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Abstract
Let f : X → X be a homeomorphism of the compact metric space

X. A symbolic extension of (f,X) is a subshift on a finite alphabet
(g, Y ) which has f as a topological factor. We show that a generic
C1 non-hyperbolic (i.e.,non-Anosov) area preserving diffeomorphism
of a compact surface has no symbolic extensions. For r > 1, we
exhibit a residual subset R of an open set U of Cr diffeomorphisms
of a compact surface such that if f ∈ R, then any possible symbolic
extension has topological entropy strictly larger than that of f . These
results complement the known fact that any C∞ diffeomorphism has
symbolic extensions with the same entropy. We also show that Cr

generically on surfaces, homoclinic closures which contain tangencies
of stable and unstable manifolds have Hausdorff dimension two.

1 Introduction

Dynamical systems are studied on three major levels: measure-theoretic,
topological, and smooth, where the amount of structure increases from left
to right. Connections between properties appearing on different levels of
structure have always gained a high interest.

In this paper, by (f,X) we will mean a topological dynamical system, i.e.,
a homeomorphism f of a compact metric space X to itself. However, most
of our attention will be focused on the smooth case of a Cr diffeomorphism
acting on a compact Riemannian manifold M . We investigate how the ex-
istence and precision of certain “good” topological models of these systems
depend on the degree of smoothness.
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A well studied class of systems is the collection of subshifts over finite
alphabets defined as follows: Let Σ be a finite set viewed as a discrete topo-
logical space. We equip the countable product ΣZ of bi-infinite sequences of
elements of Σ with the product topology. The left shift map σ : ΣZ → ΣZ

given by

σ(a)(i) = a(i+ 1) ∀i, a = (. . . a(i), a(i+ 1), . . . ).

is a homeomorphism. Any pair (σ,X), where X is a closed σ-invariant subset
of ΣZ is called a symbolic system (or subshift). Subshifts possess a number
of good properties such as expansiveness (recall that (f,X) is expansive if
there exists a constant ε > 0 such that if x 6= y ∈ X then d(fnx, fny) > ε for
some n ∈ Z), uppersemicontinuity of the entropy function µ 7→ hµ(f), and
finiteness of the topological entropy htop(f). Due to the convenient “digital”
form these systems allow an abundance of applications in more practical
areas such as information theory, signal processing, and computer science.
The same form makes them also relatively easy for abstract studies. For these
reasons building a symbolic model has been a key tool in the investigation
of dynamical systems since the beginning of the 20th century. Classical
examples of such approach are:

1) describing a homotopy class of a trajectory of a geodesic flow on a
surface of negative curvature by a sequence of labels of certain closed curves
(Hadamard, Morse),

2) parameterizing a unimodal map on [0, 1] by the kneading sequence,
obtained by labeling the trajectory of the critical point c with respect to
the partition into [0, c] and (c, 1] – the key notion in the study of chaos,
bifurcations, etc.

The technique relying on labeling trajectories of points usually leads to
symbolic measurable factors of the system. Sometimes such factors provide
full description on the measure-theoretic level. For instance, Krieger’s gen-
erator theorem says that every ergodic measure-preserving invertible trans-
formation with finite entropy has a finite generating partition P , i.e., it is
measure-theoretically isomorphic to the symbolic system represented by the
shift map on the P-names (with an appropriate measure).

Symbolic modeling on the topological level is obviously a much more
subtle task. A classical result by Hedlund states that a system (f,X) is
topologically conjugate to a subshift if and only if f is expansive and X is
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zero dimensional. It is also clear that systems defined on connected spaces
(for example on manifolds) do not even admit symbolic topological factors. In
order to symbolically represent such systems at the same time respecting the
topology one has to weaken the notion of topological conjugacy. Since factors
are impossible, we go in the opposite direction (i.e., we consider extensions).

Recall that (g, Y ) is a topological extension (or, for brevity, an extension)
of (f,X) if there exists a continuous surjection π : Y → X such that fπ = πg.

We agree to measure the “imprecision” of the model obtained as an ex-
tension by the amount of entropy added to each invariant measure µ on X.
Namely, with the notation as above, we define

hπ
ext(µ) = sup{hν(g) : π∗ν = µ},

and we will be interested in extensions minimizing this function. An exten-
sion for which hπ

ext(µ) = hµ(f) for every µ (or equivalently hν(g) = hπ∗ν(f)
for every invariant measure ν on Y ) is considered a particularly good model
and is called a principal extension. One can say that such model preserves
the entire information theory of the original system.

We are interested in finding the best symbolic extensions which might
exist. Accordingly, let us introduce some appropriate concepts. For a topo-
logical dynamical system (f,X), let M(f) denote the space of f−invariant
Borel probability measures on X. Let S(f) denote the collection of all pos-
sible symbolic extensions (g, Y, π) of (f,X) (we take S(f) = ∅ if there is no
such extension).

Define
1) the symbolic extension entropy function

hsex(µ) =

{
inf{hπ

ext(µ) : (g, Y, π) ∈ S(f)} if S(f) 6= ∅
∞ if S(f) = ∅

2) the symbolic extension entropy of the system

hsex(f) =

{
inf{htop(g) : (g, Y, π) ∈ S(f)} if S(f) 6= ∅

∞ if S(f) = ∅
,

3) the residual entropy of the system

hres(f) = hsex(f)− htop(f).
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(In some papers the function hres(µ) = hsex(µ) − hµ(f) is also considered.)
Clearly, the above concepts determine topological conjugacy invariants. From
our point of view it is important to place the systems (f,X) into three
categories:

• PSYM = {systems which admit a principal symbolic extension} (which
is equivalent to hsex(µ) ≡ hµ(f), see discussion below),

• SYM = {systems which admit symbolic extensions but none of them
principal} (i.e., with hµ(f) 6≡ hsex(µ) <∞ for some µ), and

• NSYM = {systems with no symbolic extensions at all} (i.e., with
hsex(f) = ∞).

If a system has a symbolic extension, it obviously must have finite topolog-
ical entropy. In 1988, J. Auslander asked the converse question: Does every
topological system with finite topological entropy have a symbolic extension?
In 1990 M. Boyle answered this question negatively. He produced an example
of a (zero-dimensional) finite entropy system with no symbolic extension. He
also coined the notion of residual entropy hres(f), mentioned the possibility of
constructing examples with this parameter strictly between 0 and ∞, and he
proved that topological entropy zero implies residual entropy zero. In 2000
the first author of this paper provided a formula allowing one to evaluate
the residual entropy of any zero-dimensional system [7]. Using this formula,
one can construct systems with an arbitrary pair of values htop(f) > 0 and
hres(f) ≥ 0. The formula also implies that all zero-dimensional asymptoti-
cally h-expansive systems (as defined by M. Misiurewicz in [21]) have residual
entropy zero. In 2002 M. Boyle published his early examples and results in a
joint paper with D. Fiebig and U. Fiebig [3]. They also gave a new example
on a connected space (the two dimensional disc) admitting no symbolic ex-
tensions, and where the derivative exists on a residual (in the sense of Baire)
set. In the same paper they proved that asymptotic h-expansiveness (with
no further restrictions) is equivalent to the existence of a principal symbolic
extension. As remarked in [6] this also holds for continuous maps (not just
homeomorphisms). Using a result of J. Buzzi [4], that every C∞ map of a
compact C∞ manifold is asymptotically h-expansive, this gives the following
striking result:

Every C∞ map on a compact C∞ manifold has a principal symbolic ex-
tension.
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In a recent paper [2], M. Boyle and the first author found direct formu-
las for the evaluation of the function hsex(·) in terms of certain functional-
analytic properties of the so called entropy structure, a sequence of entropy
functions evaluated with respect to appropriately chosen shrinking partitions.
Among other things, it is shown that hsex(f) = supµ hsex(µ). Also, a crite-
rion for attainability of hsex(·) as hπ

ext(·) in a symbolic extension is provided
– it occurs if and only if the former function is affine. It follows immediately
that the existence of a principal symbolic extension (and hence asymptotic
h-expansiveness) is equivalent to the condition hsex(µ) ≡ hµ(f). Theorem
4.3 below gives a summary of some of the results in [2], especially those which
are relevant here. In [6], alternative methods (more topological) of presenting
entropy structures are given.

The above mentioned results give a fairly complete description of the
kinds of symbolic extensions which exist under various topological conditions
(or in the C∞ case). It is natural to ask about the situation for Cr systems
with 1 ≤ r <∞, and the present paper is the first to consider this question.

We obtain two main results:

(A) There exist C1 diffeomorphisms admitting no symbolic extensions. Such
maps are typical among non-Anosov area preserving diffeomorphisms
of surfaces.

(B) For 2 ≤ r < ∞, there exist Cr diffeomorphisms with positive residual
entropy. Such maps are typical in certain open sets of Cr diffeomor-
phisms of surfaces having a homoclinic tangency (see section 6 for the
definition and related properties).

Remark. One may ask why (A) requires the area preserving property
while (B) does not. The answer is that the proofs involve the following
statement.

(C) If there is an open set U of diffeomorphisms so that each f ∈ U has
a persistently non-hyperbolic homoclinic closure Λ(f), then there is a
sequence of diffeomorphisms gi converging to f so that Λ(gi) is defined
for all i and has associated periodic points with intervals of homoclinic
tangencies.
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The situation is that statement (C) is known to be true in the C1 com-
plement of the closure of Anosov area preserving diffeomorphisms and for Cr

open sets of diffeomorphisms with persistent homoclinic tangencies (r ≥ 2).
In fact, this is a significant step in the proofs of the results in [25], [15]. As an
aside, we mention that the work of Pujals-Samborino [35] probably implies
this statement for C1 non-area-preserving surface diffeomorphisms, but, at
present, we make no definite assertion to this effect.

In the proof of result (B) mentioned above we obtain a specific lower
bound for hres(f) which may also be an upper bound in many cases.

Regarding general systems with finitely many derivatives, we also present
the following conjectures.

Conjecture 1.1 For 2 ≤ r < ∞, every Cr self-map f of a compact Rie-
mannian manifold has a symbolic extension.

Remark. This conjecture is of course equivalent to the symbolic exten-
sion entropy hsex(f) being finite. There is, in fact, a natural candidate to
be an upper bound for hsex(f) as follows. Given the map f : M → M of
the compact Riemannian manifold M , and a positive integer n, let Lip(fn)
denote the Lipschitz constant (maximum norm of the derivative) of fn. The
sequence logLip(fn) is subadditive, so the quantity

R(f) = lim
n→∞

1

n
logLip(fn) = inf

n

1

n
logLip(fn)

is well-defined and finite. It is also independent of the choice of Riemannian
metric on M . The quantity `R(f)

r
is the maximum local volume growth of

`−dimensional Cr disks by f as studied by Gromov and Yomdin in [41], [40],
and [11]. In section 6 below, we will see that certain aspects of these volume
growths are relevant to the study of symbolic extensions. The estimates in
Sections 5 and 6 below suggest the following

Conjecture 1.2 For a Cr map f : M →M with 2 ≤ r <∞, we have

hsex(f) ≤ R(f)r(dim M)

r − 1
.

We now proceed to precise statements of our main theorems. To begin,
let us recall a few notions in smooth dynamics.
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Let f be a C1 diffeomorphism of the compact Riemannian manifold M ,
and let Λ be a compact f−invariant set; i.e., f(Λ) = Λ. We say that Λ is a
hyperbolic set if, for each x ∈ Λ there is a splitting TxM = Es

x ⊕ Eu
x of the

tangent bundle to M at x and constants λ > 1, C > 0 such that,

• Df(Es
x) = Es

fx, Df(Eu
x) = Eu

fx, and

• for n ≥ 0, | Dfn
x (v) | ≥ Cλn| v | for v ∈ Eu

x , and | Df−n
x (v) | ≥ Cλn| v |

for v ∈ Es
x.

