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1. Invertibility and the Schwarz Lemma

1.1. Introduction. At first we will work in H(U), the collection of all complex-

valued functions that are holomorphic (i.e., analytic) on on the unit disc U = {z ∈
C : |z| < 1} of the complex plane. Because pointwise sums and products of analytic

functions are again analytic, these pointwise operations make H(U) into an algebra,

and in particular a vector space, over the field of complex numbers.

Suppose ϕ is a holomorphic self-map of U , i.e. ϕ is holomorphic on U and ϕ(U) ⊂
U . From now on we always use the symbol ϕ to represent—usually without further

comment—a holomorphic self-map of U . For f ∈ H(U) and z ∈ U define Cϕf : U →
C by:

(Cϕf)(z) = f(ϕ(z)).

Since compositions of analytic functions are analytic when the domains and ranges

match up correctly (which they do here), we see that Cϕf ∈ H(U), so we have defined

a mapping Cϕ : H(U)→ H(U) that’s called the composition operator induced by ϕ.

It is easy to check that Cϕ is a linear transformation on H(U). The point of

studying composition operators is to understand how the properties of the analytic

function ϕ influence those of the linear map Cϕ, and vice versa.

We start with what is perhaps the most basic question you can ask about any linear

transformation: when is it invertible? In other words, when is it one-to-one and onto?

For composition operators, one-to-one is never an issue:

1.2. Theorem. If ϕ is not constant than Cϕ is one-to-one on H(U).

Proof. Suppose that for some f and g in H(U) we have Cϕf = Cϕg, i.e. that

f(ϕ(z)) = g(ϕ(z)) for all z ∈ U . Then f ≡ g on ϕ(U). But nonconstant holo-

morphic functions are open mappings , so f ≡ g on a nonempty open subset of U .

Thus f and g agree on a subset of U having a limit point in U , so by the uniqueness

theorem f ≡ g on U . Thus Cϕ is one-to-one.

That was easy, but note that it required two important results about analytic

functions—the open mapping theorem and the uniqueness theorem.
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1.3. Exercise. Let C(U) denote the collection of complex valued continuous func-

tions on U . For ψ : U → U a continuous self-map of U , define Cψ on C(U) in the

obvious way. Determine those ψ’s for which Cψ is one-to-one.

In order to characterize the composition operators that are invertible on H(U), we

have to work a little harder.

1.4. Theorem. Cϕ is invertible on H(U) if and only if ϕ maps U one-to-one onto

itself.

Proof. It’s clear that if ϕ maps U one-to-one onto itself then Cϕ is invertible, since

then the inverse is Cϕ−1 .

The converse takes more work. We will show that if ϕ is not an automorphism,

then the range Cϕ is not H(U). If ϕ is not one-to-one this is easy: there exist distinct

points a and b in U with ϕ(a) = ϕ(b), hence for every f ∈ H(U) the image function

Cϕf = f ◦ ϕ takes the same value at a that it takes at b. In particular, the identity

map f(z) ≡ z cannot belong to ranCϕ, so Cϕ is not invertible.

One case remains: suppose ϕ(U) 6= U . Then we can choose w ∈ U\ϕ(U) and

consider the functions

f(z) =
1

z − w
, and g(z) =

1

ϕ(z)− w
(z ∈ U).

Because w /∈ ϕ(U), we see that f is holomorphic on ϕ(U), and g is holomorphic on

U .

I claim that g /∈ ranCϕ. Suppose otherwise. Then there exists h ∈ H(U) such that

h(ϕ(z)) = g(z) = f(ϕ(z)) for every z ∈ U\{w}. Thus h = f on a nonempty open

subset of U\{w}, and so h = f on all of U\{w}, again by the identity theorem. Thus

f must be bounded in a neighborhood of w, which it obviously is not. This shows

that ranCϕ 6= H(U), as desired.

1.5. Exercise. Show that if ψ is a continuous self-map of the unit disc, then Cψ is

an isomorphism of C(U) if and only if ψ is a homeomorphism of U onto itself.

Conformal automorphisms of U . One-to-one holomorphic mappings are usually

called univalent. If a holomorphic self-map of the unit disc is univalent and maps

U onto itself, we call it a conformal automorphism (or just an automorphism of U .

Theorem 1.4 can now be rephrased:

Cϕ is invertible on H(U) if and only if ϕ is a conformal automorphism of

U .

To make this result meaningful, however, we have to characterize conformal auto-

morphisms in some concrete way. A good beginning involves finding a large class of

examples.

For p ∈ U define

αp(z)
def
=

p− z

1− p̄z
(z ∈ U).(1.1)
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Because the denominator is zero only at z = 1/p̄, the function αp is holomorphic on

the disc {|z| < 1/|p|}, which contains the closed unit disc. Note that αp interchanges

the origin and the point p.

1.6. Theorem. αp is a conformal automorphism of U .

Proof. The proof hinges on the formula below, which I leave to you as an exercise.

1− |αp(z)|2 =
(1− |p|2)(1− |z|2)

|1− p̄z|2 (z ∈ C\{1/p̄}).(1.2)

The right-hand side of this equation is > 0 for every z ∈ U , and = 0 for every z ∈ ∂U .

Thus αp maps U into itself, and ∂U into itself.

The fact that αp is a conformal automorphism follows from this simple exercise: αp
is its own compositional inverse, in other words, αp(αp(z)) = z . This is most easily

seen by reducing the equation w = αp(z) to its equivalent form w − wp̄z + z = p, in

which w and z play symmetric roles.

1.7. Exercise. If p and q are points of U then there is a conformal automorphism

of U that maps p onto q.

Clearly the conformal automorphisms of U form a group under composition. The

exercise above says that this group acts transitively on U .

We still haven’t classified all the conformal automorphisms of U . The largest class

that comes to mind, given what we’ve already done, is the one you get by composing

maps αp with rotations, i.e., maps of the form αp(ωz) or ωαp(z) for p ∈ U , and then

composing these maps with each other . . . . It is a remarkable fact that nothing new

arises from this process.

1.8. Theorem. If ϕ is a conformal automorphism of U then there exists p ∈ U and

ω, η ∈ ∂U such that ϕ(z) = ωαp(z) = αp(ηz) for all z ∈ U .

Proof. I’ll prove the first equality and leave the second one as an exercise. Since ϕ

maps U onto itself there is a point p ∈ U such that ϕ(p) = 0. Thus ϕ(αp(0)) = 0,

so if we define ψ = ϕ ◦ αp then ψ is a conformal automorphism of U that fixes the

origin. Now the only such maps that come quickly to mind are the rotations. In fact

we’ll see shortly that there are no others. Granting this, there must be a complex

number ω of modulus one such that

ωz = ψ(z) = ϕ(αp(z)) (z ∈ U).

Upon replacing z by αp(z) in this equation and using the self-inverse property of αp,

we see that ωαp(z) = ϕ(z) for each z ∈ U , as desired.

It remains to prove that the only conformal automorphisms of U that fix the origin

are the rotations. This is not a triviality—it requires one of the most important

theorems in complex analysis:
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1.9. The Schwarz Lemma. If ϕ is a holomorphic self-map of U with ϕ(0) = 0,

then

(a) |ϕ(z)| ≤ |z| for every z in U , with equality for some z ∈ U if and only if ϕ is a

rotation (about the origin).

(b) |ϕ′(0)| ≤ 1, with equality if and only if ϕ is a rotation.

