
The Numerical Ranges of Automorphic Composition Operators*

Paul S. Bourdon

Washington and Lee University, Lexington, VA 24450
E-mail: pbourdon@wlu.edu

Joel H. Shapiro

Michigan State University, East Lansing, MI 48824
E-mail: shapiro@math.msu.edu

We investigate the shape of the numerical range for composition operators
induced on the Hardy space H2 by conformal automorphisms of the unit disc.
We show that usually, but not always, such operators have numerical ranges
whose closures are discs centered at the origin. Surprising open questions arise
from our investigation.

Key Words: Numerical range, composition operator

1. INTRODUCTION

We work on the Hardy space H2 of functions f holomorphic on the open
unit disc U with square-summable MacLaurin series coefficients. More
precisely, a function f(z) =

∑∞
n=0 f̂(n)zn, holomorphic on U, belongs to

H2 if and only if ‖f‖2 :=
∑∞

n=0 |f̂(n)|2 < ∞. The functional ‖·‖ so defined
is a norm on H2 that makes it into a Hilbert space that is isometrically
isomorphic, via the map f → f̂ , to the sequence space �2.

A consequence of a famous theorem of J. E. Littlewood [15, 1925] asserts
that each holomorphic selfmap ϕ of U induces on H2 a bounded compo-
sition operator Cϕ defined by the equation Cϕf = f ◦ ϕ (f ∈ H2).
That Cϕ maps the space of all holomorphic functions on U linearly into
itself is elementary, but Littlewood’s result that Cϕ also preserves H2 is
quite remarkable (see [8, Chapter 1] or [21, Chapters 1 and 9] for more on
Littlewood’s theorem).

* The research of both authors was supported in part by the National Science Foun-
dation
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Littlewood’s theorem raises the possibility of connecting operator theory
with the exquisite function theory of holomorphic selfmaps of the unit disc
that developed roughly between 1870 and 1930, driven by the work of
H. A. Schwarz, Koenigs, Julia, Wolff, Denjoy and Carathéodory (see, e.g.,
[21, Chapters 4–6]). Beginning with seminal papers of Ryff [19], Nordgren
[17] and H. J. Schwartz [20] in the late 1960s, this subject has been pursued
enthusiastically by a growing cadre of researchers. To get an idea of the
current flavor of the subject the reader may consult the monographs [5]
and [21], and the recent conference proceedings [12].

The driving force behind this paper is the operator theoretic concept of
numerical range. For a bounded operator T on a Hilbert space H this is
the subset W (T ) of the complex plane that is the image of the unit sphere
of H under the quadratic form associated with T , that is,

W (T ) := {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}.

It is clear that every eigenvalue of T belongs to W (T ), and a little more
effort shows that the spectrum of T belongs to the closure W (T ) of W (T )
(we will observe shortly that W (T ) need not always be closed). The most
remarkable fact about the numerical range, however, is that it is always
convex . This is the famous theorem of Toeplitz [23] and Hausdorff [14],
for which many additional proofs have been given since their time. None,
however, reduces the result to a triviality; see [11, Chapter 1], [6], and [7]
(most conveniently found [13, Problem 210]) for a few of these.

Because of the Toeplitz-Hausdorff theorem and the spectral containment
mentioned above, W (T ) contains the convex hull of the spectrum of T . A
striking difference between spectrum and numerical range is that while the
former is similarity invariant, the latter is not; it is precisely this lack of
similarity invariance that dominates the work of this paper.

Here we study the numerical ranges of composition operators Cϕ induced
by conformal automorphisms ϕ of U. It is well known that these are all
linear fractional transformations, and that they come in three flavors (see,
e.g., [21, Chapter 0]):

Hyperbolic Conformally conjugate to a positive dilation; two fixed points,
both on ∂U.

Parabolic Conformally conjugate to a translation; fixed point on ∂U, no
other fixed point on the Riemann sphere.

Elliptic Conformally conjugate to a rotation about the origin; two fixed
points in the sphere, one in U, one outside its closure.

A quick look at the elliptic case suffices to capture the tenor of our inves-
tigation. If ϕ is an elliptic automorphism that fixes the origin, then it is a
rotation through some angle α: ϕ(z) = eiαz (z ∈ U), in which case Cϕ is a



NUMERICAL RANGES 3

unitary operator on H2. If α is a rational multiple of π, or equivalently if ϕ
(and therefore Cϕ) is periodic with some period n, then it is elementary to
check that W (Cϕ) is the closed polygon whose vertices are the n-th roots
of unity, while if α is an irrational multiple of π then W (Cϕ) consists of
the open unit disc along with the dense subset {einα : n ∈ Z} of the unit
circle (note that in this case W (Cϕ) is not closed); see [16, Prop. 2.1] for
the details.