Thus, Df | Eu and Df−1 | Es are eventually expanding on Λ in the
norms induced by the Riemannian metric. It is known that the conditions
above are independent of the choice of Riemannian metric and that, if they
hold, then there is a metric with C = 1. Also, the subspaces Eu

x , E
s
x depend

continuously on x ∈ Λ.
If the whole mainfold M is a hyperbolic set, then f is called an Anosov

diffeomorphism. Such diffeomorphisms are clearly very special, and, since the
tangent bundles of their underlying manifolds have non-trivial continuous
subbundles, these manifolds also are very special. In particular, a surface
which has an Anosov diffeomorphism must be the two dimensional torus.

Given a compact C∞ manifold M , and a positive integer 1 ≤ r <∞, let
Dr(M) denote the space of Cr diffeomorphisms of M with the uniform Cr

topology. When we consider the space D∞(M) of C∞ diffeomorphisms, we
take the usual inverse limit topology induced by the inclusions D∞(M) →
Dr(M). All of these spaces are Baire spaces; i.e, countable intersections of
dense open sets are dense. We frequently consider residual sets; i.e. those
that contain a countable intersection of dense open sets.

Let A(M) denote the (possibly empty) subset of D1(M) consisting of
Anosov diffeomorphisms. It is known that if A(M) is not empty, then it is
an open set in D1(M) whose complement has non-empty interior. In fact, in
a certain sense even if A(M) 6= ∅, one should think of A(M) as being a rather
small open set in D1(M). A very important property of f ∈ A(M) is struc-
tural stability. If g is C1 close to f , there is a homeomorphism h : M → M
such that hgh−1 = f . Since the set of C∞ diffeomorphisms is dense inD1(M),
it follows that every Anosov diffeomorphism is topologically conjugate to a
C∞ Anosov diffeomorphism, and, hence, has a principal symbolic extension.
This also follows immediately from standard results concerning Markov Par-
titions. Indeed, an Anosov diffeomorphism is a boundedly finite-to-one factor
of a subshift of finite type.
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Henceforth, for the most part, we restrict ourselves to two dimensional
manifolds. Thus, let M = M2 be a compact orientable surface, let ω be a
symplectic form on M , and let D1

ω(M) denote the set of C1 diffeomorphisms
of M preserving ω. We give D1

ω(M) the standard uniform C1 topology which
it inherits as a subspace of D1(M). It is well known that D1

ω(M) is itself a
Baire space.

We will prove the following theorems.

Theorem 1.3 There is a residual subset R ∈ D1
ω(M) such that if f ∈ R,

then either f is Anosov or hsex(f) = ∞.

For non-area preserving diffeomorphisms, we have

Theorem 1.4 Fix 2 ≤ r < ∞. There is a residual subset R of the space
Dr(M) of Cr diffeomorphisms of M such that if f ∈ R and f has a homo-
clinic tangency, then f has no principal symbolic extension. Further, there
exist an open set U in the space Dr(M) of Cr diffeomorphisms of M and a
constant c = c(U) > 0 such that if f ∈ R

⋂
U , then hsex(f) > htop(f) + c.

Remark. It is not true that hsex(f) = htop(f) implies that f has a
principal symbolic extension. For a class of examples dealing with this issue,
see Example 1 in [7]. On the other hand, we note that simple examples can be
constructed as follows. Let f be a system whose non-wandering set (see [37]
for the definition) consists of two disjoint sets Λ1 and Λ2 such that f | Λ1 is
asymptotically h−expansive, f | Λ2 is not asymptotically h−expansive, and
htop(f | Λ1) > hsex(f | Λ2). Then, since f is not asymptotically h−expansive,
it cannot have a principal symbolic extension. On the other hand, hsex(f) =
htop(f) since the supremum of the minimal superenvelope EH occurs on Λ1.

Using standard techniques embedding Cr surfaces as normally contracting
invariant manifolds in higher dimensional manifolds (e.g., see the first few
lines of Section 3.1 in [15]), one gets the following result:

Corollary 1.5 Let M be any compact C∞ manifold of dimension greater
than one. Then, there is a C1 diffeomorphism f of M for which hsex(f) = ∞.
For 2 ≤ r <∞ there is a residual subset R of an open set U ⊂ Dr(M), such
that if f ∈ R, then, hsex(f) > htop(f).
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Combining the techniques of the proof of Theorem 1.4 with theorems in
[26], [19], and [34], we obtain an interesting result concerning the Hausdorff
dimension of certain invariant sets in the presence of a homoclinic tangency.

Theorem 1.6 Fix 2 ≤ r ≤ ∞. There is a residual subset R of the space
Dr(M) of Cr diffeomorphisms of a compact two dimensional manifold M
such that if f ∈ R and f has a homoclinic tangency, then f has compact
invariant topologically transitive sets of Hausdorff dimension two.

It is interesting to ask if the conclusion in Theorem 1.6 can be strength-
ened by replacing the words ”Hausdorff dimension two” by ”positive Lebesgue
measure.” At present we have no strong opinions about such a result.

Let us conclude this section by mentioning an interesting relation between
our results and a weak form of a conjecture of Palis. We will state this
conjecture using Conley’s notion of chain recurrence. Given a diffeomorphism
f on a compact manifold M , an ε−chain is a finite sequence x0, x1, . . . , xn in
M such that d(f(xi+1), xi) < ε for 0 ≤ i < n. A point x is chain recurrent
if, for any ε > 0 there is an ε−chain starting and ending at x. The set of all
chain recurrent points, denoted R(f), is a compact f−invariant set. We call
a diffeomorphism f hyperbolic if its chain recurrent set is a hyperbolic set. It
is known [9] that the set of hyperbolic diffeomorphisms coincides with those
satisfying Smale’s Axiom A and the no cycle property (the referenced article
is for flows, but carries over to diffeomorphisms by the standard technique
of taking suspensions [39]). They form an open set, and even coincide with
the chain stable diffeomorphisms. Here, we say that a C1 diffeomorphism
is chain stable if there is a neighborhood N ⊂ D1(M) of f such that if
g ∈ N , then (g,R(g)) is topologically conjugate to (f,R(f)). Let H(M)
denote the set of hyperbolic diffeomorphisms in M . Using chain stability
and C∞ approximations, it follows that any hyperbolic diffeomorphism f
has a principal symbolic extension.

The weak Palis conjecture is the following:

Conjecture 1.7 For 1 ≤ r ≤ ∞ there is a residual subset B of Cr diffeo-
morphisms on a compact surface such that if f ∈ B, then either f ∈ H(M)
or f has a homoclinic tangency.

We note that if we replace the word “residual” by the word “dense”, then
this conjecture has been proved for r = 1 by Pujals and Samborino [35].
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However, it is still not known whether hyperbolicity is actually C1 dense on
surfaces; i.e., whether D1(M2) \ H(M2) has non-empty interior.

Observe that Conjectures 1.1 and 1.7 imply the following type of classi-
fication for surface diffeomorphisms:

hyperbolic or r = ∞ =⇒ PSYM
non-hyperbolic and 2 ≤ r <∞ =⇒ SYM (generically)
non-hyperbolic and r = 1 =⇒ NSYM (generically)

Acknowledgement. The authors are sincerely grateful to the referee for
a very thorough reading of the original manuscript which resulted in many
important comments, suggestions, and improvements.

2 An overview of the proofs of Theorems 1.3,

1.4, and 1.6

The proofs of these results will combine the (topological) theory in [2] and
the (smooth) theory of homoclinic tangencies. We give here a very rough
description of how we use these theories (we use some concepts which are
defined later in the paper). For typical smooth systems, one can find a non-
decreasing generating sequence of partitions α1 ≤ α2 ≤ . . . whose boundaries
are µ−null sets for every µ ∈ M(f) (we call this an essential sequence of
partitions). In this case, the sequence of entropies hµ(αk, f) determines an
entropy structure in the sense of [6]. From [2], the rate of convergence of
hµ(αk, f) to hµ(f) for µ ∈M(f) gives a criteria for

(a) when a map has a symbolic extension, and

(b) how close (in the metric and topological entropy senses) a symbolic
extension can be to a given system

For example, at one extreme (see Theorem 4.3), a map f has a principal
symbolic extension if and only if

hµ(αk, f) → hµ(f) (as k →∞) (1)

uniformly in µ.
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At the opposite extreme (Proposition 4.4), a sufficient condition for a
map f to have no symbolic extension at all is that the convergence in (1) is
highly non-uniform in the following sense.

There exist ρ0 > 0 and a compact set E ⊂ M(f) such
that for every µ ∈ E and every k > 0,

lim sup
ν→µ, ν∈E

hν(f)− hν(αk, f) > ρ0.

(2)

For Theorem 1.3, suppose we are given a C1 symplectic surface diffeomor-
phism f in the complement of the closure of the Anosov diffeomorphisms.
Using statement (C) in section 1, we can C1 perturb f to a symplectic f1

having an interval I of homoclinic tangencies between the stable and unsta-
ble manifolds W u(p(f1)) and W s(p(f1)) for some hyperbolic saddle periodic
point p(f1). We choose symplectic coordinates in which I is flat and then
take a further symplectic perturbation to a map f2 in which I ⊂ W s(p(f2))
and W u(p(f2)) oscillates rapidly near I (see Figure 1 in Section 5). Using
methods of hyperbolic dynamics, we next take more perturbations to finally
obtain a symplectic map g for which an approximate version of statement (2)
holds persistently (see Lemma 5.1). Then, we employ methods of residual
sets to get the full statement (2) and complete the proof of Theorem 1.3.

For Theorems 1.4 and 1.6, we again start with statement (C), and take
Cr perturbations (r ≥ 2) to get a Cr diffeomorphism with an interval of
homoclinic tangencies and then one with a lot of unstable oscillations near
the interval of tangencies. To proceed for Theorem 1.4, we make use of a
transfinite characterization of the minimal superenvelope entropy function
EH, methods of hyperbolic dynamics, and a special technique (Lemma 6.2)
to get measures with a certain non-uniformity in the convergence in statement
(1). Restrictions imposed by the Cr topology only allow us to obtain positive
residual entropy. Finally, for Theorem 1.6, we first perturb a system with
an interval of homoclinic tangencies to get a new system with an invariant
zero dimensional hyperbolic set meeting its stable and unstable manifolds in
“thick” Cantor sets. We apply methods first given in Manning-McCluskey
[19], and later extended by Palis, Takens, Viana in [33], [34]) to relate these
Cantor sets to Hausdorff dimension. Again, we complete the proof with
methods involving residual sets.
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3 Preliminaries

We first make some definitions. Fix f ∈ Dr(M) with r ≥ 1.
Fix a Riemannian metric on M . The induced Finsler structure | · | on M

will be called a Riemannian norm on M . Let d be the associated topological
metric (i.e. distance function) on M .

Given a point x ∈M we define the stable and unstable sets of x by

W s(x) = {y ∈M : d(fny, fnx) → 0 as n→∞}

and
W u(x) = {y ∈M : d(fny, fnx) → 0 as n→ −∞}.

It is clear that these are invariant in the sense that f(Wσ(x)) = Wσ(x)
for σ = s, u.

For a point x ∈ M , let O(x) denote the orbit of x; i.e., the set {fn(x) :
n ∈ Z}.

We define, for σ = u, s,

Wσ(O(x)) =
⋃
n∈Z

Wσ(fnx).

Let Λ be a hyperbolic set for f . We call Λ a hyperbolic basic set if

1. there is a neighborhood U of Λ such that⋂
n∈Z

fn(U) = Λ

and

2. f has a dense orbit in Λ.

A neighborhood U as in the preceding definition is called an adapted
neighborhood for Λ.

The following theorems about hyperbolic basic sets are well-known; e.g.,
see Theorem 3.2 in [13].

