ can be extended con-
tinuously to iz| = 1 by defining it to be zero at the point 1; which in turn follows
from the fact that arg f,” extends continuously to the closure of H{e,) {notations
as in the statement of Lemma 4.1) by defining arg ,"{0) = 0. This completes

. the proof.

Our next result is an analogue of Corollary 3.3 for trace class operators.

Proposition 5.3. Suppose R is a simply connected domain in U such that

ff (1 — ) dzdy < =

for some & > 4. I{ o(U) C R, then C s a trace class operator on H %,
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Froof. By Theorem 1.3 we will be done if we can show that 2o liC.ells < o,
where e,(z) = 2*. Given § > 4set 6§ = 22 + 3,50 a > 1/2. Then

i“@Mh=§meé(iﬁwwﬁYT$wwy

by the Cauchy-Schwarts inequality. By the reasoning used in the proof of
Corollary 3.3, the first sum on the right is majorized by

S el = [ (En lepe) 1o as gy

where []-1},7 is the Dirichlet integral; while the second sum converges because
@ > 1/2. As in the proof of Corollary (3.3), the last integral converges iff

[[a=tery==iof dway < =,

so the change of variable w = (2) finishes the proof.

/2

For example, we could take R to be a ribbon in the unit disc which spirais
out to |z| = 1in such a way that (1 — jz)”° is integrable over it. Then any e
taking U into R would induce a trace class operator on H°. On the other hand
1t is clear that Proposition 5.3 is too crude to prove Theorem 5.1.

We do not know if there exist Hilbert-Schmidt composition operators which
are not in the trace class. We suspect that sueh operators do exist, and that
the required examples can be found among the maps ¢, of section 4. More
specifically we conjecture that ¢, is in the trace class iff @ > 4.

6. Generalizations to H”. In this section we prove analogues of the previous
results for general H” spaces. We show that ', is compact on every H” space
as soon as 1t is compact on one of them (Theorem 6.1); that condition (0.2}
characterizes the absolutely p-summing operators on H?, at least for 2 ESp< =
{Theorem 6.2); and that an analytic function which takes U info a polygon
inscribed in the unit circle induces a nuclear composition operator on H*
(I =2p<o)

We do not consider composition operators on H°*, since from our point of
view they have been satisfactorily classified by Schwartz {17, Theocrem 2.8,
page 28], who shows that €, is compact on H™ iff |jel|l. < 1. Thus if C, is
compact on H”, then it is actually nuclear.

Theorem 6.1. If C, is compact on H* for some p < o, then il is compact
on H for all p < .

This theorem shows that the results of section 2 are valid for all p < @,
For example, if ¢ has an angular derivative at some point of the unit cirele,
then C, is not compact on any H*; while if ¢ satisfies the hypothesis of Theorem
2.4, then €', is compact on every H* (0 < p < @ ). In particular the maps
¢ discussed in section 4 induce compact eomposition operators on H” for all
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p < «.We remark that these results can also be proved directly by simple
modification of the proofs given for p = 2.

For the proof of Theorem 6.1 we need the following two theorems. The first
is an important factorization result for H* functions, while the second is a
standard result from measure theory.

Riesz Factorization Theorem |5, Theorem 2.5, page 20]. If{e H" (0 < p < =),
. then { = BF where B« H™, |B(e")| = 1 ae; F ¢ H with {|Fli, = [[f|l, , and F
has no zeroes tn U.

Vitali Convergence Theorem {3, Theorem 111, 6.15, page 150], {9, page 108,
Theorem Cl. Let 0 < p < =, let p be a finite (positive) measure, and let (.} be
a sequence in L7 (i) which converges a.e. [u}. Then (f.) converges in LP(u) iff

®.1) lim sup f [f.7 du = 0.
{EY0 n E
In {9] this theorem is given for p = 1, and in 3] for 1 = p < =. However
its extension to 0 < p < 1 Is immediate.

Proof of Theorem 6.1. Fix 0 < p, ¢ < =, and suppose C, is a compact
operator on H”. Let (f.) be a sequence in the H® unit ball which converges to
zero uniformly on compact subsets of /. By Proposition 1.5(a) we peed only
show that ||f. © o], — 0. Now f, = B.F, , where B, and F, satisfy the conclusion
of the Riesz Factorization Theorem. In particular both sequences (B,) and
(F.) lie in the H unit ball, s0 by Theorem 1.1 they are normal families. Thus
there exists a sequence of positive integers n; 7 = such that both (F,,) and
(B,,) converge uniformly on compact subsets of U. Since F., never vanishes
on U, it has an analytic ¢/p-th power G; in U. Clearly the sequence ((;) lies
in the H” unit ball and converges at each point of U.

Sinee C, is compact on H?, we have |w(e")] < 1 a.e. by Proposition 1.5(b),
so the sequence ((/; © ) converges a.e. on the unit cirele. Since C, is eompact
on H?, it follows by Proposition 1.5(a) that {G; ¢ ¢) actually converges in the
norm of H? so by the Vitali Convergence Thecrem it satisfies eondition (6.1),
where ; is Lebesgue measure on the unit circle. Sinee {G; o o = |F,, © ol
and 1B, (¢)] = 1 a.e., the sequence (f.; © ¢) also satisfies condition (6.2) with
g replacing p. Since §, ~— 0 uniformly on compact subsets of U, and le{e™)] < 1
a.e., we see in addition that f, © ¢ — 0 a.e. on the unit circle, so another applica-
tion of Vitali’s Theorem shows that }|f, © «||, — 0, which completes the proof.

It would be of interest to know if results of this sort are true for other classes
of ecomposition operators, For example, s €, nuclear on every H” space as soon
as it is nueclear on one of them {1 = p < «)?