However the fun begins when ϕ is an elliptic automorphism that does
not fix the origin. We show that if such a map ϕ is not periodic then the
closure of W (Cϕ) is a disc centered at the origin (Theorem 4.1.). However
we have only crude estimates of the radius of this disc, and we do not know
what points of the boundary, if any, belong to W (Cϕ). If ϕ is periodic then,
surprisingly, the situation seems even murkier: For period 2 we can show
that the closure of W (Cϕ) is an elliptical disc with foci at ±1 (Corollary
4.4.), but for period n > 2 then all we can say is that the numerical range
of Cϕ has n-fold symmetry—while we strongly suspect that in this case the
closure is not a disc, we are not yet able to prove this.

The hyperbolic and parabolic cases offer their own challenges. For these
we are able to show that W (Cϕ) is a disc centered at the origin (Theorem
3.1.), but we do not know if this disc is open or closed, and we do not know
its radius. It is intriguing, however, that in the “canonical hyperbolic”
case (antipodal fixed points on ∂U) we do know all of this: here W (Cϕ) is
the open disc centered at the origin whose radius is the spectral radius of
Cϕ (Theorem 3.2.). Unfortunately our method of proof does not survive a
conformal conjugation.

It is this juxtaposition of the straightforward and the mysterious that
makes numerical ranges of composition operators interesting to study; we
hope readers of this paper will agree, and be motivated to attack the prob-
lems we leave open here. In a related paper [1] we consider the numerical
ranges of composition operators induced by non-automorphic selfmaps of
U, focusing this time on the problem of when 0 ∈ W (Cϕ)—an apparently
straightforward problem that evolves, like the present one, into an intrigu-
ing adventure. In [16] Valentin Matache determines (among other things)
W (Cϕ) where ϕ is a constant multiple of a monomial, and a section of
[22] relates numerical ranges and composition operators induced by inner
functions.

2. PRELIMINARIES

We gather here some well known results about Hardy spaces and convex
sets that will figure in the sequel.
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2.1. More on H2. For each function f(z) =
∑∞

n=0 f̂(n)zn in H2 there
is a naturally associated trigonometric series

∑∞
0 f̂(n)einθ which, by the

Riesz-Fisher theorem, is the Fourier series of some function f∗ ∈ L2 =
L2(m, ∂U) (here m denotes arclength measure on ∂U, normalized to have
total mass one). Clearly the map f → f∗ takes H2 isometrically onto
the closed subspace of L2 consisting of functions whose Fourier coefficients
of negative index vanish. The boundary function f∗ turns out to be the
natural extension of f to ∂U, namely the radial limit function f∗(ζ) :=
limr→1− f(rζ), where the limit exists for m almost every ζ ∈ ∂U (see, e.g.,
[8, Chapter 1] or [18, Chapter 17] for the details). From now on we simply
write f(ζ) instead of f∗(ζ) for each ζ ∈ ∂U at which this radial limit exists,
letting the context determine the meaning of the symbol f .

With these observations the norm and inner product in H2 can be com-
puted on the boundary of the unit circle as:

‖f‖2 =
∫

∂U

|f |2 dm and 〈f, g〉 =
∫

∂U

fg dm (f, g ∈ H2). (1)

2.2. The support function of a convex set. The following ma-
terial is needed for the proof of Theorem 4.2.. Suppose E is a bounded
convex subset of the plane. For 0 ≤ θ < 2π define

p
E
(θ) = sup{Re (e−iθz) : z ∈ E}. (2)

Note that for z ∈ C the number Re (e−iθz) is the real dot product of the
plane vectors eiθ and z, i.e., the signed length of the projection of z in the
direction of eiθ. Thus the set

Πθ := {z ∈ C : Re (e−iθz) ≤ p
E
(θ)}

is a closed half-plane that contains E and intersects ∂E. The boundary Lθ

of Πθ is called the support line of E perpendicular to eiθ. The magnitude
of p

E
(θ) is the orthogonal distance from the origin to Lθ. The function

p
E

: [0, 2π) :→ R defined by (2) is called the support function of E. The
Hahn-Banach theorem insures that the closure of E is the intersection of
all the half-planes Πθ as θ runs from 0 to 2π, hence two bounded convex
sets with the same support function have the same closures.

In our applications the set E will always contain the origin in its closure,
in which case p

E
≥ 0. We will be particularly interested in the support

function of a standard ellipse.