Theorem 3.1 (Stable Manifold Theorem) Let Λ be a hyperbolic basic set
for the Cr diffeomorphism f on the compact C∞ manifold M . Let TxM =
Es

x ⊕ Eu
x be the hyperbolic splitting of the tangent space to M at x ∈ Λ.
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Then, for σ = s, u, the set Wσ(x) is a Cr injectively immersed copy of Eσx
which is tangent at x to Eσx . Moreover, the submanifolds Wσ(x) depend Cr

continuously on compact sets as x varies in Λ.

Given a compact subset E ⊂ M , let Emb(E,M) denote the space of
continuous embeddings from E to M ; i.e., the space of injective continuous
maps from E into M . We give Emb(E,M) the standard metric

d(h1, h2) = sup
x∈E

d(h1x, h2x).

For a subset E ⊂M , let iE : E →M denote the inclusion map.

Theorem 3.2 (Persistence of hyperbolic basic sets) Let Λ = Λf be a hyper-
bolic basic set for the C1 diffeomorphism f on M with adapted neighborhood
U . Given ε > 0, there is a neighborhood Nε of f in D1(M) such that if
g ∈ Nε, then Λg =

⋂
n g

n(U) is a hyperbolic basic set for g and there is a
unique continuous embedding hg : Λf → M such that hg(Λf ) = Λg, ghg =
hgf and d(hg, iΛf

) < ε. Moreover, the map g → hg from Nε to Emb(Λf ,M)

is continuous and hf = iΛf
.

A periodic point p of f is a point such that there is a positive integer
n > 0 such that fn(p) = p. The least such positive integer τ(p) is called
the period of p. The periodic point p is hyperbolic if the eigenvalues of the
derivative Dfτ (p)(p) have modulus different from 1. We call the eigenvalues
of Dfτ (p)(p) the eigenvalues of p. They are the same for all points in the
orbit of p. Thus, a periodic point p is hyperbolic if and only if the orbit of p is
a hyperbolic basic set. The hyperbolic periodic point p is called a hyperbolic
saddle point if it has eigenvalues of modulus greater than one and less than
one. In the case of a surface diffeomorphism, this of course implies that the
eigenvalues are real and of multiplicity one.

More generally, we say that an f−invariant set Λ is periodic if there are
a subset Λ1 ⊂ Λ and a positive integer τ > 0 such that

1. fτ (Λ1) = Λ1,

2. f j(Λ1) ∩ Λ1 = ∅ for 0 ≤ j < τ , and

3. Λ =
⋃

0≤j<τ f
j(Λ1).
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In this case, we call τ the period of Λ, and we call Λ1 a base of Λ. If Λ
is a periodic hyperbolic basic set with base Λ1 and period τ , then there is a
neighborhood U1 of Λ1 such that

1. f j(U1)
⋂
U1 = ∅ for 0 ≤ j < τ , and

2. if U =
⋃

0≤j<τ f
j(U1) then U is an adapted neighborhood of Λ.

In this case, we call U1 an adapted base neighborhood for the base Λ1 of
Λ.

Let M(f) denote the space of f−invariant probability measures on M .
Let Me(f) denote the ergodic elements of M(f).

A measure µ ∈ M(f) is called a hyperbolic measure for f if its topo-
logical support supp(µ) is contained in a hyperbolic basic set for f . Note
that this differs from some current usage in which measures with non-zero
characteristic exponents are frequently called hyperbolic measures.

Let ρ be a metric on M(f) giving the topology of weak convergence: e.g.
let φ1, φ2, . . . be a countable dense subset of the unit ball in C(M,R) and set

ρ(µ, ν) =
∑
i≥1

1

2i
| µ(φi)− ν(φi) |.

In the remainder of this section we consider compact f−invariant subsets
Λ,Λ1, and Λ2 of M . No hyperbolicity conditions are assumed.

If Λ is such a set, let M(Λ) denote the set of f−invariant probability
measures supported in Λ. Then, M(Λ) is clearly a compact subset of M(f).

Let ρH denote the Hausdorff metric on the collection of compact subsets
of M(f).

For two compact f−invariant subsets Λ1,Λ2, let

ρ̄(Λ1,Λ2) = ρH(M(Λ1),M(Λ2)).

Thus, ρ̄(Λ1,Λ2) < ε iff for each µ ∈ M(Λ1) there is a ν ∈ M(Λ2) such
that ρ(µ, ν) < ε and vice versa.

Below the term partition means a finite Borel measurable partition.
Given µ ∈ M(f) and two partitions α, β, and a positive integer n, we

set

α
∨

β = {A
⋂

B : A ∈ α,B ∈ β,A
⋂

B 6= ∅},
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αn =
n−1∨
i=0

f−i(α),

Hµ(α) = −ΣA∈αµ(A) log µ(A),

Hµ(β | α) = Hµ(α
∨

β)−Hµ(α),

hµ(α) = hµ(α, f) = lim
n→∞

1

n
Hµ(αn) = inf

n>0

1

n
Hµ(αn),

hµ(β | α) = lim
n→∞

1

n
Hµ(βn | αn) = inf

n>0

1

n
Hµ(βn | αn). (3)

We remark that the fact the we have the “inf” in (3) follows from [8].
Observe that

hµ(α
∨

β) = hµ(α) + hµ(β | α). (4)

Suppose that Λ is a periodic invariant set for f with base Λ1 and α =
{A1, A2, . . . , As} is a finite partition of M . We say that Λ is subordinate
to α if for every positive integer n, there is an element Ain ∈ α such that
fn(Λ1) ⊆ Ain . Observe that in this case, if n is any positive integer, then
there is a unique element B ∈ αn so that Λ1 ⊆ B. Hence, if µ is an invariant
probability measure with µ(Λ) = 1, then hµ(α) = 0.
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4 Entropy Structures

We recall some elements from the theory of entropy structures as developed
in Boyle-Downarowicz [2].

Let f : M →M be a homeomorphism of the compact metric space M .
An increasing sequence α1 ≤ α2 ≤ . . . of partitions ofM is called essential

(for f) if

1. diam(αk) → 0 as k →∞, and

2. µ(∂αk) = 0 for every µ ∈ M(f). Here ∂αk denotes the union of the
boundaries of elements in the partition αk.

Note that essential sequences of partitions may not exist (e.g., for the
identity map on the unit interval). However, for any finite entropy system
(f,M) it follows from the work of Lindenstrauss and Weiss [17], [18] that
the product f × R with R an irrational rotation has essential sequences of
partitions. It is known that f has a (principal) symbolic extension if and
only if f × R has one, so we may replace f by f × R in considering the
questions of symbolic extensions, and assume there are essential sequences of
partitions (this follows from Lemma 7.9 in [2] and statement 2 in Theorem
4.3). This allows us to define a sequence of uppersemicontinuous functions
on M(f) whose properties completely determine the existence of symbolic
extensions and their entropy functions.

Alternatively, in the present case, since we are dealing with elements of
residual sets of smooth diffeomorphisms, we can easily obtain essential se-
quences of partitions without changing the space. Indeed, letM be a compact
C∞ manifold. Let α1 ≤ α2 . . . be an increasing sequence of partitions whose
diameters tend to 0 such that each αk is the partition into simplexes given
by a smooth triangulation Tk of M . We call A = {α1, α2, . . . , } a simplicial
sequence of partitions on M .

Proposition 4.1 Let A be a simplicial sequence of partitions on M . Then,
for each 1 ≤ r ≤ ∞, there is a residual subset Rr

A ⊂ Dr(M) such that if
f ∈ Rr

A, then A is an essential sequence of partitions for f .

Proof. Let m = dim M . Fix k, and consider the partition

αk = {∆i}
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where ∆i is a smooth simplex in M . Thus, ∆i is the image of a smooth
map ψi from an open `−disk in R` for some 0 ≤ ` ≤ m. Let βk denote
the (m − 1)−skeleton of the triangulation Tk. Thus, βk consists of all the
simplexes in Tk of dimension less than m.

For a subset B ⊂M , let dim B denote its topological dimension.
Using standard transversality techniques (e.g., see [14]), we find a residual

subset R1 of Dr(M) such that if f ∈ R1, n > 0, and a1, a2 are simplexes
in βk such that fn(a1)

⋂
a2 6= ∅, then fn(a1) meets a2 transversely. This, of

course, implies that a1

⋂
f−na2 is a countable union of open smooth disks of

dimension less than dim a1. Repeating this transversality construction using
the open smooth disks just mentioned covering the intersections a1

⋂
f−na2

instead of a1, we see that there is a residual subset R2 of Dr(M) such that
if f ∈ R2, 0 < n1 < n2, and a1, a2, a3 are three simplexes in βk such that
a1

⋂
f−n1a2

⋂
f−n2a3 6= ∅, then,

dim
(
a1

⋂
f−n1a2

⋂
f−n2a3

)
< dim

(
a1

⋂
f−n1a2

)
.

Continuing with this construction yields a residual subset R ⊂ Dr(M)
such that if f ∈ R, then for any x ∈ M , the forward orbit of x meets the
elements of βk at most m times. Hence, if Bk is the union of the elements of
βk we have that

1. ∂αk ⊂ Bk, and

2. the orbit of any point of M meets Bk at most finitely many times.

By the Poincare recurrence theorem, we have that µ(Bk) = 0 for any
µ ∈M(f). Hence, A is essential for f ∈ R. QED.

Now, fix an essential sequence of partitions A = {αk} for f .
Since µ(∂A) = 0 for each A ∈ αk, it follows that the function µ→ µ(E)

is continuous for each E ∈ αn
k for any n > 0. Thus, for fixed k, the function

hk = hk(µ) = hµ(αk)

is an infimum of continuous functions on M(f). Hence, it is uppersemi-
continuous. Likewise, by (3) and (4), for each k ≥ 1, hk+1(µ) − hk(µ) is
non-negative and also uppersemicontinuous. Thus, the essential sequence A
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of partitions for f gives us a non-decreasing sequence of uppersemicontinu-

ous functions with uppersemicontinuous differences H def
= {hk} on M(f) as

studied in [2].
We define a superenvelope φ of the sequence H = {hk} to be a function

φ : M(f) → R such that φ−hk is non-negative and uppersemicontinuous for
each k. Additionally, we admit one unbounded superenvelope - the constant
infinity function.

The pointwise infimum of any collection of superenvelopes is again a su-
perenvelope, so it follows that there is a unique minimal superenvelope of H
which we denote by EH = EH(·, f).

Note that
hµ = sup

k
hk(µ),

so, EH(µ) ≥ hµ for each µ ∈M(f).
The following transfinite inductive formula [2] for EH will be useful in

the proof of Theorem 1.4.
For a given bounded function g : M(f) → R, let g̃ denote the uppersemi-

continuous envelope of g; that is,

g̃(µ) = lim sup
ν→µ

g(ν).

We also let g̃ ≡ ∞ for any unbounded g.
It is easy to see that g̃ is the pointwise infimum of all continuous functions

φ such that φ(µ) ≥ g(µ) for all µ ∈M(f). Write h for the entropy function
h(µ) = hµ(f).

We define a family of functions uζ : M(f) → R for all ordinals ζ.
Set u0 = 0. Having defined uζ , set

uζ+1 = lim
k→∞

˜(uζ + h− hk). (5)

This defines uζ for successor ordinals. For a limit ordinal η, let

uη = s̃up
ζ<η

uζ .

The following Proposition is a consequence of Theorem 3.3 in [2].

Proposition 4.2 Let {uζ} be the family of functions defined above and as-
sume that EH is bounded. Then uζ = uζ+1 if and only if EH = h + uζ.
Moreover, this occurs at a countable ordinal.
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Given an arbitrary homeomorphism f : M → M of the compact metric
space M , let us recall some definitions from section 1. Let S(f) denote the
set of symbolic extensions (g, Y, π) of f . For (g, Y, π) ∈ S(f), µ ∈M(f) set

S(µ, g) = {ν ∈M(g) : π?ν = µ}.