Proof. Everything follows from an analysis of the function g defined on U by: g(z) =

ϕ(z)/z if z ∈ U\{0}, and ϕ′(0). Then g is holomorphic on U . Fix z0 ∈ U and consider

a number r with |z0| < r < 1. Note that since |g(z)| ≤ 1/r on the circle {|z| = r},
the maximum modulus principle shows that |g(z0)| ≤ 1/r. Upon letting r → 1− we

see that in fact |g(z0)| ≤ 1, hence |ϕ(z0)| ≤ |z0|.
As for equality in part (a), suppose that for some z0 ∈ U we had |ϕ(z0)| = |z0|.

Then |g(z0)| = 1 so if g were not constant, then by the maximum principle we would

have |g| > 1 somewhere on U . Since this does not happen, g is constant, necessarily

a constant of modulus one, and therefore ϕ is a rotation. This proves part (a) of the

Schwarz Lemma.

The “inequality” part of part (b) follows immediately from the corresponding part

of part (a). As for the rest, if |ϕ′(0)| = 1 then g attains its maximum at the origin,

so as before, g has to be constant, and therefore ϕ is a rotation.

1.10. Corollary. If ϕ is a conformal automorphism of U that fixes the origin, then

there exists ω ∈ ∂U such that ϕ(z) = ωz for every z ∈ U .

Proof. Since ϕ is a holomorphic self-map of U that fixes the origin, part (b) of the

Schwarz Lemma guarantees that |ϕ′(0)| ≤ 1. But since ϕ is an automorphism, it

has a compositional inverse ψ that also obeys the hypotheses of the Schwarz Lemma,

hence |ψ′(0)| < 1. By the chain rule, ϕ′(0)ψ′(0) = 1, hence |ϕ′(0)| = 1, and so by the

“equality part” of part (b) of the Schwarz Lemma, ϕ is a rotation.

With this, the proof of Theorem 1.8 is complete.

The Schwarz Lemma will prove to be the single most valuable result in this course.

Here is another application, seemingly not related to invertibility, which we will need

in the next section. For this one we use the notation

ϕn = ϕ ◦ ϕ ◦ . . . ◦ ϕ (n times).

to denote the n-th iterate of ϕ for n a positive integer.

1.11. Theorem. If ϕ is a holomorphic self-map of U with ϕ(0) = 0, and ϕ is not a

rotation, then ϕn → 0 uniformly on compact subsets of U .

Proof. Fix is a compact subset K of U , and fix 0 < r < 1 so that K ⊂ {|z| < r}. By

the Schwarz Lemma we know that |ϕ(z)| < r on the circle γr = {|z| = r}, the strict

inequality coming from the fact that ϕ is not a rotation. Since |ϕ| is continuous and
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γr compact, we know that |ϕ| attains its maximum M(r) on γr, so also M(r) < r.

This means that the function ψ, defined on U by

ψ(w) =
1

M(r)
ϕ(rw) (w ∈ U),

is a holomorphic self-map of U that fixes the origin. So by the Schwarz Lemma,

ψ(w) ≤ |w| for all w ∈ U (in fact, there is strict inequality since ψ is not a rotation

either). Translating this estimate into the language of ϕ we obtain

|ϕ(z)| ≤ δ|z| (|z| < r)(1.3)

where δ = M(r)/r < 1. Since ϕ takes the disc {|z| < r} into itself, the above estimate

can be iterated, resulting in

|ϕn(z)| ≤ δn|z| (|z| < r, n = 1, 2, . . . ).(1.4)

In particular, maxz∈K |ϕn(z)| ≤ δn maxz∈K |z|, hence ϕn → 0 uniformly on K.

1.12. Exercise. Show that if ϕ is a holomorphic self-map of U that fixes a point

p ∈ U , and is not a conformal automorphism, then ϕn → p uniformly on compact

subsets of U (the above theorem is the case p = 0).

Let’s close this section with a few more exercises that illustrate further uses of the

Schwarz lemma.

1.13. Exercise. Show that if ϕ is a holomorphic self-map of U then for every p ∈ U ,

|ϕ′(p)| ≤ 1− |ϕ(p)|
1− |p|

with equality if and only if there is a complex number of modulus one such that

ϕ(z) = ωαp(z) for all z ∈ U . (Hint: Let q = ϕ(p) and consider αq ◦ ϕ ◦ αp).

1.14. Exercise. Show that if a holomorphic self-map ϕ of U fixes two distinct points

of U , then ϕ is the identity map. (Hint: Consider first the case where one of the fixed

points is the origin.)

1.15. Exercise. Show that if ϕ is a holomorphic self-map of U that fixes a point

p ∈ U , then |ϕ′(p)| ≤ 1, with equality if and only if ϕ is an automorphism.
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2. Eigenvalues and Schröder’s equation

Introduction. For linear transformations the next most fundamental topic after

invertibility is eigenvalues. The eigenvalue equation for a composition operator Cϕ

on H(U) is Cϕf = λf , or more classically:

f ◦ ϕ = λf,(2.1)

a functional equation which, given ϕ, is to be solved for f and λ. Equation (2.1) is

called Schröder’s equation; it was first studied by Ernst Schröder during the 1860’s

in connection with iteration of holomorphic functions.

To understand this connection, suppose we are lucky enough to have solved Schröder’s

equation with a univalent eigenfunction f . Then ϕ = f−1 ◦Mλ ◦ f , where Mλ is the

map of multiplication by the complex number λ, acting on f(U) (Schröder’s equation

insures that Mλ takes f(U) into itself). In other words, the action of ϕ on U is

“modeled” by the action of the much simpler mapping Mλ on the more complicated

domain f(U). For obvious reasons, then, Schröder’s equation is said to “linearize”

the action of ϕ.

The connection with iteration comes from the fact that

ϕn = f−1 ◦Mλn ◦ f (n = 1, 2, . . . ).(2.2)

For example, if you wish to study the ϕ-orbit {ϕn(z0)} of a point z0 ∈ U , all you

have to do is pull back the easily visualized Mλ-orbit {λnf(z0)} via the map f .

It is rare that Schröder’s equation can be solved explicitly. Here are two examples

where you can do it. The first one has a fixed point at the origin, and the second has

no fixed point in U . Note that the properties of the solutions are very different.

2.1. Exercise.

(a) Suppose ω is a complex number of modulus 1, and set ϕ(z) = ωz. Show that

the numbers 1, ω, ω2, . . . are all eigenvalues of Cϕ. Show eigenvalues have mul-

tiplicity one if ω is not a root of unity, and infinite multiplicity otherwise.

(b) Let ϕ(z) = 1+z
2

. Show that every nonzero complex number is an eigenvalue of

Cϕ. Do these eigenvalues have finite multiplicity? (Hint: Consider the functions

fα(z) = (1− z)α for α ∈ C.)

Schröder never succeeded in getting a solution to his equation for any significant

classes of maps ϕ, and was forced to settle for what he called the “opposite approach”

wherein one constructs examples by choosing a mapping f that takes the unit disc

univalently onto a domain that is invariant under multiplication by a complex number

λ of modulus < 1, and defining ϕ on U by equation (2.2). Here are some examples

for you to work out.

2.2. Exercise. Let G denote the half-plane {w ∈ C : Rew > −1}, and let f(z) =
2z

1−z = 1+z
1−z − 1. Prove that f maps U onto G, taking the unit circle to the line

Re z = −1 (with 1 going to ∞). Show that the multiplication map Mλ takes Π into

itself if and only if λ > 0. Thus for each positive λ the right-hand side of equation
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(2.2) defines a holomorphic self-map ϕλ of U . Show that ϕλ(0) = 0, and that ϕ is not

an automorphism. Determine the orbit of an arbitrary point z ∈ U under the action

of ϕ. Show that the numbers λn are eigenvalues of Cϕλ (n = 0, 1, 2, . . . ). Find the

corresponding eigenfunctions.