2.3. Proposition. Suppose a, b > 0 and E is the elliptical disc deter-
mined by the inequality x2

a2 +y2

b2 ≤ 1. Then p
E
(θ) =

√
a2 cos2 θ + b2 sin2 θ (0 ≤

θ < 2π).
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Proof. We parameterize the boundary of E by the complex equation
z(t) = a cos t + i b sin t, with 0 ≤ t < 2π, so that the derivative z′(t) =
−a sin t+i b cos t is tangent to the boundary at the point z(t), and therefore
determines a support line Lθ for E at z(t), where θ is the angle between the
horizontal axis and the vector b cos t + i a sin t which is normal to Lθ, and
points away from E. Now p

E
(θ) is the length of the orthogonal projection

of the vector z(t) onto this normal vector, i.e., the magnitude of the (real)
dot product of z(t) with the unit normal

n(t) =
b cos t + i a sin t√
b2 cos2 t + a2 sin2 t

so p
E
(θ) =

ab√
b2 cos2 t + a2 sin2 t

. (3)

All that remains is to determine t in terms of θ. Since n(t) = eiθ this
relation is coded into the equations

cos θ =
b cos t√

a2 cos2 θ + b2 sin2 θ
, sin θ =

a sin t√
a2 cos2 θ + b2 sin2 θ

,

which imply that tan t = b
a tan θ. After a little calculation with right trian-

gles this yields the equations

cos t =
a cos θ√

a2 cos2 θ + b2 sin2 θ
, sin t =

b sin θ√
a2 cos2 θ + b2 sin2 θ

,

which in turn exhibit the denominator of the expression on the right-hand
side of the second equation of (3) as ab/

√
a2 cos2 θ + b2 sin2 θ. The desired

equation for p
E
(θ) follows immediately.

We note in closing that this result persists in the limiting case b = 0.
In this case E is the real segment [−a, a], for which the definition (2) of
support function yields p

E
(θ) ≡ a| cos θ|.

3. PARABOLIC AND HYPERBOLIC AUTOMORPHISMS

3.1. Theorem. Suppose ϕ is a conformal automorphism of U that is
either parabolic or hyperbolic. Then W (Cϕ) is a disc centered at the origin.

Proof. (a) The parabolic case. Let ζ ∈ ∂U be the unique fixed point
that ϕ has in the Riemann sphere. The Möbius transformation τ(z) =
i(ζ + z)/(ζ − z) maps U onto the upper halfplane Π+, and takes ζ to ∞.
The resulting Möbius transformation Φ = τ ◦ ϕ ◦ τ−1 maps Π+ onto itself
and fixes only ∞, so it must be a real translation: Φ(w) = w + a (w ∈
C ∪ {∞}), with a ∈ R. Now the composition operator CΦ operating on
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the space H(Π+) of all functions holomorphic on Π+ has, for each γ ∈
C, an eigenfunction Eγ defined by: Eγ(w) = eγw (w ∈ Π+), where the
corresponding eigenvalue is eγa.

We are particularly interested in the eigenfunctions Eit for t ≥ 0. Each
one is a bounded analytic function on Π+, and pulls back to a bounded
eigenfunction et = Eit ◦ τ of Cϕ on H2, corresponding to the eigenvalue
eiat. In fact this eigenfunction is inner because Eit itself has modulus one
at every point of the real axis.

Suppose w ∈ W (Cϕ). We are going to show that eitw ∈ W (Cϕ) for
every t > 0, which will establish the desired circularity. We know that
w = 〈Cϕf, f〉 for some unit vector f ∈ H2. For t > 0 let ft = et · f
(pointwise product) and set wt = 〈Cϕft, ft〉. Because et is inner, ft is, by
(1), also a unit vector in H2; hence wt ∈ W (Cϕ). Now

Cϕft = (Cϕet) · (Cϕf) = eiatet · Cϕf,

hence

wt = eiat〈et ·Cϕf, et ·f〉 = eiat

∫
∂U

et ·Cϕf · et ·f dm = eiat

∫
∂U

Cϕf ·f dm,

with the last line following from the fact that |et| ≡ 1 on ∂U\{ζ}. Thus
for each t > 0,

wt = eiat〈Cϕf, f〉 = eiatw,

so w belongs to an origin-centered circle of points that lie in W (Cϕ). This
completes the proof that W (Cϕ) is a disc centered at the origin.

(b) The hyperbolic case. The argument follows the same lines as the
parabolic case, but is complicated by the fact that the eigenfunctions of
Cϕ are no longer inner.