Define hsex(µ) = hsex(µ, f) by

hsex(µ) =

{
inf(g,Y,π)∈S(f) supν∈S(µ,g) hν(g) if S(f) 6= ∅
∞ if S(f) = ∅

and

hsex(f) =

{
inf(g,Y,π)∈S(f) htop(g) if S(f) 6= ∅
∞ if S(f) = ∅

Note that hsex(·, f) is either a bounded real-valued function or identically
equal to ∞.

In the following, we let ε > 0 and δ > 0 denote real numbers and n denote
a positive integer.

Following Katok [16], we define the df,n metric on M , by

df,n(x, y) = max
0≤j<n

d(f jx, f jy).

A set E ⊂ M is (n, δ) − separated if whenever x, y ∈ E and x 6= y we
have df,n(x, y) > δ. Let B(x, n, ε) denote the closed ε-ball about x in the df,n

metric.
For an arbitrary subset K of M we define r(n, δ,K) to be the maximal

cardinality of an (n, δ)-separated subset of K.
Given x ∈M , and fixed ε > 0, we set

hx(ε) = lim
δ→0

lim sup
n→∞

1

n
log r(n, δ, B(x, n, ε)).

This measures the topological entropy of the set of points whose forward
orbits remain ε−close to that of x for n ≥ 0.

We will say that a homeomorphism f onM is asymptotically h−expansive
if

lim
ε→0

sup
x∈M

hx(ε) = 0.
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By Proposition (20.8) in [5] or Corollary 2.1(b) in [21], this definition is
equivalent to the original one given by Misiurewicz in terms of open covers
in [21](see also [6] for other equivalent conditions).

The following structure theorem for symbolic extensions, proved in [2], is
essential for our work here.

Theorem 4.3 Given (f,M) as above, the following statements are true.

1. hsex(f) = supµ∈M(f)EH(µ, f),

2. hsex(µ, f) = EH(µ, f) as functions on M(f),

3. f has a principal symbolic extension iff

EH = h iff

f is asymptotically h−expansive iff

hk → h uniformly ,

4. f has a symbolic extension iff supEH <∞,

5. hsex(·, f) is realized by a symbolic extension iff EH is affine, and

6. hsex(f) is realized by a symbolic extension iff there is an affine superen-
velope φ of H such that

sup φ = sup EH.

Next, we present a sufficient condition for f to have hsex(f) = ∞. That
is, f will have no symbolic extension.

Proposition 4.4 Suppose E is a compact subset of M(f) such that there is
a positive real number ρ0 such that for each µ ∈ E and each k > 0,

lim sup
ν∈E,ν→µ

[hν(f)− hk(ν)] > ρ0. (6)

Then,

hsex(f) = ∞. (7)
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Proof.
Suppose EH < ∞. Consider the restricted functions h̄k = hk | E , h̄ =

h | E , H̄ = (h̄k), and let EH̄ denote the minimal superenvelope of H̄ on the
compact set E .

Now, (6) and the fact that EH̄ − h̄k is uppersemicontinuous on E give

EH̄(µ)− hk(µ) ≥ ρ0 ∀k,∀µ ∈ E (8)

yielding EH̄(µ)− hµ(f) ≥ ρ0 on E .
Also, since EH̄ ≤ EH | E < ∞, this contradicts the following modifica-

tion of Proposition 3.1 in [2].

Lemma 4.5 If EH̄ < ∞ on E then there is a dense subset of E on which
EH̄ = h.

Proof of Lemma 4.5:
For convenience, let us drop the “bars” and restrict everything to E .
Let us write USC for uppersemicontinuous and LSC for lowersemicontin-

uous.
If the Lemma is false, then there is an non-empty open set U1 on which

EH− h > 0. Since hk(µ) ↗ hµ, we have

EH− hk ↘ EH− h.

Hence, EH− h is USC, so

U1 =
⋃
`∈N

{µ ∈ U1 : EH(µ)− hµ ≥
1

`
}

is a countable union of relatively closed sets. Then, one must have interior,
so we get that there exists an open set U2 ⊂ U1 and an ε > 0 with

EH− h > ε on U2.

Now, the characteristic function χU2
is LSC, so

EH− εχU2
is USC, and

EH − εχU2
− hk = (EH − hk) + (−εχU2

) is the sum of USC functions,
so it is USC. Further, it is greater than or equal to EH − εχU2

− h, so it is
non-negative.

Hence, we get that EH−εχU2
is a superenvelope below EH, contradicting

the assumption that EH was minimal.
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5 Proof of Theorem 1.3

As above M is a compact C∞ surface with a given symplectic form ω, and
D1
ω(M) is the space of C1 diffeomorphisms of M preserving ω.

Let {αk}, k ≥ 1, be a fixed increasing sequence of simplicial partitions
with diam(αk) → 0 as above.

Given a hyperbolic ergodic invariant measure µ ∈Me(f) let χ(µ) denote
the positive characteristic exponent of µ.

By the Oseledec theorem and the Ruelle inequality (Theorems S.2.9 and
S.2.13 in [12]), we then have that, for µ−almost every point x,

lim
n→∞

1

n
log | Dfn

x | = χ(µ),

and

hµ(f) ≤ χ(µ).

For a hyperbolic periodic point p of f with period τ(p), , we let µp denote
the orbit measure given by

µp =
1

τ(p)

∑
x∈O(p)

δx

where O(p) denotes the orbit of p and δx is the point mass at x. Let χ(p)
denote the positive characteristic exponent of p.

For a given diffeomorphism f , let Hn(f) denote the collection of hy-
perbolic periodic points of f of period less than or equal to n, and let
H(f) =

⋃
nHn(f). Note that for a given n, Hn(f) might be empty, but it is

known that the set R1 of diffeomorphisms f in D1
ω(M) for which H(f) 6= ∅

is dense and open in D1
ω(M) (see e.g. [28] which contains further references).

For f ∈ R1, let τ(f) be the minimal period of elements in H(f), and let
R1,m be the subset of R1 of diffeomorphisms f with τ(f) = m.

Clearly, the setsR1,m are open in D1
ω and if n 6= m, thenR1,n

⋂
R1,m = ∅.

Thus, we have the representation of R1 as a disjoint union of open sets

R1 =
⊔
m

R1,m.

Let
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χ(f) = inf{χ(p) : p ∈ H(f) and τ(p) = τ(f)}

Then, χ(f) > 0 and depends continuously on f ∈ R1.
As above, let A(M2) denote the (possibly empty) open set of Anosov

diffeomorphims on M2, and let ClA(M2) denote its closure in D1
ω(M2).

Let

R2,m = R1,m \ ClA(M2)).

Thus, each R2,m is a non-empty open subset of D1
ω(M2), and we have

R1 \ ClA(M2)) =
⊔
m

R2,m.

Given a positive integer n, let us say that a diffeomorphism f satisfies
property Sn if, for each p ∈ Hn(f),

1. there is a zero dimensional periodic hyperbolic basic set Λ(p, n)
for f such that

Λ(p, n)
⋂

∂αn = ∅, (9)

2.
Λ(p, n) is subordinate to αn, (10)

3. there is an ergodic µ ∈M(Λ(p, n)) such that

| hµ(f)− χ(p) | < 1

n
χ(p), (11)

and

4. for every ergodic µ ∈M(Λ(p, n)), we have

ρ(µ, µp) <
1

n
and | χ(µ)− χ(p) | < 1

n
χ(p). (12)

Given positive integers m ≤ n, let Dm,n denote the subset of R2,m con-
sisting of diffeomorphisms f satisfying property Sn.

Lemma 5.1 For every positive integers m ≤ n the set Dm,n is dense and
open in R2,m.
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Remark. Part of Lemma 5.1 is related to constructions which were
given previously in [24]. However, the proof of hyperbolicity of the set in
[24] corresponding to Λ(p,N) was only sketched and the reader was referred
to somewhat complicated estimates in [31]. Here will give a simpler proof of
hyperbolicity. Furthermore, the more detailed properties described in (9)–
(12) were not needed and not presented in [24]. They are new results.

Assuming Lemma 5.1 we can prove Theorem 1.3 as follows.
Let

R2 =
⋃
m≥1

⋂
n≥m

Dm,n,

and let R = R2

⋃
A(M2).

Then, clearly R2 is residual in D1
ω(M2) \ClA(M2), and R is residual in

D1
ω(M2).

If f ∈ R is not Anosov, then f ∈ R2.
Now, for f ∈ R2, we set

E1 = E1(f) = {µp : p ∈ H(f) and χ(p) >
χ(f)

2
},

and we let

E = E(f) = Closure E1(f).

We claim:

E satisfies (6) in Proposition 4.4 with ρ0 =
χ(f)

2
. (13)

Then, applying Proposition 4.4 proves Theorem 1.3.
Proof of (13):

Set ρ0 = χ(f)
2

, and fix an integer k > 0. It suffices to prove condition (6)
for any µ = µp ∈ E1(f).

Since µp ∈ E1(f), we clearly have χ(p) > ρ0.
For each n ≥ max(k, τ(p)), Lemma 5.1 gives us a periodic hyperbolic

basic set Λ(p, n) subordinate to αn such that all the ergodic measures in
M(Λ(p, n)) are 1

n
close to µp and have exponents greater than(

n− 1

n

)
χ(p). (14)
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Since Λ(p, n) is subordinate to αn, we have that any measure ν ∈M(Λ(p, n))
has hν(αn) = 0. Moreover, there is an ergodic measure νn ∈M(Λ(p, n)) such
that

hνn(f) >

(
n− 1

n

)
χ(p) (15)

Since {αi} is non-decreasing, we have that

hνn(αn) ≥ hνn(αk),

which also gives hνn(αk) = 0.
So, for large n, we have

hνn(f)− hνn(αk) = hνn(f) > ρ0.

Recall that, in K. Sigmund [38], it is proved that every ergodic measure
supported on a hyperbolic basic set Λ is a weak-* limit of periodic point
measures in M(Λ). This together with (14) gives that, for large n, we have
νn ∈ E . Now, (13) follows by letting n→∞.

Proof of Lemma 5.1:
We first prove that Dm,n is open in D1

ω(M2).
So, assume f ∈ D1

ω(M2) and Λ(p, n) is as in the definition of Dm,n.
By Theorem 3.2, if g is C1 near f , then there is an injective continuous

map hg : Λ(p, n) →M2 which is C0 near the inclusion iΛ(p,n)
: Λ(p, n) →M2

such that ghg = hgf . Let Λg(p, n) = hg(Λ(p, n)).
Then, hg provides a topological conjugacy between (f,Λ(p, n)) and (g,Λg(p, n))

such that Λg(p, n) is close to Λ(p, n) in the Hausdorff metric, and, for each
µ ∈ M(Λ(p, n)), the push-forward measure hg?µ is ρ−close to µ. Now, ele-
mentary methods, which will be left to the reader, can be used to prove that,
for g close enough to f , (9)-(12) hold for g. This gives that Dm,n is open in
D1
ω(M2).

Next, we prove that Dm,n is dense in R2,m. This is the main technical
result of the present paper.

Let f ∈ R2,m. We want to find g C1−close to f so that property Sn holds
for g.

We will expand some techniques which were used in [24] and [25].
Let p ∈ Hn(f). For simplicity, we assume that p is a fixed point of f . The

extension to general periodic points is similar and will be left to the reader.
We assume that all maps we now consider will be in D1

ω(M2).
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Using standard approximation techniques with generating functions (e.g.
as in [25]), we may find a C2 f1 ∈ D1

ω(M2) which is C1 close to f so that
f1(p) = p and Df1(p) = Df(p). Replacing f by f1 we may therefore assume
that f is C2.