2.3. Exercise. Same setup as in the previous exercise, but replace G by the right

half-plane Π = {w ∈ C : Rew > 0}, and set f(z) = 1+z
1−z . This time show that f maps

U onto Π, and that for each λ > 0: ϕλ is an automorphism of U that fixes the points

±1 and no others. In particular, ϕλ has no fixed point in U . Show that the numbers

λn are eigenvalues of Cϕλ (n = 0, 1, 2, . . . ). Find the corresponding eigenfunctions.

Real progress on the theory of Schröder’s equation had to wait until 1884. In that

year Gabriel Koenigs published his work on solutions of Schröder’s equation for the

class of holomorphic self-maps ϕ that are not conformal automorphisms, that fix a

point of p ∈ U and for which ϕ′(p) 6= 0 (so that ϕ is, in particular, nonconstant).

Let us call these mappings Koenigs maps. Note that by Exercise 1.15 we have 0 <

|ϕ′(p)| < 1 for each Koenigs map ϕ with fixed point at p ∈ U .

Here is the formal statement of the result that Koenigs proved.

2.4. Theorem of Koenigs. If ϕ is a Koenigs map, then the eigenvalues of Cϕ

are precisely the numbers ϕ′(p)n for n = 0, 1, 2, . . . . Moreover these are the only

eigenvalues, and they all have multiplicity one. If ϕ is univalent, then so is the

eigenfunction σ corresponding to the eigenvalue ϕ′(p).

The “multiplicity one” property of eigenvalues justifies our reference to “the” eigen-

function corresponding to the eigenvalue ϕ′(p). Note that it is clear that once you

have an eigenvector σ for ϕ′(p), then for any positive integer n, ϕ′(p)n is an eigenvalue

of Cϕ with eigenvector σn. Multiplicity 1 insures that, up to constant multiples, σn

is the only such eigenvector. The statement about univalence is important since it

implies that if ϕ is univalent, then the eigenfunction σ “linearizes” ϕ to Mϕ′(p) in

accordance with our discussion at the beginning of this section.

To prove Theorem 2.4 it is enough to consider the case where the fixed point p is

the origin. Once this is finished, given a Koenigs map whose fixed point p is not 0

we apply the “p = 0” result to ψ = αp ◦ ϕ ◦ αp, which fixes the origin, and use the

automorphism αp to translate the results for ψ into results for ϕ. I leave the details

as an exercise.

Toward the proof of Theorem 2.4. Before jumping into the proof of this result, it

is important to understand the roles played by its various hypotheses. For example,

it is desirable that ϕ have an interior fixed point because of part (b) of Exercise

2.1, which shows that if ϕ has no such fixed point then Cϕ can have eigenvalues of

infinite multiplicity. Part (a) of that same exercise shows that it is important for ϕ

not to be an automorphism of U , since otherwise there may again be eigenvalues of

infinite multiplicity. Here is a preliminary result that gets us started toward further

understanding.
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2.5. Lemma. Suppose ϕ is a nonconstant holomorphic self-map of U , and that and

Cϕf = λf for some f ∈ H(U) and λ ∈ C. Then:

(a) λ 6= 0.

(b) If f is not constant, and ϕ fixes p ∈ U , then λ 6= 1, and f(p) = 0.

Proof. Part (a) is just the statement that Cϕ is one-to-one, which we proved in the

last section.

For part (b), since ϕ is not an automorphism we know from Theorem 1.11 and

the Exercise that follow it that the iterates ϕn converge to p uniformly on compact

subsets of U . Now if λ were equal to 1, then we would have Cϕf = f , and therefore

for each z ∈ U :

f(z) = Cn
ϕf(z) = f(ϕn(z))→ f(p),

so f ≡ f(p), which contradicts our hypothesis that f is not constant.

To see that f(p) = 0 just set z = p in the eigenvalue equation f(ϕ(z)) = λf(z) to

get f(p) = λf(p) which, since λ 6= 1, gives the desired result.

We next turn to the question of why the eigenvalues in Theorem 2.4 are what they

are.

2.6. Proposition. Suppose ϕ is a holomorphic self-map of U that fixes a point p ∈ U .

Suppose that Cϕf = λf for some nonconstant f ∈ H(U) and some λ ∈ C. Then

λ = ϕ′(p)n for some n = 0, 1, 2, . . . .

Proof. Here is the proof for the special case p = 0. I leave it to you to employ the

conformal automorphism αp to translate the result into one for arbitrary p ∈ U .

The eigenfunction f is not constant, so by the previous result it vanishes at the

origin, hence there exists a positive integer n such that

f(z) = anz
n + an+1z

n+1 + · · · ,

where an 6= 0. Upon solving the eigenvalue equation f ◦ ϕ = λf for λ we obtain for

each z ∈ U :

λ =
f(ϕ(z))

f(z)
=

(
ϕ(z)

z

)n
an + an+1ϕ(z) + an+2ϕ(z)2 + · · ·

an + an+1z + an+2z2 + · · · .

Clearly the right-hand side of this equation converges to ϕ′(0)n as z → 0, which

establishes the desired result.

Note that in the last result we did not rule out the possibility that ϕ′(p) = 0. Since

0 cannot be an eigenvalue of Cϕ (for ϕ nonconstant), the Proposition tells us that if

ϕ′(p) = 0 then 1 is the only eigenvalue of Cϕ. Or, to put it differently, if Cϕ has a

nonconstant eigenfunction, then ϕ′(p) 6= 0.

So far we have justified all the elements that go into the definition of “Koenigs

map”. Now let’s tackle the question of eigenvalue multiplicity.
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2.7. Proposition. If ϕ is a Koenigs map and λ an eigenvalue of Cϕ, then λ has

multiplicity one, in other words: if g ∈ H(U) and Cϕg = λg, then g is a constant

multiple of f .

Proof. Note that we have already established a special case of this: in the proof of

Lemma 2.5 we saw that the only eigenvectors for the eigenvalue 1 are the constant

functions.

To make further progress, successively differentiate both sides of Schröder’s equa-

tion, and evaluate each result at z = 0. The calculation shows that for every n ≥ 2,

the quantity (λ − λn)f (n)(0) is given by an expression that involves the derivatives

ϕ(k)(0) for 1 ≤ k ≤ n, and f (j)(0) for 1 ≤ j ≤ n − 1. Since λ is neither 0 nor 1, an

induction argument shows that for n ≥ 2 the derivative f (n)(0) is determined solely

by ϕ and f ′(0). So given ϕ, the coefficients of f in its Taylor expansion about the

origin are determined solely by f ′(0) (recall that, because f(0) = 0, the constant

coefficient is zero). This completes the proof.

2.8. Exercise. Go back to Exercises 2.2 and 2.3. For the first of these, the work we

have done so far shows that the eigenvalues {λn}∞0 found there are the only eigen-

values for Cϕλ , and they have multiplicity one. Show that by contrast, the mappings

created in Exercise 2.3 induce composition operators with many more eigenvalues,

all of infinite multiplicity! (Hint: go over to the right half-plane Π and consider the

composition operator induced by Mλ on H(Π).)