We are given that ϕ is a Möbius transformation that maps U onto itself
and fixes two distinct points ζ0 and ζ∞ of ∂U. Let us choose our notation
so that ζ0 is the attracting fixed point of ϕ. The Möbius transforma-
tion τ0(z) ≡ (ζ0 − z)/(ζ∞ − z) maps the unit circle to an extended line,
taking ζ0 to 0 and ζ∞ to ∞. Thus for an appropriately chosen unimodular
complex number ω the Möbius transformation τ = ω ·τ0 maps the unit disc
to the upper half-plane and the unit circle to the extended real line. This
time the mapping Φ = τ ◦ ϕ ◦ τ−1 fixes both the origin and ∞, and since
it maps Π+ onto itself it must be a positive dilation, say Φ(w) ≡ rw for
some positive number r �= 1. Because we have chosen ζ0 to be attracting
for ϕ, the origin must be attracting for Φ, so 0 < r < 1. Let us call r the
dilation parameter of both Φ and ϕ.

As in part (a) we begin with a convenient collection of eigenfunctions for
CΦ : H(Π+) → H(Π+). For γ ∈ C let Eγ(w) = wγ = exp{γ Log w} (w ∈
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Π+), where Log denotes the principal branch of the logarithm function.
One checks easily that Eγ is an eigenfunction of CΦ for the eigenvalue rγ .
Just as in the parabolic case, we will be particularly interested in the case
of unimodular eigenvalues, i.e., γ pure imaginary.

We claim that each of the eigenfunctions Eit is bounded (t ∈ R). In
fact for 0 �= w in the closed upper halfplane Π+ we have |Eit(w)| =
exp{−t Argw}, where Arg w is the principal branch of the argument of
w, defined to take values in the interval [0, π] on Π+\{0}. Note that, in
particular, |Eit| is bounded on Π+ (< 1 if t > 0 and < eπ|t| if t < 0), ≡ 1
on the positive real axis, and ≡ e−πt on the negative real axis.

To pull these observations back to the unit disc, for t ∈ R set et = Eit◦τ ,
a bounded analytic function on U with Cϕet = ritet. Let Γ+ be the arc of
the unit circle that gets taken by τ to the positive real axis and Γ− that
arc taken to the negative real axis. Then the work of the last paragraph
shows that |et| is bounded on U, ≡ 1 on Γ+, and ≡ e−πt on Γ−.

Now down to business! Fix 0 �= w ∈ W (Cϕ); our goal is to show that
W (Cϕ) contains the entire circle through w centered at the origin. Initially
the argument will proceed exactly as the one for the parabolic case. We
have w = 〈Cϕf, f〉 for some unit vector f ∈ H2, and we set ft = et · f for
each t ∈ R. Since et is bounded on U we have ft ∈ H2 and may proceed
as before to calculate

Cϕft = (Cϕet) · (Cϕf) = (ritet) · Cϕf,

so that

〈Cϕft, ft〉 = rit〈et · Cϕf, etf〉 = rit

∫
∂U

et · Cϕf · et · f dm

Upon recalling the constant values that et assumes on Γ+ and Γ−, we have

〈Cϕft, ft〉 = rit(A + e−2πtB), (4)

where

A =
∫

Γ+

Cϕf · f dm and B =
∫

Γ−

Cϕf · f dm. (5)

In order to produce a point of W (Cϕ) we have to divide the result of this
calculation by

‖ft‖2 = C + e−2πtD, (6)

where

C =
∫

Γ+

|f |2 dm and D =
∫

Γ−

|f |2 dm (7)
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(note in particular that C + D = ‖f‖2 = 1), thus for each t ∈ R,

wt :=
〈Cϕft, ft〉

‖ft‖2
= rit A + e−2πtB

C + e−2πtD
, (8)

is a point of W (Cϕ). Because w0 = w we can view Ωw := {wt : t ∈ R} as a
curve in C that passes through w and lies entirely in the numerical range
of Cϕ.

Now observe that |wt| converges to ρ+ := |A|/C as t → +∞ and to
ρ− := |B|/D as t → −∞. Because of the way Ωw spirals around the origin,
each of the circles {|z| = ρ+} and {|z| = ρ−} lies in its closure, hence by
convexity the closures of the discs ∆+ := {|z| < ρ+} and ∆− := {|z| < ρ−}
lie in W (Cϕ), so by convexity the discs themselves lie in W (Cϕ).

Where is w relative to these discs? Because neither f nor Cϕf is the
zero-function, neither boundary function can vanish a.e. on a subset of ∂U

having positive measure. In particular, neither C nor D is zero. There are
three possibilities:

|B|
D

<
|A|
C

,
|B|
D

>
|A|
C

, or
|B|
D

=
|A|
C

.

In the first case

|w| ≤ |A| + |B|
C + D

<
|A|
C

= ρ+, (9)

so w ∈ ∆+. In the second case the same kind of estimate shows that
|w| < ρ−, hence w ∈ ∆−. Thus in both cases the circle of radius |w|
centered at the origin lies entirely in W (Cϕ).