As usual, for any set E and any z ∈ E, we let C(z, E) denote the con-
nected component of E containing z. By a Cr coordinate chart centered at a
point z, we mean a pair (U, ψ) where U is an open neighborhood of z in M2

and ψ is a Cr diffeomorphism from U onto an open neighborhood of 0 in R2

such that ψ(z) = 0. Let ω0 = dx∧dy be the standard symplectic form on R2,
and ω be the given symplectic form on M2. If the diffeomorphism ψ satifies
ψ?ω0 = ω, then we call the pair (U, ψ) a symplectic coordinate chart centered
at z. Since we are considering a C∞ manifold M2 with a C∞ symplectic form
ω on it, the Darboux theorem guarantees that, for each z ∈ M , there is a
C∞ symplectic coordinate chart (U, ψ) centered at z.

Let (x, y) denote the standard Euclidean coordinates on R2.
Let Es = {y = 0},Eu = {x = 0} be the coordinate lines in R2.
The next lemma states that, if f is Cr, then we may choose a Cr sym-

plectic coordinate chart (U, ψ) centered at p so that ψ carries the local stable
and unstable manifolds of p into Es and Eu, respectively. For a neighbor-
hood U of p where p is a hyperbolic fixed point of a diffeomorphism f , let
W u(p, U) = C(p,W u(p)

⋂
U), W s(p, U) = C(p,W s(p)

⋂
U). When we wish

to denote the dependence of these on f , we write W u(p, U, f), etc.

Lemma 5.2 Fix r ≥ 1. Let f ∈ Dr(M2) be a Cr symplectic diffeomorphism
of M2, and let p be a hyperbolic fixed point of f . Then, there are neigh-
borhoods U of p in M2, V of 0 in R2 and a Cr symplectic diffeomorphism
ψ : U → V such that

ψ(p) = 0, (16)

ψ(W s(p, U)) ⊆ Es, (17)

and

ψ(W u(p, U)) ⊆ Eu. (18)

Proof. We begin by choosing a symplectic coordinate chart (U1, ψ1)
centered at p. Let Eu

p , E
s
p be the subspaces of TpM given by hyperbolic-

ity. Following ψ1 by a rotation, we may assume that Dψ1(E
s
p) = Es, and
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Dψ1(E
u
p ) = {x = ay} for some real constant a. Letting A1 denote the linear

symplectic automorphism A1(x, y) = (x− ay, y), we have that ψ2 = A1 ◦ ψ1

is a symplectic coordinate map so that

f2
def
= ψ2fψ

−1
2

becomes a symplectic diffeomorphism between two neighborhoods of 0 in
R2 having 0 as a hyperbolic fixed point with Eu and Es as expanding and
contracting subspaces, respectively.

For a small positive number δ, and a point z in a space, let Bδ(z) denote
the open ball of radius δ about z.

Set

Bs

δ = Bδ(0)
⋂

Es,

Bu

δ = Bδ(0)
⋂

Eu,

and

Bδ = Bs

δ ×Bu

δ.

Thus, Bδ is a small square centered at 0.
Now, we can use the Hadamard-Perron theorem (stable manifold theo-

rem) for hyperbolic fixed points [13] to conclude that there are a a small
δ > 0, and a Cr function ηs : Bs

δ → Bu

δ such that Dηs(0) = 0 and

W s(0, Bδ, f2) = {(x, y) : y = ηs(x).} (19)

Letting

ψ3(x, y) = (x, y − ηs(x))

we have that f3
def
= ψ3f2ψ

−1
3 is a Cr local symplectic diffeomorphism of

(R2, 0) with 0 as a hyperbolic fixed point such that Eu, Es are the expanding
and contracting subspaces at 0 and such that

W s(0, Bδ, f3) ⊆ Es.

Again applying the Hadamard-Perron Theorem to the diffeomorphism f3,
we have that there is a Cr function ηu : Bu

δ → Bs

δ such that
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W u(0, Bδ, f3) = {(x, y) : x = ηu(y)}. (20)

Letting ψ4(x, y) = (x−ηs(y), y), the function f4 = ψ4f3ψ
−1
4 is symplectic,

has 0 as a hyperbolic fixed point, and satisfies

W s(0, Bδ, f4) ⊆ Es, W u(0, Bδ, f4) ⊆ Eu.

Finally, we can choose suitable neighborhoods U, V such that the diffeo-
morphism ψ = ψ4ψ3ψ2 satisfies the requirements of Lemma 5.2. QED.

Now, we consider the neighborhoods U, V given in Lemma 5.2 and the
symplectic diffeomorphism ψ : U → V . Let f4 = ψfψ−1 be the local repre-
sentation given above. Let λs, λu be eigenvalues of Df4(0) with

| λs | < 1, | λu | > 1.

We need a well-known lemma which will imply that if f is Cr with r ≥ 2,
then there is a C1 linearization of f near p so that the tangents to the
coordinate curves are generated by C1 vector fields. For a proof, see pages
163-165 in [33]

Lemma 5.3 Assume that f4 is Cr with r ≥ 2 and the neighborhood V above
is small. Let z1 ∈ W u(0, V ) \ {0} and z2 ∈ W s(0, V ) \ {0}, and let γ1, γ2 be
Cr curves in V passing through z1, z2, respectively, such that γ1 is transverse
to W u(0, V ) at z1 and γ2 is transverse to W s(0, V ) at z2. Then, there are
a small neighborhood V1 of W u(0, V )

⋃
W s(0, V ) and two C1 f4−invariant

non-vanishing vector fields Xu, Xs defined in V1 such that

1. for each z ∈ V1, X
u(z) is not a multiple of Xs(z),

2. Xu | W u(0, V ) is tangent to W u(0, V ),

3. Xs | W s(0, V ) is tangent to W s(0, V ),

4. γ1

⋂
V1 is an integral curve of Xs, and γ2

⋂
V1 is an integral curve of

Xu,

5. Df4z(X
u(z)) = λuX

u(f4z) and Df4z(X
s(z)) = λsX

s(f4z) for z ∈
V1

⋂
f−1

4 V1.

28



Given the two vector fields Xu, Xs just described, we let Fu(z),F s(z)
denote the integral curve of Xu, Xs through z respectively.

In the sequel, to simplify notation, we replace V1 by V and assume that
the vector fields Xu, Xs are defined in V .

Then, Fu = {Fu(z)},F s = {F s(z)} give two C1 foliations Fu,F s on the
neighborhood V of 0 in R2 with the following properties. For a foliation F ,
let F(z) denote the leaf through the point z.

1. f4(Fu(z)) = Fu(f4z), f4(F s(z) = F s(f4z) for z ∈ V ∩ f−1
4 (V )

2. W u(0, V ) ⊂ Fu(0), W s(0, V ) ⊂ F s(0)

3. the leaves Fu(z),F s(z) are Cr curves and depend continuously on z in
the Cr topology

4. for each z ∈ V , Fu(z)
⋂
F s(z) is a unique point, say η(z), and the map

z → η(z) is a C1 diffeomorphism from a neighborhood of 0 onto its
image

5. η ◦ f4 ◦ η−1 = Df4(0) on a neighborhood of 0.

Thus, the map η gives a local C1 linearization of the diffeomorphism f4.
Note that, in general, the map η probably cannot always be chosen to be
symplectic. Fortunately, we do not need it to be symplectic.

Let L = Df4(0) be the derivative of f4 at 0. Assume that V is small
enough so that f4, η, η

−1 are defined on V and ηf4η
−1 = L on V .

Given two non-zero vectors v, w ∈ R2, let < v,w > denote the standard
inner product of v and w. We use the notations

| v | =
√
< v, v >, ang(v, w) =

∣∣∣∣tan [arccos

(
< v,w >

| v || w |

)]∣∣∣∣ ,
and call ang(v, w) the angle between v and w.
Letting

e1 =

(
1
0

)
and e2 =

(
0
1

)
,

we define

ang(v,Es) = ang(v, e1), ang(v,E
u) = ang(v, e2).
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For a point z, a vector v ∈ TzR
2 \ {0}, and a curve γ through z, we set

ang(v, γ) = ang(v, Tzγ).

Given a positive integer k we set

V u
k = V ∩ f4V ∩ f 2

4V ∩ . . . ∩ fk
4 V

and

V s
k = V ∩ f−1

4 V ∩ f−2
4 V ∩ . . . ∩ f−k

4 V.

For large k, V u
k is a smooth 2-disk which is a slight thickening ofW u(0, V ),

and V s
k is a smooth 2-disk which is a slight thickening of W s(0, V ). Below

the expression dist(E,F ) denotes the Hausdorff distance between the two
sets E and F .

Lemma 5.4 Assume the definitions given above. Then, there are constants
0 < K1 < K2 such that for every k ≥ 0, the following properties hold.

1. If z ∈ V u
k \ V u

k+1 and v ∈ TzR
2 \ TzFu(z),

then
K1| λs |k ≤ dist(Fu(z),Eu) ≤ K2| λs |k, (21)

ang(Df−k
4z (v), f−k

4 F s(z)) ≤ K2| λu |−k| λs |k
1

ang(v,Fu(z))
. (22)

If, in addition, ang(Df−k
4z (v), f−k

4 Fu(z)) ≥ 1, then

K1| λs |−k ang(v,Fu(z))| v | ≤ | Df−k
4z (v) | ≤ K2| λs |−k| v |. (23)

2. If z ∈ V s
k \ V s

k+1 and v ∈ TzR
2 \ TzF s(z), , then

K1| λu |−k ≤ dist(F s(z),Es) ≤ K2| λu |−k, (24)

and

ang(Dfk
4z(v), f

k
4Fu(z)) ≤ K2| λu |−k| λs |k

1

ang(v,F s(z))
. (25)

If, in addition, ang(Dfk
4z(v), f

k
4F s(z)) ≥ 1, then

K1| λu |k ang(v,F s(z))| v | ≤ | Dfk
4z(v) | ≤ K2| λu |k| v |. (26)
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Proof. The estimates (21), (22), (24), and (25) are obvious for the linear
map L. Since ηf4η

−1 = L implies that ηfk
4 η
−1(z) = Lk(z) for any

k ∈ Z and z ∈ η

( ⋂
0≤j≤k

f−j
4 V

)
,

the constants K1, K2 can be found depending only on the C1 size of η
and verifying the corresponding estimates for f4.

Now, let us proceed to prove (23).
As above, we first work with the linear map L.
Write v = (v1, v2) with v1 ∈ Eu, v2 ∈ Es, and let

w = (w1, w2) = (λuv1, λsv2) = Lv.

We consider the maximum norm

| v |′ = max(| v1 |, | v2 |).

and the standard norm

| v | =
√
v2

1 + v2
2.

Then, of course

| v |′ ≤ | v | ≤
√

2| v |′. (27)

Let us use a ∼ b to mean that there are constants 0 < C1 < C2 indepen-
dent of k such that

C1 ≤
a

b
≤ C2.

The assumptions of (23) give

ang(v,Fu(z)) ∼ | v1 |
| v2 |

, ang(Df−k
4 v, f−k

4 Fu(z)) ∼ | λs |−k| v1 |
| λu |−k| v2 |

≥ 1.

If,

| v1 |
| v2 |

≤ 1,
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then,

| v |′ = | v2 |,

and

| L−kv |′ = | λs |−k| v1 | (28)

∼ | λs |−kang(v,Fu(z))| v2 | (29)

= | λs |−kang(v,Fu(z))| v |′. (30)

Now (23) follows since | Df−k
4 v | ∼ | L−kv | ∼ | L−kv |′ and | v |′ ∼ | v |.

On the other hand, if

| v1 |
| v2 |

> 1,

then ang(v,Fu(z)) is bounded above and below and

| v |′ = | v1 |.