Now we understand everything about what eigenvalues for Cϕ have to look like

when ϕ is a Koenigs function. What we have not yet proved is that there are any

nontrivial (i.e. not = 1) eigenvalues, or, equivalently, nontrivial (not ≡ constant)

eigenvectors. We remedy this deficiency with the next result, which almost completes

our proof of the Theorem of Koenigs.

2.9. Theorem. Suppose ϕ is a Koenigs map with fixed point p ∈ U . Then there

exists σ ∈ H(U) such that σ ◦ ϕ = ϕ′(p)σ.

Proof. As usual, I’ll do the proof only for the case p = 0. The function σ will be

obtained as the limit of a sequence of “normalized iterates” of ϕ. As previously

discussed, we may take p = 0, so that ϕ(0) = 0. By the Schwarz Lemma, 0 <

|ϕ′(0)| < 1. Let λ = ϕ′(0), and for each positive integer n set σn = λ−nϕn (noting

that while the subscript n on the right-hand side of the equation denotes an iterate,

the one on the left does not). Since σn ◦ ϕ = λσn+1 for each n, the solution σ we

seek will be the limit of the sequence of functions {σn}, if only we can prove that this

limit exists uniformly on compact subsets of U .

To do so, write

σn(z) = z · ϕ(z)

λz
· ϕ2(z)

λϕ(z)
· · · · · ϕn(z)

λϕn−1(z)
= z

n−1∏
j=0

F (ϕj(z)),
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where in the product on the right, ϕ0(z) ≡ z, and F (z) = ϕ(z)/λz. Thus our task is

to prove that the infinite product
∞∏
j=0

F (ϕj(z))

converges uniformly on compact subsets of U . For this it is enough to show that the

infinite series
∞∑
j=0

|1− F (ϕj(z))|(2.3)

converges likewise. We estimate the size of each term. Since ϕ(0) = 0, the function

F is holomorphic on U . Let ‖F‖∞ denote the supremum of the values of |F | over the

unit disc. By the Maximum Principle, ‖F‖∞ ≤ |λ−1|, hence

‖1− F‖∞ ≤ 1 + ‖F‖∞ ≤ 1 +
1

|λ|
def
= A.

Finally, the definition λ = ϕ′(0) forces F (0) = 1, so the Schwarz Lemma, applied to

the function (1− F )/A, yields

|1− F (z)| ≤ A|z| (z ∈ U).(2.4)

Now fix 0 < r < 1. In the proof of Theorem 1.11 we observed that a slight refinement

of the Schwarz Lemma produces a constant δ < 1 such that for each non-negative

integer j,

|ϕj(z)| ≤ δj|z|
whenever |z| ≤ r. Upon substituting this inequality in (2.4) we see that

|1− F (ϕj(z))| ≤ A|ϕj(z)| ≤ Aδj|z| (z ∈ rU).

So on the closed disc rU , each term of the series (2.3) is bounded uniformly by

the corresponding term of a convergent geometric series, hence the original series

converges uniformly on that disc. This establishes the desired convergence for the

sequence {σn}.
We refer to the function σ constructed above as the principal eigenfunction of

Cϕ. It is the (essentially unique) eigenvector corresponding to the largest nontrivial

eigenvalue, namely ϕ′(0).

All that’s left in our quest to prove the Theorem of Koenigs is the result about

univalence.

2.10. Corollary. If ϕ is a univalent Koenigs map, then the principle eigenfunction

of Cϕ is also univalent

Proof. The univalence of ϕ gets inherited by each iterate ϕn, and therefore by each

normalized iterate σn = ϕn/λ
n. Now suppose the limit function σ were not univalent.

Then there would be points a, b ∈ U with σ(a) = σ(b). Call this common value w.

Fix a number r with max{|a|, |b|} < r < 1, so that ϕ does not take the value w on
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the circle γ = {|z| = r}. Give γ the positive orientation. By the Argument Principle,

the integral

I
def
=

1

2πi

∫
γ

σ′(z)

σ(z)− w
dz

counts the number of points in the disc {|z| < r} that ϕ maps onto w, so this integral

is at least 2. On the other hand, the same reasoning applied to the univalent maps

σn shows that for each n,

In
def
=

1

2πi

∫
γ

σ′n(z)

σn(z)− w
dz ≤ 1.

Since σn → σ uniformly on compact subsets of U , the integrand of In converges

uniformly on γ to the integrand of I, and hence In → I. But preceding estimates

show that this cannot happen, so the assumption that σ is not univalent has led to a

contradiction.

The Theorem of Koenigs is now proved.



12 JOEL H. SHAPIRO

3. Composition operators on H2

The scene now shifts to the Hardy space H2, a subspace of H(U) that is a Hilbert

space. This is arguably the best place to study the interaction between the theory of

linear operators and analytic function theory. The main result of this section is that

every composition operator restricts to a continuous mapping of H2 into itself. At

the core of this result lies the famous Littlewood Subordination Principle.

3.1. Taylor series. For f ∈ H(U) and every non-negative integer n, let f̂(n) =

f (n)(0)/n!. Then the series
∑∞

n=0 f̂(n)zn is the Taylor series of f with center at the

origin: it converges uniformly on compact subsets of U to f .

3.2. The Hardy space. The Hardy space H2 is the collection of functions f ∈ H(U)

with
∑∞

n=0 |f̂(n)|2 <∞.

3.3. Exercise. For α real let fα(z) = (1 − z)−α. Show that fα ∈ H2 if and only

if α < 1/2. (Hint: Use the Binomial theorem and Stirling’s formula to show that

f̂α(n) ≈ nα−1.

We equip H2 with the norm that is naturally associated with its definition:

‖f‖ =

( ∞∑
n=0

|f̂(n)|2
)1/2

,(3.1)

and note that this norm arises from the natural inner product

〈f, g〉 def
=

∞∑
n=0

f̂(n)ĝ(n) (f, g ∈ H2).(3.2)

Let T be the “Taylor transformation” from H2 into the sequence space `2 defined

by Tf = f̂ . The mapping T is clearly linear, and from the definition of the H2 norm,

it is an isometry: ‖Tf‖ = ‖f‖ for every f ∈ H2.

3.4. Proposition. T maps H2 onto `2. In particular, H2 is a Hilbert space in the

inner product (3.2).

Proof. Because square-summable sequences are bounded, a simple geometric series

estimate shows that if the complex sequence ~a = {an}∞0 lies in `2, then the associated

power series
∑∞

n=0 anz
n converges uniformly on compact subsets of U to an analytic

function f . By the uniqueness of power series representations, an = f̂(n) for every n,

hence Tf = ~a, so T (H2) = `2.

Thus H2 is the sequence space `2, disguised as a space of analytic functions. Note

in particular that:

3.5. Proposition. The sequence of monomials {zn : n = 0, 1, 2, . . . } is an orthonor-

mal basis for H2.

Some properties of the functions in H2 can be easily discerned from the definition

of the space. Here is one.
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3.6. Growth Estimate. For every f ∈ H2 and z ∈ U ,

|f(z)| ≤ ‖f‖
(1− |z|2)1/2

.

Proof. Use successively the triangle inequality and the Cauchy-Schwarz Inequality on

the power series representation for f :

|f(z)| = |
∞∑
n=0

f̂(n)zn|

≤
∞∑
n=0

|f̂(n)‖z|n

≤
( ∞∑
n=0

|f̂(n)|2
)1/2( ∞∑

n=0

|z|2
)1/2

= ‖f‖ 1

(1− |z|2n)1/2
.

3.7. Corollary. Convergence in H2 implies uniform convergence on compact subsets

of U .