For the third case we have

|A| + |B|
C + D

=
|B|
D

=
|A|
C

:= ρ > 0,

the strict positivity of ρ coming from the fact that A + B = w, where
we have assumed that w �= 0. Thus ∆+ = ∆− := ∆, and the inequality
(9) is replaced by |w| ≤ ρ, so w lies in the closure of ∆. Now we have
to consider two subcases. If |w| < ρ then, just as in the previous cases,
w ∈ ∆ ⊂ W (Cϕ). If, on the other hand, |w| = ρ, then there is equality
in both inequalities of (9), and the first dictates that the complex numbers
A and B point in the same direction; A = ω|A| and B = ω|B| for some
unimodular ω. It follows that wt = ritωρ for every real t, hence Ωw,
which we recall lies entirely in W (Cϕ), is the circle of radius ρ = |w|.
This completes the proof that W (Cϕ) is a disc centered at the origin.
We remark that were it not for this last subcase, we could conclude that
W (Cϕ) is actually open (see Theorem 3.2. below for more on “openness”).
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For ϕ a hyperbolic or a parabolic automorphism the result above shows
that W (Cϕ) is either open or it is closed, but—with one exception—we do
not know which, and we have little information about the radius of W (Cϕ),
other than the general fact [11, Theorem 1.3–1, page 9] that the numerical
radius of a Hilbert space operator T must lie between ‖T‖/2 and ‖T‖. Thus
the radius of W (Cϕ) is bounded above and below by constant multiplies
of (1 − |ϕ(0)|)−1 (see the discussion centered on (11) below). Additional
comments about the radius of W (Cϕ) may be found in Section 5.2. below.

The exceptional case is that of a “canonical” hyperbolic automorphism,
i.e., one with antipodal fixed points (ζ∞ = −ζ0 in part (b) of the proof
above). Here we have a complete characterization of the numerical range.

3.2. Theorem. If ϕ is a canonical hyperbolic automorphism of U with
dilation parameter 0 < r < 1, then W (Cϕ) is the open disc of radius 1/

√
r

centered at the origin.
Proof. We may, without loss of generality, take +1 to be the attractive

fixed point of ϕ and −1 to be the repulsive one. Were this not the case
initially, a rotational conjugation of ϕ would make it so, and this would
induce a unitary equivalence (which does not alter the numerical range)
of the respective composition operators. With this normalization ϕ =
τ−1 ◦ Φ ◦ τ where Φ(w) ≡ rw and the map τ , this time defined by τ(z) =
(1 − z)/(1 + z) for z ∈ C, maps the unit disc to the open right half plane
and the unit circle to the extended imaginary axis. Upon working out the
arithmetic one sees quickly that for z ∈ U,

ϕ(z) =
ρ + z

1 + ρz
where ρ :=

1 − r

1 + r
. (10)

In [17] Nordgren showed that for any automorphism ϕ of the unit disc:

‖Cϕ‖ =

√
1 + |ϕ(0)|
1 − |ϕ(0)| (11)

(and that furthermore the right hand side of this equation is an upper
bound for the norm of any composition operator Cϕ on H2, see also [21,
page 16]). In our canonical hyperbolic case ϕ(0) = ρ, so (10) and (11)
yield ‖Cϕ‖ = 1/

√
r. In particular, W (Cϕ) lies in the closed disc {|w| ≤

1/
√

r}. On the other hand, referring back to the discussion of eigenvalues
and eigenvectors that played an important role in part (b) of the proof of
the previous theorem, we see that for each γ ∈ C the function eγ(z) :=
τ(z)γ (z ∈ U) is an eigenvector of Cϕ : H(U) → H(U) that corresponds
to the eigenvalue rγ . Now eγ ∈ H2 if and only if |Re γ| < 1/2, so in
particular all the corresponding eigenvalues, which form an open annulus
{√r < |w| < 1/

√
r}, lie in W (Cϕ).
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Before proceeding further we remark that to this point the argument
simply repeats a portion of the one Nordgren used to find the spectrum of
Cϕ. Now we strike out on our own! By the Toeplitz-Hausdorff theorem
W (Cϕ) must contain the entire open disc ∆ := {|w| < 1/

√
r}. But we

have already seen that W (Cϕ) lies in the closed disc ∆, so it coincides with
this disc. Thus to complete the proof of our theorem (which in the current
notation states that W (Cϕ) = ∆) we need only show that no point of ∂∆
belongs to W (Cϕ).