Then, (28) gives (23).
The proof of (26) is similar.
This completes the proof of Lemma 5.4.
Let us now return to the proof of Lemma 5.1
Fix positive integers m ≤ n. We want to prove Dm,n is dense in R2,m.

For f ∈ R2,m we wish to find a g ∈ Dm,n C
1 close to f satisfying property

Sn.
Let ψ(x, y) = (x1, y1) be the Cr coordinate system given in Lemma 5.2.

Henceforth, all perturbations in this section will be symplectic.
Using methods similar to those in [25], we may find a symplectic Cr g1

which is C1-near f so that g1(p) = p and W u(p, g1) ∩W s(p, g1) contains an
interval I1 ⊂ U of tangencies. We can choose I1 ⊂ W s(p, g1, U), but I1 is far
away from p in W u(p, g1).

Then, we shrink and modify U slightly if necessary to arrange that, given a
small ε > 0 and a large positive integer N , we can take a further perturbation
g = gN,ε of f and an interval I ′1 ⊂ W u(p, g) with the following properties:

1. p is a hyperbolic fixed point of g
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2. gN,ε = f on U
⋂
f(U)

⋂
f−1(U)

3. W u(p, U, g) = W u(p, U, f) and W s(p, U, g) = W s(p, U, f)

4. I1 ⊂ W s(p, U, g) and I ′1 ⊂ W u(p, g)

5. Letting I = ψ(I1) and I ′ = ψ(I ′1), we have

I = {a1 ≤ x1 ≤ a2, y1 = 0} (31)

and

I ′ =

{
a1 ≤ x1 ≤ a2, y1 = A(N) cos

(
πN(x− c)

a2 − a1

)}
(32)

where

A(N) =
ε(a2 − a1)

N
, 0 < a1 < a2 and c =

a1 + a2

2
. (33)

It is proved in [25] (pages 325-332) that we can arrange for the C1 distance
from gN,ε to f to be no larger than K3ε for some constant K3 > 0. Also, we
can make the angles between I and I ′ at points in I ∩ I ′ no larger than K3ε.

We only consider large N . Notice that

I
⋂

I ′ contains precisely N points . (34)

Now, we have gk(I1) ⊂ U for all k ≥ 0, and there is a positive integer
T such that, for k ≥ T , g−k(I ′1) ⊂ U . Let g1 = ψgψ−1 denote the local
coordinate representative of g.

We may assume that

I1
⋃

I ′1 ⊂ U \ g(U),

g−T (I1
⋃

I ′1) ⊂ U \ g−1(U),

the positive orbit
⋃
k≥0

gk(I1) is disjoint from ∂αn, (35)
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and

the negative orbit
⋃
k≤0

gk(I ′1) is disjoint from ∂αn. (36)

Figure 1 shows these structures for the map g1 = ψgψ−1 carried over to
V . The dashed curve is meant to indicate that, while the unstable manifold
W u(p, g) is connected, the part carried over to V by ψ is not connected.

(a ,0)
1

(a ,0)
2

z3

z4

W (0,g )
1

γ
4

∼

I

I’

0

s

W (0,g )
1

u

γ
3

∼

Figure 1: W u(0, g1), W
s(0, g1) and I, I ′
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Let g2 be the mapping from V \ g−1
1 V into V \ g1(V ) defined by

g2 = ψgTψ−1.

Now, for large N , we will find a positive integer k = k(N) and a curvi-
linear rectangle DN near I with the following properties.

P1. The boundary ∂DN consists of curves which are contained in leaves of
the foliations F s and Fu.

P2. DN ⊂ V s
k \ V s

k+1

P3. gk
1(DN) ⊂ V u

k \ V u
k+1

P4. g2(g
k
1(DN))

⋂
DN consists of N full-height curvilinear subrectangles of

DN

P5. Set g3 = g2g
k
1 , and let

Λ3 =
⋂
i

gi
3(DN)

be the largest g3−invariant set in DN .

Then, Λ3 is a hyperbolic set for g3 and the pair (g3,Λ3) is topologically
conjugate to the full shift on N symbols.

P6. Let
Λ(p,N) =

⋃
0≤i<k+T

gi(ψ−1Λ3).

Then, for N large depending on n, Λ(p,N) is a hyperbolic set for
g = gε,N satisfying the conditions of property Sn.

Once these properties have been established, the proof of Lemma 5.1 will
be complete.

Figure 2 shows the rectangle DN and its g2g
k
1−image.

Let us proceed to construct the rectangle DN .
Let J ′ = g−1

2 (I ′). Then, J ′ is in W u(0, g1) \ g−1
1 W u(0, g1).

Let z1 = (a1, 0), z2 = (a2, 0) be the boundary points of I and let z3, z4 be
the boundary points of J ′ chosen so that

| z3 | < | z4 |.
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DN

2(a ,0) (a ,0)1

γ
4

~
’ γ

3

~
’(D  )N1

gg
2

k

I

Figure 2: The rectanglesDN and g2g
k
1(DN); DN

⋂
g2g

k
1(DN) hasN connected

components.

By the Cr version of the λ−Lemma [33], page 155, the forward g1 orbits of
the curves Fu(z1),Fu(z2) contain curves arbitrarily Cr near W u(0, g1), and
the backward orbits of the curves F s(z3),F s(z4) contain curves arbitrarily
Cr near W s(0, g1).

Let k0(N) be the least positive integer so that for k ≥ k0(N)

dist(F s(g−k
1 z4), 0) ≤ 1

2
A(N).

Here A(N) is the amplitude defined in (33).
We will choose k(N) = k0(N) + n1 where n1 is a positive integer inde-

pendent of N . The number n1 will just depend on the constants K1, K2 in
Lemma 5.4.

Let γ̃3 = F s(z3), γ̃4 = F s(z4), and γ̃′3 = g
−k(N)
1 F s(z3), γ̃

′
4 = g

−k(N)
1 F s(z4).

We set DN to be the rectangle bounded above and below by the arcs in
the parts of γ̃′3, γ̃

′
4 between Fu(z1) and Fu(z2), and bounded on the left and

right by arcs in Fu(z1) and Fu(z2).
See Figure 2.
The statements below will hold for N large enough, so let us agree that

in any case we may increase N without further mention.
Claim 1: The set Λ3(p,N) is hyperbolic for g3

Proof.
From [30] It suffices to find a cone field Cu on Λ3(p,N) which is both

expanded and co-expanded by g3. That is, there is a constant λ > 1 so that,
for z ∈ Λ3(p,N), we have
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v ∈ Cu(z) =⇒ | Dg3z(v) | ≥ λ| v |, (37)

and

v ∈ TzR
2 \ Cu(z) =⇒ | Dg−1

3z (v) | ≥ λ| v |. (38)

Let

Ang(z) =
1

2
ang(F s(z), g3(Fu(g−1

3 z))).

Define

Cu(z) = {v ∈ TzR
2 : ang(v, g3(Fu(g−1

3 z))) ≤ Ang(z)}. (39)

For k large, we have that C(z,F s(z)
⋂
DN) is C2 near the part of W s(0)

between z1 and z2, and C(z, g3(Fu(g−1
3 z))

⋂
DN) is C2 near a connected

component of I ′
⋂
DN .

Since the angle between the connected components of I ′
⋂
DN and I are

const · ε, we may assume that ang(g3(Fu(g−1
3 z),F s(z)) ∼ ε and less than

one.
By (26), for large k = k(N), we get that

v ∈ (Cu(z) \ {0}) =⇒ | Dg3z(v) | ∼ | λu |kε > 2. (40)

On the other hand if v ∈ TzR
2 \ Cu(z), then

ang(Dg−1
2z v,Fu(g−1

2 z)) > const · ε. (41)

By (23), this gives

v ∈ (TzR
2 \ Cu(z)) =⇒ | Dg−1

3z (v) | ≥ const · | λs |−kε > 2.

This proves Claim 1.
Claim 2: The pair (g3,Λ3) is topologically conjugate to the full shift on

N symbols.
Proof. We have already mentioned that our construction gives that I

⋂
I ′

contains N points. Since DN is a rectangle whose horizontal curves are C2

near I, we get that DN

⋂
I ′ contains N connected components. Also, the

g3 images of the vertical curves in DN are C2 near I ′. Hence, DN

⋂
g3(DN)

consists of N disjoint full-height subrectangles of DN . Let us label these
components as A1, A2, . . . , AN .
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Using hyperbolicity and elementary arguments concerning the g3 images
and pre-images of the boundary arcs of DN we get that each g−1

3 Ai is a
full-width subrectangle of DN . Now, standard induction arguments similar
to those in Section 8.4 of Robinson [37] and Sections 2-4 of Moser [22] give
that,

1. For each l ≥ 0,

Du
N

def
= DN ∩ g3(DN) ∩ . . . ∩ gl

3DN

consists N l disjoint full-height subrectangles of DN whose widths are
const · | λs |kl, and

Ds
N

def
= DN ∩ g−1

3 (DN) ∩ . . . ∩ g−l
3 DN

consists N l disjoint full-width subrectangles of DN whose heights are
const · | λs |kl.

2. Each component of Du
N

⋂
Ds

N is a small rectangle with diameter const ·
| λs |kl.

3. For each element

a = (. . . a(−1)(0)a(l) . . .) ∈ ΣN

of the full N shift ΣN , there is a unique point π(a) ∈ Λ3 such that

⋂
l∈Z

g−l
3 Aa(l) = {π(a)}.

4. The map π is a topological conjugacy from (σ,ΣN) to (g3,Λ3).

This establishes properties P1-P5.
We now proceed to property P6.
Step 1: Λ(p,N) is a zero dimensional hyperbolic basic set for g.
Let us first prove that Λ(p,N) is hyperbolic.
Let Λ = ψ−1(Λ3).
Then, ψ is a smooth conjugacy between (gk+T ,Λ) and (g3,Λ3). We pull

the cone field from Λ3 over to Λ by setting

38



Cu(z) = Dψ−1Cu(ψ(z)).

We extend this cone field to Λ(p,N) as follows. For z ∈ Λ(p,N), let j be
the unique positive integer in [0, k + T ) such that g−j(z) ∈ Λ, and set

Cu(z) = DgjCu(g−jz).

To show that Λ(p,N) is hyperbolic, it suffices to show that Cu is eventually
expanded and co-expanded by g.

The smooth conjugacy above and (40),(41) give that for n1 = (k + T )l,
z ∈ Λ we have

v ∈ Cu(z) =⇒ | Dg(k+T )l
z (v) | ≥ const · 2l| v |

and

v ∈ TzR
2 \ Cu(z) =⇒ | Dg(−k−T )l

z (v) | ≥ const · 2l| v |.

Now, let n2 be large and write n2 = (k + T )l + j with l positive and
j ∈ [0, k + T ). Then, each z ∈ Λ(p,N) is such that there are integers
j1 ∈ [0, k + T ), j2 ∈ [0, k + T ) such that g−j1(z) ∈ Λ and gn2−j2(z) ∈ Λ.
It follows that there is a constant C depending only on k + T such that for
z ∈ Λ(p,N),

v ∈ Cu(z) =⇒ | Dgn2
z (v) | ≥ C 2l| v |

and

v ∈ TzR
2 \ Cu(z) =⇒ | Dg−n2

z (v) | ≥ C 2l| v |.

This proves that Λ(p,N) is g−hyperbolic.
Now, it is clear from the construction that (g,Λ(p,N)) is topologically

conjugate to the direct product of a periodic orbit of minimal period k + T
and the full N−shift. So, dim Λ(p,N) = 0.

We leave it to the reader to show the easy fact that the neighborhood

U1 =
⊔

i∈[0,k+T )

gi(ψ−1DN)

is an isolating neighborhood for Λ(p,N).
This proves Step 1.
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Step 2. Λ(p,N)
⋂
∂αn = ∅.