Proof. Suppose {fn} is a sequence of functions in H2, f is a function in H2, and

‖fn − f‖ → 0. Our goal is to show that fn → f uniformly on compact subsets of U .

For this, suppose K is a compact subset of U . Let r = max{|z| : z ∈ K}. Then for

z ∈ K, the Growth Estimate yields:

|fn(z)− f(z)| ≤ ‖fn − f‖
(1− |z|2)1/2

≤ ‖fn − f‖
(1− |r|2)1/2

,

which shows that as n→∞,

max
z∈K
|fn(z)− f(z)| ≤ ‖fn − f‖

(1− |r|2)1/2
→ 0,

i.e. that fn → f uniformly on K.

3.8. Exercise. For α ∈ C, let fα(z) = (1 − z)α. Show that fα /∈ H2 whenever

Reα ≤ −1/2.

However some properties of H2 do not follow easily from the definition. For ex-

ample, is every bounded analytic function in H2? In order to answer this question

reasonably, we need a different description of the norm.
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3.9. Proposition. A function f ∈ H(U) belongs to H2 if and only if

lim
r→1−

1

2π

∫ 2π

0

|f(reiθ)|2 dθ <∞.

When this happens, the limit of integrals on the left is ‖f‖2.

Proof. The functions einθ form an orthonormal set in the space L2([0, 2π]), hence for

each 0 ≤ r < 1 the integral on the right is
∑∞

n=0 |f̂(n)|r2n. The result now follows

from the monotone convergence theorem.

3.10. Exercise. Show that the function fα of Exercise 3.8 is in H2 whenever Reα >

−1/2.

It is now an easy matter to show that every bounded function in H(U) belongs to

H2. In fact, we can do better. Let H∞ denote the collection of bounded analytic

functions on U , and for b ∈ H∞ let ‖b‖∞ = supz∈U |b(z)|. The integral representation

given above for the H2 norm shows immediately:

3.11. Proposition. If b ∈ H∞ and f ∈ H2 then bf ∈ H2 and ‖bf‖ ≤ ‖b‖∞‖f‖.
In particular, upon taking f ≡ 1 we obtain:

3.12. Corollary. If b ∈ H∞ then b ∈ H2 with ‖b‖ ≤ ‖b‖∞.

3.13. Multiplication operators act on H2. Proposition 3.11 reveals an interesting

class of linear transformations on H2. For b ∈ H∞ let Mb denote the operator of

(pointwise) multiplication by b. That is, Mbf = bf . Clearly Mb, when viewed as a

mapping on all of H(U), is linear (note that for this we don’t need b to be bounded).

According to Proposition 3.11 Mb maps H2 into itself, with ‖Mbf‖ ≤ ‖b‖∞‖f‖ for

each f ∈ H2. It is not difficult to show from this inequality that that Mb is continuous

on H2 (see §3.18 and Proposition 3.24 below). We call Mb the multiplication operator

induced by b. The most famous of these is the one induced by the identity map

b(z) ≡ z. Because it shifts the Taylor coefficients of any function on which it acts one

unit to the right, this operator of “multiplication by z” is often called the “Forward

Shift.”

3.14. Do Composition operators act on H2? This is not a trivial question. Sup-

pose you have f ∈ H2 and want to determine if Cϕf ∈ H2. Using the definition of

H2 we would substitute ϕ(z) for z in the power series expansion of f , expand the

various powers of the power series of ϕ by the binomial theorem, and regroup the

resulting double series to identify the new powers of z, which are now complicated

numerical series involving the coefficients of f and those of the powers of ϕ. Done this

way, there seems to be no reason why Cϕf should be in H2. A calculation using the

alternate characterization of H2 provided by Proposition 3.9 fares just as badly, since

it raises the specter of an unpleasant, and possibly non-univalent, change of variable

in an integral.
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After these pessimistic observations, it is remarkable that composition operators

do preserve the space H2, and do so continuously. The key to this is the following

result, proved by Littlewood and published in 1925.

3.15. Littlewood’s Subordination Theorem. Suppose ϕ is a holomorphic self-

map of U and ϕ(0) = 0. Then Cϕf ∈ H2, and ‖Cϕf‖ ≤ ‖f‖ for every f ∈ H2.

Proof. The proof is helped significantly by the backward shift operator B, defined on

H2 by

Bf(z) =
∞∑
n=0

f̂(n + 1)zn (f ∈ H2).

The name comes from the fact that B shifts the power series coefficients of f one

unit to the left, and drops off the constant term. Clearly, ‖Bf‖ ≤ ‖f‖ for each

f ∈ H2, and one might expect this fact to play an important role in the proof, but

surprisingly it does not! Only the following two identities are needed, and they hold

for any f ∈ H(U):

f(z) = f(0) + zBf(z) (z ∈ U),(3.3)

Bnf(0) = f̂(n) (n = 0, 1, 2, . . . ).(3.4)

To begin the proof, suppose first that f is a (holomorphic) polynomial. Then f ◦ ϕ

is bounded on U , so by the work of the last section there is no doubt that it lies in

H2; the real issue is its norm.

We begin the norm estimate by substituting ϕ(z) for z in (3.3) to obtain

f(ϕ(z)) = f(0) + ϕ(z)(Bf)(ϕ(z)) (z ∈ U).

Let us rewrite this equation in the language of composition and multiplication oper-

ators:

Cϕf = f(0) + MϕCϕBf .(3.5)

At this point, the assumption ϕ(0) = 0 makes its first (and only) appearance. It

asserts that all the terms of the power series for ϕ have a common factor of z, hence

the same is true for the second term on the right side of equation (3.5), rendering it

orthogonal in H2 to the constant function f(0). Thus,

‖Cϕf‖2 = |f(0)|2 + ‖MϕCϕBf‖2 ≤ |f(0)|2 + ‖CϕBf)‖2,(3.6)

where the last inequality follows from Proposition 3.11 above (since ‖ϕ‖∞ ≤ 1. Now

successively substitute Bf, B2f, · · · for f in (3.6) to obtain:

‖CϕBf‖2 ≤ |Bf(0)|2 + ‖CϕB
2f‖2

‖CϕB
2f‖2 ≤ |B2f(0)|2 + ‖CϕB

3f‖2

...
...

‖CϕB
nf‖2 ≤ |Bnf(0)|2 + ‖CϕB

n+1f‖2.
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Putting all these inequalities together, we get

‖Cϕf‖2 ≤
n∑
k=0

|(Bkf)(0)|2 + ‖CϕB
n+1f‖2

for each non-negative integer n.

Now recall that f is a polynomial. If we choose n be the degree of f , then Bn+1f =

0, and this reduces the last inequality to

‖Cϕf‖2 ≤
n∑
k=0

|(Bkf)(0)|2

=
n∑
k=0

|f̂(k)|2

= ‖f‖2,

where the middle line comes from property (3.4) of the backward shift. This shows

that Cϕ is an H2-norm contraction, at least on the vector space of holomorphic

polynomials.

To finish the proof, suppose f ∈ H2 is not a polynomial. Let fn(z) =
∑n

k=0 f̂(k)zk,

the n-th partial sum of the Taylor series of f . Then fn → f in the norm of H2, so

by Corollary 3.7 fn → f uniformly on compact subsets of U , hence fn ◦ ϕ → f ◦ ϕ

in the same manner. It is clear that ‖fn‖ ≤ ‖f‖, and we have just shown that

‖fn ◦ ϕ‖ ≤ ‖fn‖. Thus for each fixed 0 < r < 1 we have

1

2π

∫ 2π

0

|fn(ϕ(reiθ))|2 dθ = lim
n→∞

1

2π

∫ 2π

0

|fn(ϕ(reiθ))|2 dθ

≤ lim sup
n→∞

‖fn ◦ ϕ‖

≤ lim sup
n→∞

‖fn‖

≤ ‖f‖.
To complete the proof, let r tend to 1, and appeal one last time to Proposition 3.9.