Our next result generalizes Theorem 3.1, To place it in its proper setting,
recall that the Theorem of Pelezynski and Pietsch mentioned in section 1
implies that a linear operator on Hilbert space is absolutely 2-summing iff it
is Hilbert—Schmidt.
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Theorem 6.2. If ¢ satisfies condition (0.2) then O, is absolutely p-summing
on H” for 1 = p < o, and nuclear on H*. Conversely, if C, is absolutely p-summing
on H? for some 2 £ p < =, then ¢ satisfies condition (0.2).

Thus for 2 = p < «, C, is absolutely p-summing on H” iff {1 — |¢))7" is
integrable over the unit cirele. In particular, all the results of sections 3 and 4
remain true when H” replaces H* and “‘absolutely p-summing” replaces “Hilbert—
Schmidt,” at least when 2 £ p < =. We do not know if condition (0.2} is
necessary for €, to be absolutely p-summing on H® when 1 £ p < 2. This
may be too much to expect, since (0.2) implies that C, is actually nuclear on H'.
However we have not been able to show that there are absolutely p-summing
composition operators on H” which are not nuclear, even in the case p = 1.
For exampie, we do not know if the operators C,, discussed in section 4 are
nueclear on H” for large enough «, or if they fail to be absolutely p-summing
on H forl £ p, a0 = 2.

Proof of Theorem 6.2. Suppose (', is absolutely p-summing on H” for some
2p < e letefs) =2"n=201,2 ), and suppose that A is a continuous
linear functional on H” of norm =£1. By the Hahn-Banach and Riesz theorems
there exists hin L* {(p™' + ¢~ = 1) such that ||4]|, £ 1 and

() = f jhdo  {(f in H?),

where ¢ is normalized Lebesgue measure on the unit circle. Thus A{e.) is the
—n® Fourier coefficient of h (n = 0, 1, 2, -}, and since 1 £ ¢ < 2,
the Hausdorfl-Young Inequality vields

N

Z !;\(en}Ep = Hh%g =1 (N = O; 1,2, )

G

Sinece €, is absolutely p-summing on H?, this implies that there exists 4 > 0
such that
Az S el = el = [ el do

Since the funetion (1 — 2)/{1 — &™) is bounded away from zero for 0 < x < =,
this shows that (' satisfies condition {0.2}.

Conversely suppose 1 £ p < =, and €, satisfies condition {0.2). Then,
except for a subset E of the unit circle having measure zero, we have |¢(e™)] < 1.
Thus by Theorem 1.1 we have

(6.2) ICL1E] = 2271 — el Il
forall ¢ ¢ E and all { ¢ H”. Let

| 7" = 27 = [,
and for e’ ¢ K let

M) = CL e /A Ee") (e HY).

Condition (6.2) implies that ), is a bounded linear functional on H” with norm
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<1;sogiven{,, --- , fxin H” we have for " ¢ E:
N N
; {Cofule W =~y }; el

= €Y sup ; M

where the supremum is extended over all A in the unit ball of the dual of H”.
By condition {0.2) we have v ¢ L7, so integrating both sides of the above in-
equality over the unit circle we obtain

> liCahli < il 3 RGP,

which shows that €, is absolutely p-summing.
To see that €, is nuclear on H' when ¢ satisfies (0.2) note that formally

Cf = 3 M

=1

where A, is the n Taylor coefficient of f. A simple estimate shows that for all
n, the linear functional ), is bounded on H* and has norm 1, so

@

Sl = [0 = o) do < =,

4
which eompletes the proof.

We remark that the proof that €, is absolutely p-samming on H® whenever
o satisfies {0.2) is really a special case of the proof of the following result of
A. Shields, L. Wallen, and J. Williams:

Theorem. Suppose F is a normed space, u is a measure and T 1 F — L*(u)
18 q linear operator. 1f there exists v & L”(u} such that v = 0 and for each { in F,

{Ti{z}] = v(x) i} a.e [u)

{where the exceptional set may depend on ), then T is absolutely p-summing.

A proof of this theorem is given in [20, Corollary 11}. and depends on a rather
lengthy development. The original proof {unpublished) is more elementary,
and forms the basis of the argument we have just presented. Indeed, the fact
that €, is absolutely p-summing whenever ¢ satisfies (0.2} follows quickly
from Theorem F and estimate (6.2).

Our next result generalizes Theorem 5.1 to arbitrary H” spaces (1 £ p < =],

Theorem 6.3. 1f o takes U wnfe a polygon inscribed in the wnil circle, then
Coisnuclear en H” (1 = p < =),

Proof. Suppose o{I7) Lies in an inscribed polygen P. Then, as we saw in
the proof of Corollary 3.2, the function ¢ satisfies condition {0.2), so by Theorem
6.2, € is nuclear on H' and absolutely p-summing on H" for I < p < «=. Now
Theorem 1.4 and the argument used to prove Theorem 5.1 show that «(U) C P
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implies €', is absolutely g/2-summing on H” as soon as it is absolutely ¢-summing,
and is nuclear as soon as it is absolutely 2-summing. But (', is already ab-
solutely p-summing on H?, so iterating this last observation we see that it is
actually nuclear, which completes the proof.

We comment that the method used to prove Proposition 5.2 shows that given
1 £ p < =, there exists a univalent ¢ such that €', is nuclear on H?, yet o(U)
is a Jordan domain whose boundary touches the unit cirele smoothly.

Finally we remark that the proof of Theorem 6.3 shows that whenever ¢
takes U into an inscribed polygon, then C, , viewed as an operator on H*,

belongs to every class ¢, {see [10, page 251} or [4, Defn, X1.9.1, page 1089]
for the definition of ¢,).
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