For this it will be enough to show that no point on ∂∆ is an eigenvalue
of Cϕ. Indeed, once this has been established, then if |w| = 1/

√
r and

w = 〈Cϕf, f〉 for some unit vector f ∈ H2, we would have

‖Cϕ‖ =
1√
r

= |w| = |〈Cϕf, f〉| ≤ ‖Cϕf‖ ‖f‖ ≤ ‖Cϕ‖.

Thus there would be equality throughout this display, and in particular in
the first inequality, which is the Cauchy-Schwartz inequality. This could
only happen if Cϕf were a constant multiple of f . By its definition, w
would then have to be this constant, making w an eigenvalue of Cϕ—a
contradiction.

So all depends on showing that the boundary of ∆ contains no eigenvalue
of Cϕ. Fix w ∈ ∂∆, and suppose that Cϕf = wf for some f ∈ H2. Our
goal is to show that f ≡ 0 on U. To this end fix z ∈ U and observe that
for each positive integer n,

wnf(z) = Cn
ϕf(z) = f(ϕn(z)) (12)

where ϕn is the composition of ϕ with itself n times. Now on one hand
there is this standard estimate for functions in H2:

|f(p)| = o

(
1√

1 − |p|

)
as |p| → 1− (13)

(the corresponding “big-oh” estimate, |f(p)| ≤ ‖f‖/
√

1 − |p|2, follows via
the Cauchy-Schwarz inequality from the power series representation of f ,
and the “little-oh” improvement is an easy consequence of this and the den-
sity of polynomials in H2). Upon letting p = ϕn(z) in (13) and substituting
the result into (12) we obtain (because ϕn(z) → 1 as n → ∞),

r−n/2|f(z)| = o

(
1√

1 − |ϕn(z)|

)
(n → ∞). (14)

To finish the proof we need to get serious about |ϕn(z)|. Because ϕn is
a canonical hyperbolic automorphism with the same fixed points as ϕ and
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dilation parameter rn (i.e., ϕ(z) ≡ τ−1(rτ(z)), so ϕn(z) ≡ τ−1(rnτ(z))),
an explicit formula for ϕn is given by (10) with ρ replaced by

ρn := (1 − rn)/(1 + rn) (n = 1, 2, . . .). (15)

It follows that:

2(1 − |ϕn(z)|) ≥ 1 − |ϕn(z)|2 =
(1 − ρ2

n)(1 − |z|2)
|1 − ρnz|2

≥ 1 − |z|2
(1 + |z|)2 (1 − ρn) ≥ 1 − |z|

1 + |z| rn,

where the equality on the first line is a standard identity that can be found,
e.g., in [10, page 3] or [21, §4.3, pp. 59–60], and the last inequality follows
from (15). This estimate and (14) imply that r−n/2|f(z)| = o

(
r−n/2

)
as

n → ∞, which can only happen if f(z) = 0.

We conjecture that the numerical range of any composition operator in-
duced by a hyperbolic automorphism is an open disc, but have, as yet, no
proof of this. The problem is that for non-canonical hyperbolic automor-
phisms the norm of Cϕ is no longer the same as the spectral radius. In
fact an amusing calculation shows that if we keep the attractive fixed point
at +1 and hold the dilation parameter r fixed, then as the repulsive fixed
point tends to +1, the point ϕ(0) → 1, and therefore by (11), ‖Cϕ‖ → ∞.

We can, however, show that if ϕ is a hyperbolic non-automorphism of U

that is “canonical” then W (Cϕ) is an open disc centered at the origin. See
§5.3. below for more details.

4. ELLIPTIC AUTOMORPHISMS

In the Introduction we discussed the numerical range of Cϕ where ϕ is a
“model” elliptic automorphism, i.e., an “ω-rotation” z → ωz where ω is a
complex number of modulus one. The general elliptic automorphism fixes
a point p ∈ U, and has the form ϕ = τ−1 ◦ Φ ◦ τ where Φ is an ω-rotation,
and τ is a conformal automorphism that takes p to the origin. Let us call
ω the rotation parameter of ϕ.

4.1. Theorem. Suppose ϕ is an elliptic automorphism of U with rota-
tion parameter ω. If ω is not a root of unity then W (Cϕ) is a disc centered
at the origin.