To prove that Cϕ is bounded even when ϕ does not fix the origin, we utilize the

conformal automorphisms αp introduced in Definition 1.1 to move points of U from

where they are to where we want them. For each point p ∈ U , recall that αp takes

U onto itself, interchanges p with the origin, and is its own inverse. Write p = ϕ(0).

Then the holomorphic function ψ = αp ◦ ϕ takes U into itself and fixes the origin.

By the self-inverse property of αp we have ϕ = αp ◦ ψ, and this translates into the

operator equation Cϕ = CψCαp . We have just seen that Cψ maps H2 into itself. Thus,

the fact that Cϕ does the same will follow from the first sentence of the next result.

3.16. Lemma. For each p ∈ U the operator Cαp maps H2 into itself. Moreover,

‖Cαp‖ ≤
(

1 + |p|
1− |p|

) 1
2

.
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Proof. Suppose first that f is holomorphic in a neighborhood of the closed unit disc,

say in RU = {|z| < R} for some R > 1. Then the limit in formula (3.9) can be passed

inside the integral sign, with the result that

‖f‖2 =
1

2π

∫ 2π

0

|f(eiθ)|2dθ.

This opens the door to a simple change of variable in which the self-inverse property

of αp figures prominently:

‖f ◦ αp‖2 =
1

2π

∫ 2π

0

|f(αp(e
iθ))|2dθ

=
1

2π

∫ 2π

0

|f(eit)|2|α′p(eit)|dt

=
1

2π

∫ 2π

0

|f(eit)|2 1− |p|2
|1− p̄eit|2 dt

≤ 1− |p|2
(1− |p|)2

·
(

1

2π

∫ 2π

0

|f(eit)|2dt

)
=

1 + |p|
1− |p| · ‖f‖

2.

Thus the desired inequality holds for all functions holomorphic in RU ; in particular

it holds for polynomials. It remains only to transfer the result to the rest of H2,

and for this we simply repeat the argument used to finish the proof of Littlewood’s

Subordination Theorem.

At this point we have assembled everything we need to show that composition

operators map H2 into itself.

3.17. Theorem. Suppose ϕ is a holomorphic self-map of U . Then Cϕ is a bounded

operator on H2, and

‖Cϕf‖ ≤
√

1 + |ϕ(0)|
1− |ϕ(0)|‖f‖.

for every f ∈ H2.

Proof. As outlined earlier, we have Cϕ = CψCαp , where p = ϕ(0), and ψ fixes the

origin. Since each of the operators on the right-hand side of this equation sends H2

into itself, the same is true of Cϕ.

As for the inequality, this follows from Lemmas 3.15 and 3.16. I leave the details

to you.
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3.18. Normed spaces and bounded linear transformations. Suppose that X

is a normed space, that is, a vector space over the real or complex field on which there

is defined a functional ‖ · ‖ : X → [0,∞) with these properties:

• ‖ax‖ = |a| ‖x‖ for every x ∈ X and every scalar a.

• ‖x + y‖ ≤ ‖x‖+ ‖y‖ for every pair of vectors x, y ∈ X.

• ‖x‖ = 0 =⇒ x = 0.

Recall that every norm determines a translation-invariant metric on the underlying

space: d(x, y) = ‖x−y‖. If this metric is complete, we call the underlying space (with

its norm) a Banach space. Every Hilbert space is a Banach space. Other examples

that you have probably seen are: the sequence spaces `p for 1 ≤ p <≤ ∞ and the

space C(K), where K is a compact metric space and the norm is the “max-norm”.

3.19. Exercise. Show that the space H∞ of bounded analytic functions on the unit

disc is a Banach space in the “sup norm”: ‖f‖∞ = supz∈U |f(z)|.
If X and Y are normed spaces and T : X → Y is a linear transformation, then T

is said to be bounded if there is a non-negative constant C such that

‖Tx‖ ≤ C‖x‖ for every x ∈ X(3.7)

Note that in order to conserve notation we use the same symbol for the norm in X

(on the right side of the equation above) that we use for the norm in Y (on the left

side). The infimum of all the numbers C that work in the above definition is called

the norm of T .

3.20. Exercise. Show that ‖T‖ is also a value of C that works in (3.7) above. In

other words, if T is a bounded linear transformation between normed spaces, then

‖Tx‖ ≤ ‖T‖ ‖x‖.
Note that the term “bounded” for a linear transformation does not mean that ‖Tx‖

is bounded as x runs over the whole space. It is an easy exercise to show that the

only zero-transformation has this extreme form of boundedness.

3.21. Exercise. Show that a linear transformation between normed spaces is bounded

if and only if the image of every bounded set is bounded( by a bounded subset of a

normed space we mean a set A for which supx∈A ‖x‖ <∞).

3.22. Exercise. Show that if T is a bounded linear transformation, then

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1},
and that the inequality on the right-hand side of (3.7) can be replaced by both equality

and strict inequality.
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3.23. Exercise. Show that every linear transformation on a finite dimensional Hilbert

space is bounded.

Examples of bounded linear transformations that we have seen so far are:

(a) The “Taylor transform” T : H2 → `2 defined just before the statement of Propo-

sition 3.4). Since T is an isometry, ‖T‖ = 1. Note, however, that non-isometries

can also have norm 1. The backward shift operator B that showed up in the

proof of Littlewood’s Theorem (§3.15) is a case in point (exercise).

(b) Multiplication operators on H2. The work of §3.13 actually showed that if

b ∈ H∞ then Mb is a bounded bounded operator on H2, and ‖Mb‖ ≤ ‖b‖∞. In

fact there is equality here (exercise).

(c) Theorem 3.17 showed that for every holomorphic self-map ϕ of U , the composi-

tion operator Cϕ is bounded on H2, with

‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

.

There is no known formula for the norm of a general composition operator.

The next result shows that all the above-mentioned operators are continuous.

3.24. Proposition. Every bounded linear transformation between normed spaces is

continuous.

Proof. Suppose T : X → Y is bounded, so it satisfied (3.7) above. Then for any pair

of vectors x, y ∈ X,

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C‖x− y‖,
which shows that T is continuous (in fact, uniformly continuous).

In fact, boundedness for a linear transformation between normed spaces is equiva-

lent to continuity.

3.25. Theorem. Every continuous linear transformation between normed spaces is

bounded.

Proof. Suppose T : X → Y is continuous. Then the inverse image of the unit ball in

Y contains an open ball {x ∈ X : ‖x− x0‖ < ε}, for some x0 ∈ X and ε > 0. Thus

‖x− x0‖ < ε =⇒ ‖Tx‖ < 1.

Upon setting z = (x− x0)/ε, so that x = εz + x0, we see from the implication above

that whenever ‖z‖ < 1:

1 > ‖T (εz + x0)‖
= ‖εT (z) + T (x0)‖
≥ ε‖T (z)‖ − ‖T (x0)‖,
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hence

‖T (z)‖ ≤ ε−1(1 + ‖T (x0)‖).
For arbitrary z ∈ X (z 6= 0) we apply the last inequality to the unit vector z/‖z‖
to get ‖T (z)‖ ≤ C‖z‖, where C = ε−1(1 + ‖T (x0)‖). Thus T is a bounded linear

transformation.