This follows since the set Λ(p,N) is can be made arbitrarily close to the
orbit O(g, I

⋂
I ′), and this latter orbit was constructed to be disjoint from

∂αn.
This proves (9) of property Sn.
Step 3. Condition (11) holds.
We first note that, since (g,Λ(p,N) is topologically conjugate to the prod-

uct of a periodic orbit of period k + T and the full N−shift, we have that
the topological entropy htop(g,Λ(p,N)) satisfies

htop(g,Λ(p,N)) =
logN

k + T
.

Let us relate this to λu for large N .
We have

A(N) ∼ | λu |−k,

and, each component of I ′
⋂
{y ≥ 0} has diameter

const · a2 − a1

2N
∼ const · 1

N
.

The slope s(v) of a vector v tangent to any connected component of
I ′
⋂
DN satisfies

s(v) ∼ N · A(N).

By construction, this slope is a constant times ε, so we get

| λu |k ∼ N. (42)

This implies that (since T is bounded as N →∞)

htop(g,Λ(p,N)) =
logN

k + T
→ log | λu | (43)

as N →∞.
As is well-known, the full-shift has a unique invariant probability measure

of maximal entropy. Hence, so does its product with a periodic orbit, and,
hence, via conjugacy, our map (g,Λ(p,N)) also has such an invariant measure
µ. For large N , the above entropy estimate gives (11).

Step 4. Condition (12) holds.
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We know that, for j ∈ [0, k+T ), gj(ψ−1(DN))
⋂
∂αn = ∅. Since gj(ψ−1(DN))

is connected, it follows that it is in a single element of the partition α. This
implies that Λ(p,N) is subordinate to αn as required in (10), and, hence,
that any invariant probability measure ν for g supported on Λ(p,N) has
hν(αn) = 0.

The condition

ρ(µ, µp) <
1

n
(44)

is obtained as follows.
It suffices to show that, given ζ > 0, there is an N = N(ζ) so large that

each sufficiently long orbit in Λ(p,N) spends most of its time in the Bζ(p),
the ζ−ball about p.

We first note that the upper bounds in (21) and (24) and the fact that
λu = λ−1

s give that

diam(V u
k

⋂
V s

k ) ≤ K2| λs |k.

This implies that ⋂
k∈Z

fk
4 (V ) = {0},

so, ⋂
l∈Z

glU = ψ−1{0} = {p}.

Thus, given ζ > 0, there is a positive integer n1 = n1(ζ) > T such that
n2 ≥ n1 implies

diam(
⋂

−n2≤i≤n2

giU) < ζ.

Consider a point z ∈ Λ and a k = `n1 with large `. Since gi(z) ∈ U for
i ∈ [0, k), if

i ∈ [n1, (`− 1)n1),

we have
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giz ∈
⋂

| j |<n1

gjU ⊂ Bζ(p).

Hence, the fraction of time in [0, `n1) that giz is in Bζ(0) is `−2
`

.
On the other hand, if z ∈ Λ(p,N), and `1 > 1, then there is an integer

j ∈ [0, k + T ) such that gj(z) ∈ Λ, and, hence, gs(k+T )+jz ∈ Λ for s ∈ [0, `1).
Thus, given ζ1 > 0, we can choose large integers ` and `1 such that if

k = `n1, then the fraction of times i such that the orbit segment

{gi(z) : i ∈ [0, `1(k + T ))}

is in Bζ(p) is greater than

(`− 2)(`1 − 2)

` `1
> 1− ζ1.

This gives (44).
Next, we proceed to

| χ(p)− χ(µ) | < 1

n
χ(p). (45)

First note that χ(p) = log | λu |.
Using (26), for z ∈ Λ, and v ∈ Cu(z) \ {0}, we have

| Dgk
z (v) | ∼ | λu |k. (46)

Let

C1 = inf
z ∈ U \ g−1U
| v | = 1

| DgT
z (v) |

and

C2 = sup
z ∈ U \ g−1U
| v | = 1

| DgT
z (v) |.

This gives constants K1, K2 such that, for z ∈ Λ, and v ∈ Cu(z) \ {0},
q = `(k + T ), we have
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C`
1K1| λu |`k ≤ | Dgq

z(v) | ≤ C`
2K2| λu |`k.

Now, (45) easily follows taking k >> T , letting ` → ∞, and using the
fact that the orbit of z ∈ Λ(p,N) passes through Λ once in every interval
[i, i+ k + T ).

This completes the proof of Lemma 5.1.
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6 Proof of Theorem 1.4

We consider r ≥ 2, and smooth compact Cr surface M . As above, let Hn(f)
denote the collection of hyperbolic periodic points of period no larger than
n, and let H(f) =

⋃
n≥1Hn(f). We assume that H(f) 6= ∅.

Let p ∈ H(f). Recall that a homoclinic point for p is a point

q ∈ [W u(O(p)) \O(p)] ∩ [W s(O(p)) \O(p)] . (47)

The homoclinic point q is transverse if the intersection in (47) is trans-
verse. Otherwise, we say q is a homoclinic tangency.

We extend this definition to hyperbolic basic sets Λ in the obvious way.
A homoclinic point for Λ is a point q in

(W u(Λ) \ Λ) ∩ (W s(Λ) \ Λ) .

A homoclinic tangency for Λ is a homoclinic point for Λ which is a tan-
gency of W u(x) and W s(y) for some x, y ∈ Λ. We also say that Λ has a
homoclinic tangency.

There is an equivalence relation ∼ on H(f) defined by p ∼ q if and only
if W u(O(p))\O(p) has a non-empty transverse intersection with W s(O(q))\
O(q) and vice-versa [23]. The closure of an equivalence class is a non-empty
closed f−invariant topologically transitive set called an h−closure or homo-
clinic closure. An h−closure is either a single periodic orbit or equals the
closure of the transverse homoclinic points of some hyperbolic periodic orbit.
An h−closure which reduces to a single periodic orbit is called trivial, and
those which contain at least two periodic orbits (and hence infinitely many)
are called non-trivial.

We can extend the above equivalence relation to one, also denoted by ∼,
on the collection of hyperbolic basic sets. We say that Λ1 ∼ Λ2 for such
sets if and only if W u(Λ1) \Λ1 has a non-empty transverse intersection with
W s(Λ2) \ Λ2 and vice-versa. The h−closure of a hyperbolic basic set Λ is
defined to be the closure of the union of the hyperbolic basic sets Λ1 such
that Λ1 ∼ Λ. This coincides with the h−closure of the hyperbolic periodic
points which are contained in Λ.

A diffeomorphism f has persistent homoclinic tangencies if there are a
hyperbolic basic set Λ(f) for f with adapted neighborhood U and a neigh-
borhood N of f in Dr(M) such that if g ∈ N , then
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Λ(g) =
⋂
n∈Z

gn(U)

has a homoclinic tangency.
It is known that, if r ≥ 2, and f has a homoclinic tangency, then one can

find g arbitrarily close to f in Dr(M) so that g has persistent homoclinic
tangencies. This is proved in [26] when the homoclinic tangency is for a
periodic orbit. In the general case, if f has a homoclinic tangency for a
hyperbolic basic set, then standard methods (e.g. Lemma 8.4 in [27]) show
that there are g′s arbitrarily Cr close to f which have homoclinic tangencies
for periodic orbits. It follows from these considerations that there is a dense
open subset V in Dr(M) such that if f ∈ V and f has a homoclinic tangency,
then f indeed has persistent homoclinic tangencies. In addition to [26],
various properties associated to persistent homoclinic tangencies are studied
in [15], [10], [36], [27], and [33].

If Λ is an f−invariant set containing some hyperbolic periodic orbits,
let χ(Λ) be the supremum of the characteristic exponents of those periodic
orbits.

The next theorem, which has independent interest, shows that the pres-
ence of homoclinic tangencies gives a lower bound on the quantity hsex(f)
which has the potential to be larger than htop(f). Later we will give examples
of open sets of diffeomorphisms where this actually happens.

Theorem 6.1 Fix r ≥ 2, and U be the open subset of Dr(M) so that each
f ∈ U has a hyperbolic basic set Λ(f) which has persistent homoclinic tan-
gencies. There is a residual subset R of U such that if f ∈ R, then

f is not asymptotically h−expansive (48)

and, letting Λ1(f) be the homoclinic closure associated to Λ(f), we have

hsex(f) ≥ max

(
htop(f),

χ(Λ1(f)) · r
r − 1

)
. (49)

Remark. Examples of Cr non-asymptotically expansive diffeomorphisms
in manifolds of dimension greater than 3 were constructed by Misiurewicz in
[20]. Although the existence of such examples on surfaces has been known to
experts for a long time, the examples here may be the first published version
of such examples. Further, we show here an abundance of such examples.
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We expect that the estimate (49) is actually an equality for typical non-
hyperbolic Cr systems.

To start the proof of Theorem 6.1, let ε > 0.
Since it is obvious that hsex(f) ≥ htop(f), Theorem 6.1 follows from the

inequality

hsex(f) ≥ (χ(Λ1(f))− ε) · r
r − 1

. (50)

The first step in the proof of (50) is the following lemma.
Let (αk) be an essential sequence of simplicial partitions as defined in

Section 5. Let hµ be the entropy of the invariant measure µ, and let hk =
hk(µ) = hµ(αk, f) be the elements of the entropy structure H = (hk).

Lemma 6.2 Consider a family of ergodic measures µ0,i1,i2,...,ij ∈ M(Λ1(f))
indexed by all finite sequences of natural numbers (i1, i2, . . . , ij) ∈ Nj, such
that, for each j ≥ 0,

lim
ij+1→∞

µ0,i1,i2,...,ij ,ij+1
= µ0,i1,i2,...,ij , (51)

(for j = 0 we set i0 = 0 so that the above includes limµ0,i1 = µ0).
Letting χ = χ(µ) denote the characteristic exponent of the ergodic mea-

sure µ and fixing a positive real number ε > 0, suppose that

h(µ0,i1,i2,...,ij ,ij+1
) ≥ χ(µ0,i1,i2,...,ij ,ij+1

)− ε ≥
χ(µ0,i1,i2,...,ij)− ε

r
, (52)

and, for each k,

lim
ij+1→∞

hk(µ0,i1,i2,...,ij ,ij+1
) = 0. (53)

Then
EH(µ0) ≥ (χ(µ0)− ε)

r

r − 1
.

Proof. We will use the transfinite characterization of EH (Proposition
4.2), from which it follows that

EH ≥ h+ sup
n∈N

un.
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First observe that, by (52), (53), and the definition of u1,

u1(µ0,i1,i2,...,ij) ≥ inf
k

lim sup
ij+1

(
h(µ0,i1,i2,...,ij ,ij+1

))− hk(µ0,i1,i2,...,ij ,ij+1
)
)

≥
χ(µ0,i1,i2,...,ij)− ε

r
.

Suppose we have inductively proved that

un(µ0,i1,i2,...,ij) ≥
(
χ(µ0,i1,i2,...,ij)− ε

) n∑
s=1

1

rs
.

Then we can extend this to n+1 directly by the definition of un+1 as follows:

un+1(µ0,i1,i2,...,ij) ≥ inf
k

lim sup
ij+1

[
un(µ0,i1,i2,...,ij ,ij+1

)+

+ h(µ0,i1,i2,...,ij ,ij+1
)− hk(µ0,i1,i2,...,ij ,ij+1

)
]

≥ lim sup
ij+1

(
(χ(µ0,i1,i2,...,ij ,ij+1

)− ε)
n∑

s=1

1

rs
+
χ(µ0,i1,i2,...,ij)− ε

r

)

≥ (χ(µ0,i1,i2,...,ij)− ε)

(
1

r

n∑
s=1

1

rs
+

1

r

)

= (χ(µ0,i1,i2,...,ij)− ε)
n+1∑
s=1

1

rs
.