Proof. We continue with the notation introduced just before the state-
ment of the theorem. For each non-negative integer n the monomial En(z) =
zn is a bounded eigenfunction of CΦ with eigenvalue ωn. The same is there-
fore true (with Cϕ in place of CΦ) of en = En◦τ , which is an inner function.
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Fix w ∈ W (Cϕ), and a unit vector f ∈ H2 for which w = 〈Cϕf, f〉. As
is now our custom, let fn = en · f for each non-negative integer n, noting
that f0 = f . Now just as in our parabolic argument, because en is an
eigenfunction for ωn that is inner ,

〈Cϕfn, fn〉 = ωn〈Cϕf, f〉 = ωnw. (16)

Because ω is not a root of unity, the points {ωn}∞0 are dense in the unit
circle, so w as a limit point of the set {ωn w}∞0 , each point of which, as (16)
reveals, belongs to W (Cϕ). Thus the closure of W (Cϕ) contains the cir-
cle through w that is centered at the origin, hence this closure is itself a disc
with center at the origin.

In case ω is a root of unity we strongly suspect that W (Cϕ) is not a disc,
but up to now have a proof only for the case ω = −1. In this case C2

ϕ = I,
so our result follows from the more general one below.

4.2. Theorem. Suppose T �= ±I is an operator on the Hilbert space H
with T 2 = I. Then W (T ) is a (possibly degenerate) elliptical disc with foci
at ±1. In particular, it is not a circular disc.

Proof. We compute the support function p
T

of W (T ) in this standard
fashion:

p
T
(θ) := sup{Re (e−iθz) : z ∈ W (T )}

= sup{Re (e−iθ〈Tf, f〉 : f ∈ H, ‖f‖ = 1}
= sup{〈Hθf, f〉 : f ∈ H, ‖f‖ = 1},

where Hθ := Re (e−iθT ) = 1
2 (e−iθT + eiθT ∗).

Claim: W (T ) = −W (T ).

We defer the proof of this claim so as not to interrupt the flow of argument.
Since Hθ is a self-adjoint operator on H this claim and the last calculation

show that for each 0 ≤ θ < 2π,

p
T
(θ) = sup{|〈Hθf, f〉| : f ∈ H, ‖f‖ = 1} = ‖Hθ‖.

Now for every unit vector f ∈ H a routine computation shows that for each
θ,

‖Hθf‖2 =
1
4

{
‖Tf‖2 + ‖T ∗f‖2 + 2 Re (e−2iθ〈T 2f, f〉)

}
(17)

which, upon setting

β(t) =
1
2

sup{‖Tf‖2 + ‖T ∗f‖2 : f ∈ H, ‖f‖ = 1}
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and noting our hypothesis that T 2 = I, yields

p
T
(θ) =

√
β(T )

2
+

cos 2θ

2

=

√
β(T ) + 1

2
cos2 θ +

β(T ) − 1
2

sin2 θ

=
√

a2 cos2 t + b2 sin2 t,

where a =
√

(β(T ) + 1)/2 and b =
√

(β(T ) − 1)/2 . Our definition of b
depends on the fact that β(T ) ≥ 1. To see that this is so, note that T 2 = I
implies that T has 1 or −1 as an eigenvalue, so if f is a corresponding unit
eigenvector then ‖Tf‖ = 1, hence

‖T ∗f‖ ≥ |〈T ∗f, f〉| = 〈f, Tf〉 = 1.

By the work of Proposition 2.3. and the remark following its proof, p
T

is the support function of either the interval [−1, 1] (if β(T ) = 1) or the
nondegenerate elliptical disc x2

a2 + y2

b2 ≤ 1 (if β > 1). This latter disc has
foci at ±

√
a2 − b2 = ±1, so we are done pending verification of the claim

that −W (T ) = W (T ).
For this it suffices to show that −W (T ) ⊂ W (T ). To get started, note

that 1 must be an eigenvalue for T : for any g ∈ H, T (Tg+g) = Tg+g and
Tg+g must be nonzero for some g ∈ H because T �= −I. Similarly, −1 must
also be an eigenvalue. Let M denote the eigenspace for T corresponding
to its eigenvalue 1.

Suppose w ∈ W (T ) so that there is a vector f ∈ H of norm 1 such that
w = 〈Tf, f〉. Decompose f as a sum of a vector g ∈ M and a vector
h ∈ M⊥. If h = 0, then w = 1 and −w = −1 is in W (T ) since −1 is an
eigenvalue. If g = 0, then

w = 〈Th, h〉 = 〈(Th + h) − h, h〉 = 〈(Th + h), h〉 − ‖h‖2 = −1,

where the last equality follows from the fact that (Th + h) ∈ M. Once
again we have that −w = 1 is in W (T ). Thus, we may assume that both
components g and h of f are nonzero elements of H.