This section closes with some further exercises on the boundedness of composition

operators.

3.26. Exercise. Let `1(U) denote the space of absolutely summable complex se-

quences, but now regarded as a space of analytic functions. That is,

`1(U) = {f ∈ H(U) : ‖f‖1
def
=

∞∑
n=0

|f̂(n)| <∞}

Show that the map Tf = f̂ is a linear isometry of `1(U) onto the sequence space

`1, and that the following version of Littlewood’s Subordination Theorem holds for

`1(U):

Suppose ϕ ∈ `1(U) and ‖ϕ‖1 ≤ 1. Then ϕ is a holomorphic self-map of U ,

and Cϕ is a contraction on `1(U).

3.27. Exercise. Show that for every 0 < α < 1/2, the function
(

1+z
1−z
)α

belongs to

H2.

3.28. Exercise. Suppose f and g are holomorphic on U , with g univalent and f(U) ⊂
g(U). Show that if g belongs to H2, then so does f . (Hint: first show that g = f ◦ ϕ

for some holomorphic self-map ϕ of U with ϕ(0) = 0).

3.29. Exercise. Use the results of the previous two exercises to show that if f is

holomorphic on U , and f(U) is contained in an angular sector with vertex angle less

than π/2 radians, then f ∈ H2.
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4. Introduction to the Compactness Problem

Recall that a linear transformation between normed spaces is continuous if and

only if it is bounded (Proposition 3.24 and Theorem 3.25), i.e., if and only if the

image of every bounded set is bounded (Exercise 3.21). The most important subclass

of bounded operators are the compact ones.

4.1. Definition. A linear transformation between normed spaces is said to be com-

pact if the image of every bounded set is relatively compact.

To say that a set is “relatively compact” means that it has compact closure. In

the language of sequences this says that every sequence taken from that set has a

convergent subsequence.

Since compact sets are bounded, it follows immediately that compact operators are

bounded.

4.2. Exercise. Show that a linear transformation is compact if and only if the image

of the unit ball, or more generally, if the image of some ball is relatively compact.

We have already noted that every linear operator on a finite dimensional Hilbert

space is bounded (Exercise 3.23). Because of the Bolzano-Weierstrass theorem, every

such operator is therefore compact. In fact, in this argument only the range space is

important:

If a bounded linear operator on a Hilbert space has finite dimensional range,

then the operator is compact.

On the other hand,

4.3. Exercise. The identity operator on an infinite dimensional Hilbert space is not

compact. (Suggestion: Use the existence of an orthonormal basis to show that the

closed unit ball is not compact).

The connection between compact operators and finite dimensional ones is, in fact,

quite strong. One of the most important results about compact operators is this:

4.4. Theorem. If X is a Banach space and T : X → X is compact, then for each

nonzero λ ∈ C, the following are equivalent:

(a) T − λI is invertible.

(b) T − λI is one to one.

(c) T − λI maps X onto itself.

This result, which we won’t prove here, asserts that perturbations of the identity

by compact operators have the same invertibility characteristics as operators on a

finite dimensional space.

Once you know that a collection of operators between normed spaces are all bounded,

it makes sense to try to determine which of these is compact. This is a particularly

interesting problem for composition operators on H2. Indeed, “Cϕ compact on H2

means that the operator squeezes the unit ball of H2 into a relatively compact (=
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“small”) subset. The question is: how much does ϕ have to squeeze the unit disc into

itself in order for this to happen?

Here are two amusing examples to get us started: If ϕ(z) = z then Cϕ is the

identity, which, according to Exercise 4.3, is not compact. On the other hand, if

ϕ(z) ≡ constant then Cϕ has one dimensional range (the constants), and is compact.

To examine what lies between we need a “sequential” characterization of compactness

that was first observed by H.J. Schwartz (no relation to the Schwarz Lemma) in 1969.

4.5. Theorem. Cϕ is compact on H2 if and only: whenever {fn} is a bounded

sequence in H2 that converges to zero uniformly on compact subsets of U , then

‖Cϕfn‖ → 0.

The proof of this result depends on some deep results about uniform convergence.

All of this will be developed shortly, but right now perhaps a better idea would be

to give some applications. The first one generalizes the fact that ϕ(z) ≡ z induces a

noncompact operator.

4.6. Proposition. Suppose Cϕ is compact Then the set of points eiθ ∈ ∂U at which

limr→1− |ϕ(eiθ)| = 1 has Lebesgue measure zero.

Proof. Suppose that Eϕ = {eiθ : limr→1− |ϕ(eiθ)| = 1} has positive measure. We will

show that Cϕ is not compact.

Note first that, since |ϕ| < 1 on U , the “limit” in the definition of Eϕ may be

replaced by “liminf”. Now the monomial sequence {zn}∞0 obeys the hypothesis of

Theorem 4.5, so by our hypothesis on Cϕ, the image sequence, which is {ϕ} converges

to zero in H2. Since ϕ is continuous on U , as r → 1− we have ϕ(reiθ) → ϕ(eiθ)

uniformly over the unit circle, and the same is true for ϕn. Thus the integral rep-

resentation of the H2 norm provided by Theorem 3.9, along with Fatou’s Lemma,

yields

‖ϕn‖ = lim
r→1−

1

2π

∫ 2π

0

|ϕ(reiθ)|2n dθ

=
1

2π

∫ 2π

0

| lim inf
r→1−

ϕ(eiθ)|2n dθ

=
1

2π

∫ 2π

0

|(lim inf
r→1−

ϕ(eiθ)|)2n dθ

≥ 1

2π

∫
Eϕ

|ϕ(eiθ)|2n dθ

=
1

2π
meas (Eϕ) > 0.

This calculation shows that ‖Cϕ(z
n)‖ does not converge to zero, so by Theorem 4.5,

Cϕ is not compact.
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It is known that for every bounded analytic function, and more generally for any

H2 function, the radial limit

f(eiθ)
def
= lim

r→1−
f(reiθ)

exists for almost every eiθ in the unit circle. In particular, the limit that shows up in

the definition of Eϕ in the proof above exists for a.e. point of the unit circle.

4.7. Exercise. Construct a holomorphic self-map ϕ of U , not the identity map, that

induces a noncompact composition operator on H2. (Suggestion: map the unit disc

onto the upper half-plane and take a square root.)

The next application of Theorem 4.5 generalizes the fact that constant ϕ’s induce

compact composition operators. Recall the notation ‖ϕ‖∞ = supz∈U |f(z)|.
4.8. Proposition. If ‖ϕ‖∞ < 1 then Cϕ is compact on H2.

Proof. Suppose {fn} is a bounded sequence in H2 that converges to zero uniformly on

compact subsets of U . By Theorem 4.5 it is enough to show that ‖fn ◦ ϕ‖ → 0. But

even more is true: since ϕ(U) is a relatively compact subset of U , fn → 0 uniformly

on ϕ(U), hence

‖fn ◦ ϕ‖ ≤ ‖fn ◦ ϕ‖∞ ≤ sup
w∈ϕ(U)

|fn(w)| → 0,

as desired.

Observe that we did not need the boundedness of the sequence {fn} for this argument.

This suggests that the sufficient condition ‖ϕ‖∞ < 1 for compactness of Cϕ might

not be necessary. We’ll see later on that this is indeed the case: there exist maps ϕ

with ‖ϕ‖∞ = 1 for which Cϕ is compact on H2.