Let s = ‖h‖
‖g‖ g − ‖g‖

‖h‖h and observe that ‖s‖2 = ‖h‖2 + ‖g‖2 = ‖f‖2 = 1.
Then because g ∈ M we have

〈Ts, s〉 =
〈‖h‖
‖g‖ g − ‖g‖

‖h‖Th,
‖h‖
‖g‖ g − ‖g‖

‖h‖h

〉

= ‖h‖2 − 〈Th, g〉 +
‖g‖2

‖h‖2
〈Th, h〉
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= (1 − ‖g‖2) − 〈Th, g〉 +
1 − ‖h‖2

‖h‖2
〈Th, h〉

= −
[
‖g‖2 + 〈Th, g〉 + 〈Th, h〉

]
+ (1 +

1
‖h‖2

〈Th, h〉)

= −[〈T (g + h), g + h〉] +
〈Th + h, h〉

‖h‖2
.

Upon recalling that f = g+h and Th+h ∈ M, we see that the last line of
the calculation above is just −〈Tf, f〉 = −w, as desired.

4.3. Remark. In this last result: The degenerate case W (T ) = [−1, 1]
occurs if and only if the involution T is self-adjoint . To see why this is
true, note that if T is self-adjoint then β(T ) = 1, hence b = 0 in the proof
above, so that W (T ) = [−1, 1]. Conversely, whenever W (T ) ⊂ R then T is
self-adjoint [11, Theorem 1.2-2].

4.4. Corollary. If ϕ is an elliptic automorphism of U with multi-
plier −1, then W (Cϕ) is a (possibly degenerate) ellipse with foci ±1. The
degenerate case occurs if and only if ϕ(0) = 0, in which case ϕ(z) ≡ −z.

5. FINAL REMARKS

5.1. The essential numerical range. For an operator T on a Hilbert
space this is the intersection We(T ) of all the sets W (T+K) where K ranges
through all compact operators on the space. Clearly We(T ) is compact,
convex, and invariant under compact perturbations of T . A result of Fill-
more, Stampfli, and Williams [9] characterizes We(T ) as the set of points
w for which there exists a weakly null sequence {xn} of unit vectors such
that 〈Txn, xn〉 → w. A careful analysis of the proofs given in Sections 3
and 4 (see [2] for the details) discloses that for each of the operators in
question, each point of the numerical range is obtained as precisely such
a limit, hence: W (Cϕ) = We(Cϕ) for each conformal automorphism ϕ of
U.

5.2. The numerical radius. For an operator T on a Hilbert space
this is

w(T ) := sup{〈Tx, x〉 : ‖x‖ = 1}.

We have already mentioned that ‖T‖/2 ≤ w(T ) ≤ ‖T‖. Another lower
bound for w(T ) is furnished by (17), which is valid for any Hilbert space
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operator. Upon setting T = Cϕ, θ = 0 and f ≡ 1 in (17) we obtain

w(Cϕ) ≥ 1
2

√
3 +

1
1 − |ϕ(0)|2

Note that the quantity on the right exceeds 1 whenever ϕ(0) �= 0, and by
using (11) one sees readily that it exceeds ‖Cϕ‖/2 whenever |ϕ(0)| < (

√
13−

1)/4. Clearly this is just the beginning; more effort should produce better
estimates of the numerical radius for the composition operators studied
here.

5.3. More open discs. The proof of Theorem 3.2. also establishes
that W (Cϕ) is an open disc for a certain class of hyperbolic linear fractional
selfmaps of U that are not automorphisms. These are the hyperbolic non-
automorphisms ϕ that have attractive fixed point (necessarily) on ∂U and
repulsive one either at ∞ (e.g., ϕ(z) ≡ (1 + z)/2) or on the ray through
the origin emanating from the attractive fixed point (hence in C\U, with
U lying between the two fixed points).

For such maps ϕ the crucial facts used in the proof of Theorem 3.2.
continue to hold for Cϕ, namely:

1. The spectrum of Cϕ contains an annulus of eigenvalues centered at
the origin having outer radius equal to the spectral radius of Cϕ, and this
equal to 1/

√
r, where r is the derivative of ϕ at its attractive fixed point

(see [3, Theorem 2.1 and Theorem 4.5]).
2. The norm and spectral radius of Cϕ coincide (because, e.g., C∗

ϕ is
subnormal; see [4, Theorem 7]).

3. No complex number of modulus 1/
√

r = ‖Cϕ‖ can be an eigenvalue
of Cϕ (by estimates similar to those in the last paragraph of the proof of
Theorem 3.2.).

Thus the proof of Theorem 3.2. actually yields this:

5.4. Theorem. If ϕ is any hyperbolic linear fractional selfmap of U

with repulsive fixed point either at ∞ or on the ray through the origin
that emanates from the attractive fixed point, then W (Cϕ) is the open disc
{|w| < 1/

√
r}, where r is the derivative of ϕ at its attractive fixed point.
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