Before approaching the proof of Theorem 4.5 I present one final application that

shows that the necessary condition of Proposition 4.6 does not provide a characteri-

zation of compact composition operators on H2.

4.9. Proposition. Let ϕ(z) = 1+z
2

. Then Cϕ is not compact on H2.

Proof. Proof. Consider for 0α < 1/2 the functions fα(z) = (1 − z)−α. By Exercise

3.3 they all belong to H2, and another exercise shows that ‖fα‖ → ∞ as α → 1/2.

Let gα = fα/‖fα‖. Then {gα} is a collection of unit vectors that converges to zero

uniformly on compact subsets of U as α→ 1/2.

Now each fα is an eigenvector of Cϕ, in fact Cϕfα = 2αfα. Thus the same is true

of gα, hence as α→ 1/2,

‖Cϕgα‖ = 2α →
√

2 6= 0,

so by Theorem 4.5, Cϕ is not compact.



24 JOEL H. SHAPIRO

4.10. Proof of Theorem 4.5: necessity. This follows quickly from Corollary 3.7.

For suppose Cϕ is compact on H2, and that {fn} ⊂ H2 is bounded and converges

to zero uniformly on compact subsets of U . Then the image sequence {fn ◦ ϕ} is

relatively compact, so it has a subsequence {gk = fnk ◦ ϕ} that converges in the H2

norm to some function g ∈ H2. Our goal is to show that g = 0. Since H2 convergence

implies uniform convergence on compact subsets of U (Corollary 3.7) we know that

gk → g in that manner. But fnk → 0 uniformly in compact subsets of U , hence the

same is true of fnk ◦ ϕ = gk, hence g = 0, as desired.

The converse is more difficult. To prove it we need two famous theorems of clas-

sical analysis, the first which revolves around the notion of equicontinuity. If A is a

collection of functions that are continuous on a set S ⊂ C (or on any metric space,

for that matter), we say S is equicontinuous if for every ε > 0 there exists δ > 0 such

that whenever x, 4 is a pair of points in S with |x− y| < δ, the |f(x)− f(y)| < ε for

every f ∈ A. Thus each f ∈ A is continuous on S, and for each ε the constant δ can

be chosen to work for all the functions in A.

4.11. The Arzela–Ascoli Theorem. If K is a compact subset of the plane and

A ⊂ C(K) is uniformly bounded and equicontinuous, then every sequence in A has a

uniformly convergent subsequence.

Proof. Since K is compact, for each positive integer n there is a finite collection Fn of

open discs of radius 1/n, with centers in K, that covers K. Let S denote the collection

of all the centers of all the discs in all the open covers Fn. This is a countable dense

subset of K.

Now consider a sequence {fn} in A. Because of the boundedness assumption on A

we know that there exists M > 0 such that |fn(z)| ≤ M for each z ∈ K and each

n. Since bounded sequences of complex numbers have convergent subsequences, a

diagonal argument produces a subsequence gk = fnk that converges pointwise on S.

I claim that {gk} is uniformly Cauchy on K, i.e. a Cauchy sequence in the Banach

space C(K).

For this, let ε > 0 be given. Use equicontinuity to choose a positive integer N

such that if z, w ∈ K and |z − w| < 1/N , then |f(z) − f(w)| < ε/3 for each f ∈ A.

Next, use the pointwise convergence of {gk} on S to choose nε such that whenever

k and j are integers > nε and a is the center of a disc in FN (there are only finitely

many discs here!), we have |gk(a) − gj(a)| < ε/3. I claim that if j, k > Nε then for

every z ∈ K we have |gk(z)− gj(z)| < ε, which will prove the desired result: {gk} is

uniformly Cauchy on K.

For this, fix j, k > Nε, and fix a point z ∈ K. Since Fn is a cover of K there is a

disc ∆ ∈ Fn that contains z. Let a be the center of ∆, so that |z − a| < 1/N . Then

|gk(z)− gj(z)| ≤ |gk(z)− gk(a)|+ |gk(a)− gj(a)|+ |gj(a)− gj(z)|
<

ε

3
+

ε

3
+

ε

3
= ε,
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where in the second line the first and last inequality come from the proximity of z to

a, and and the middle one from the choice of nε.

4.12. Exercise. Show that the converse of Theorem 4.11 holds also: If every sequence

in A has a convergent subsequence, then A is uniformly bounded and equicontinuous.

(Suggestion: The hypothesis really asserts that A is relatively compact in C(K). An

equivalent formulation of relative compactness thus, for every ε > 0 there is a finite

covering of A by balls of radius ε with centers in A. These centers are the key.)

4.13. Theorem. Suppose A ⊂ H(U) is uniformly bounded on a compact subset K

of U . Then A is equicontinuous on K.

Proof. Choose 0 < r < 1 so that K ⊂ {|z| < r}, and let γ be the circle {|z| = r},
oriented positively, and let

d = dist (K, γ)
def
= inf{|w − z| : w ∈ K and z ∈ γ}.

Since K and γ are disjoint and compact, d > 0.

Since γ is compact we know that

M
def
= sup{|f(z)| : z ∈ γ, f ∈ A} <∞.

Fix z1 and z2 in K, and fix f ∈ A. The Cauchy integral formula, along with a little

bit of algebra shows that

f(z1)− f(z2) =
z1 − z2

2πi

∫
γ

f(z)

(z − z1)(z − z2)
dz

from which it follows quickly that

|f(z1)− f(z2)| ≤
Mr

d2
|z1 − z2|.

Since the constants M ,r, and d do not depend on either f ∈ A or z1, z2 ∈ K, this

shows that A is equicontinuous on K.

4.14. The Osgood-Stieltjes Theorem. If A ⊂ H(U) is uniformly bounded on

every compact subset of U , then every sequence in A has a subsequence that converges

uniformly on compact subsets of U .

Proof. This is a standard diagonal argument. Let ∆j be the closed disc of radius

1− 1
j
, centered at the origin, so U is the union of all these subdiscs. Suppose {fn} is a

sequence of functions in A. By Theorems 4.13 and 4.11 there is a subsequence {f1,n}
of {fn} that converges uniformly on ∆1. Similarly there exists a subsequence {f2,n}
of {f1,n} that converges uniformly on ∆2. Continuing in this manner we obtain an

infinite matrix {fm,n} of functions where:

• Each row is a subsequence of the previous row.

• The first row is a subsequence of the original sequence {fn}.
• The n-th row converges uniformly on ∆n.
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The “diagonal sequence” {fn,n} is therefore a subsequence {fn} that converges uni-

formly on each of the closed discs ∆j, and therefore uniformly on every compact

subset of U .

4.15. Proof of Theorem 4.5: sufficiency. Suppose Cϕ takes every sequence that

is bounded in H2 and convergent uniformly on compact subsets of U into a sequence

that converges to zero in H2. Our goal is to show that the image of the unit ball of

H2 is relatively compact.

Fix a sequence {fn} in the closed unit ball B of H2. According to the Growth

Estimate §3.6, B is bounded uniformly on compact subsets of U , so by Theorem 4.14

the sequence {fn} has a subsequence gk = fnk that converges uniformly on compact

subsets of U to a function g ∈ B. Thus {gk− g} ≤ 2 for every k, and gk → uniformly

on compact sets, hence the hypothesis on Cϕ implies that ‖gk ◦ϕ− g ◦ϕ‖ → 0. This

shows that every sequence in Cϕ(B) has a convergent subsequence, i.e., that Cϕ(B)

is relatively compact. This completes the proof.