As a result,

EH(µ0) ≥ h(µ0)+sup
n
un(µ0) ≥ (χ(µ0)−ε)

(
1 +

∞∑
s=1

1

rs

)
= (χ(µ0)−ε)

r

r − 1
.

which proves Lemma 6.2.
Now, we go to the proof of (50) which gives Theorem 6.1. The proof is

similar in spirit to that of Theorem 1.3. However, we don’t work in the sym-
plectic category and our perturbations must all be Cr. As is to be expected,
this forces changes in many of the estimates. The resulting differences which
appear are that some expressions involving χ(p) in (11) and (12) are replaced

by χ(p)
r

in (56) and (57), respectively.
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Let us proceed. For each f ∈ U , let Λ(f) be a basic set which has
persistent homoclinic tangencies.

Given a positive integer n, let H̃n(f) be the set of hyperbolic saddle points
of least period n which are h− related to Λ(f), let H̃(f) =

⋃
n H̃n(f), and

let τ̃(f) denote the least positive integer n such that H̃n(f) 6= ∅. Set R̃2,m

to be the set of diffeomorphisms f ∈ U such that τ̃(f) = m.
For n ≥ m, let us say that a diffeomorphism f satisfies property S̃n if,

for each p ∈ H̃n(f),

1. there is a zero dimensional periodic hyperbolic basic set Λ(p, n)
for f such that

Λ(p, n)
⋂

∂αn = ∅, (54)

2.
Λ(p, n) is subordinate to αn, (55)

3. there is an ergodic µ ∈M(Λ(p, n)) such that

| hµ(f)− χ(p)
r
| < χ(p)

nr
, (56)

and

4. for every ergodic µ ∈M(Λ(p, n)), we have

ρ(µ, µp) <
1

n
and | χ(µ)− χ(p)

r
| < χ(p)

nr
, (57)

Given positive integers m ≤ n, let D̃m,n denote the subset of R̃2,m con-
sisting of diffeomorphisms f ∈ U satisfying property S̃n.

Lemma 6.3 For every positive integers m ≤ n the set D̃m,n is dense and
open in R̃2,m.

The proof is similar to that of Lemma 5.1 except the we don’t have to
keep things symplectic, and we use results of Kaloshin [15] (and Gonchenko-
Shilnikov-Turaev [10]) to get intervals of homoclinic tangencies. We will
sketch the ideas, indicating the main changes to the previous arguments. All
perturbations are assumed to be Cr small.
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Step 1: For p ∈ H̃n(f), we first use Lemma 8.4 in [27] to perturb to get
a homoclinic tangency for O(p).

Step 2: We use Proposition 5 and Lemma 3 in [15] to get an interval of
tangencies between W u(p) and W s(p).

Step 3: We take a further perturbation g to create N bumps as in figure
2, and also the set Λ(p,N). However, to keep the perturbation Cr small, we
replace (33) with

A(N) =
ε(a2 − a1)

N r
. (58)

For convenience of notation (as in our earlier considerations near formula
(27)), for positive real numbers a, b, we use the expression a ∼ b to mean

a

b
is bounded above and below by constants independent of k.
We see that (42) gets replaced by

| λu |k ∼
1

A(N)
∼ N r, (59)

or

N ∼ | λu |
k
r .

Also, for a unit vector v ∈ Cu
z , we have

| Dgk
z (v) | ∼ | λu |k · s(v) ∼ | λu |kN1−r ∼ N ∼ | λu |

k
r . (60)

From, (59), we get

htop(g,Λ(p,N)) =
logN

k + T
→ 1

r
log | λu |. (61)

The arguments following (45) used (46) to show that χ(µ) ∼ χ(p).

In a similar way we can now use (60) to show that χ(µ) ∼ χ(p)
r

.
Proof of (50):
Let f ∈

⋂
n≥m D̃m,n.

Let ε > 0, and let p be a hyperbolic periodic point which is h−related to
Λ(f) so that

χ(p) > χ(Λ1(f))− ε. (62)
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Let µ0 = µ(p) be the uniform measure on the orbit of p.
Using property S̃n for larger and larger n, we can find a sequence µ0,i1

of measures supported on periodic hyperbolic basic sets Λ0,i1 ⊂ Λ1(f) such
that

µ0,i1 → µ0, χ(µ0,i1) →
χ(p)

r
, hµ0,i1

→ χ(p)

r
, and hk(µ0,i1) → 0

as i1 →∞.
By (62) we may assume that

hµ0,i1
≥ χ(µ0,i1)− ε ≥ χ(µ0)

r
.

This gives that µ → hµ is not uppersemicontinuous. Thus, f cannot be
asymptotically h−expansive. This is the first statement of Theorem 6.1.

Since µ0,i1 is supported on the hyperbolic set Λ0,i1 , we use Sigmund [38]
to get a sequence of periodic points p0,i1,i2 ∈ H̃(f) such that

µ(p0,i1,i2) → µ0,i1 and χ(µ(p0,i1,i2)) → χ(µ0,i1) as i2 →∞.

Now, we use S̃n repeatedly again replacing p with each p0,i1,i2 and get
measures µ0,i1,i2 satisfying (51)–(53) for j = 1.

Continuing in this manner we get a family of measures indexed by se-
quences of natural numbers as in Lemma 6.2. Applying that Lemma, we
get

supEH ≥ r(χ(p)− ε)

r − 1
.

Since ε was arbitrary, this proves Theorem 6.1.
Next, we wish to describe an open set U in Dr(M) so that, for each f ∈ U ,

we have

htop(f) <
χ(Λ1(f))r

r − 1
. (63)

This will complete the proof of Theorem 1.4.
We first describe the construction of U using Cr diffeomorphisms mapping

a closed 2-disk D in R2 into itself. Then, we use standard techniques to
embed this family of diffeomorphisms into an open set in Dr(M).
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Let us begin with the time-one map f1 of the vector field X in the plane
R2 given by

X(x, y) = y
∂

∂x
+ (x− x2)

∂

∂y
. (64)

This is a Hamiltonian system with one degree of freedom and Hamiltonian
function H(x, y) = y2

2
+ x3

3
− x2

2
.

The point p = (0, 0) is a saddle point for X and p1 = (1, 0) is a center.
Also, the right components of W u(p) \ {p} and W s(p) \ {p} coincide in a
homoclinic loop for X. Denote these components by W u

+(p) and W s
+(p),

respectively. Let W u
−(p) denote the left component of W u(p) \ {p}. With

standard modifications (e.g. as in [32]), we change the map f1 (via an isotopy)
to a Cr diffeomorphism f2 with the following properties.

1. p is a fixed saddle point and p1 is a fixed source of f2, and f2 has
another hyperbolic fixed point p2 which is a sink,

2. W u(p, f2)
⋂
W s(p, f2) \ {p} consists of the orbit of a single homoclinic

tangency q,

3. 0 < det(Df2(p)) < 1,

4. Closure(W u
+(p, f2))\W u

+(p, f2) ⊂ W u
−(p, f2)

⋃
{p2, p} (that is,W u

+(p, f2)
only accumulates on W u(p, f2) in the left component W u

−(p, f2)),

5. there is a closed 2-disk D in R2 such that f2 maps D into its interior,
and {p, p1, p2, q}

⋃
W u(p) ⊂ D, and

6. the collection of ω−limit sets of all points in D consists of the orbit of
q, the saddle fixed point p, the fixed source p1, and the fixed sink p2.

7. χ(p1) < χ(p) where χ(·) denotes the largest characteristic exponent.

Since the only recurrent points of f2 are fixed points, we have

htop(f2) = 0. (65)

See Figure 3 for the maps f1 and f2 on D.
For a given diffeomorphism f , and a set E, define the number R(f, E) by
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Figure 3: The maps f1 and f2.

R(f, E) = lim sup
n→∞

1

n
log sup

x∈E
| Dfn

x |.

Let λ > 1 be the expanding eigenvalue of Df2(p), so that χ(p) = log λ.
Now, the forward f2−orbit of any x ∈ D \ {p1} is asymptotic to the fixed

sink p2 or the closure of the orbit of the homoclinic tangency q. In the latter
case, the orbit eventually spends most of its time near the saddle point p.
Thus we have

R(f2, D) = max(| Df2(p1) |, χ(p)) = χ(p). (66)

Given a Cr curve γ in a Riemannian manifold M , we let | γ | denote its
arclength. We define the growth rate of γ for a diffeomorphism f to be

G(f, γ) = lim sup
n→∞

1

n
log+ | fn ◦ γ |

where log+ x = max(log x, 0) for every real x.
Also the one-dimensional growth rate of a Cr map f is defined to be

G1(f) = sup
γ
G(f, γ)

where the supremum is taken over all Cr curves γ in M .
In [29] it was proved that the topological entropy of a C1+α diffeomor-

phism was bounded above by the maximal volume growth of smooth disks.
Since there is no volume growth of two dimensional disks for diffeomorphisms
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on surfaces, we have that the topological entropy of a C2 diffeomorphism f
of a surface is bounded above by G1(f).

Applying this and results of Yomdin in [41], [40], we get

lim sup
g→f in Cr

htop(g) ≤ htop(f) +
R(f)

r
. (67)

Actually, in [41], the upper bound given for G1(f) was 2R(f)
r

, but this was

improved to R(f)
r

in [40].
Let ε > 0.
Using (67), we take a small Cr neighborhood U1 of f2 so that, for any

f ∈ U1, we have

htop(f) < htop(f2) +
log λ+ ε

r
=
χ(p) + ε

r
. (68)

Also, we choose an open set U ⊂ U1 so that each f ∈ U has a hyperbolic
basic set Λ(f) with persistent homoclinic tangencies which is h−related to
p. It follows from Theorem 6.1 that there is a residual subset R ⊂ U such
that if f ∈ R, then

hsex(f) ≥ (χ(p)− ε)r

r − 1
. (69)

Thus, since

1

r
<

r

r − 1
,

we have that hsex(f) > htop(f) + c for some positive number c = c(U1)
for f ∈ R provided that ε is small enough. This proves Theorem 1.4 in the
case of diffeomorphisms of a two dimensional disk D into its interior.

To get the result for Dr(M) with M an arbitrary surface, we proceed in
the following standard way.

Consider an arbitrary surface M together with a C∞ Morse function
φ : M → R on M . Let f3 be the time-one map of the gradient vector field
of φ in some Riemannian metric on M . Near a local minimum of φ, we can
find a smooth two-disk D′ such that f3(D

′) ⊂ interior(D′). Using standard
techniques we modify f3 to a diffeomorphism f : M → M satisfying the
following properties.

• f agrees with f3 outside D′,
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• there is a smooth two disk D′′ ⊂ D′ such that (f,D′′) is Cr conjugate
to (f2, D),

• the collection of ω−limit points of f consists of hyperbolic fixed points
and a single orbit of homoclinic tangencies, and

• R(f,D′′) = χ(p).

Now, we apply the same method we used for f2 to the map f . We
perturb into an open set U such that if g ∈ U , then g has a hyperbolic set
Λ1(g) which has persistent homoclinic tangencies, is h−related to the saddle
point p(g), and satisfies the analogs of (68) and (69). This completes the
proof of Theorem 1.4.

7 Proof of Theorem 1.6

We recall some results from the paper of Manning and McCluskey [19]. We
denote the Hausdorff dimension of a set Λ by HD(Λ).

Let Λ = Λ(f) be an infinite zero dimensional hyperbolic basic set for the
C1 diffeomorphism f . Let Eu

x denote the expanding subspace at x ∈ Λ, and
let | · | be an adapted Riemannian norm. The function φu(x) = φu(x, f) =
−log| Dfx | Eu

x | is strictly negative and continuous. For each t ∈ [0, 1] define
the pressure

P (tφu, f) = sup
µ∈M(Λ)

(
hµ(f) + t

∫
φudµ

)
.

For r ≥ 1, the function t→ P (tφu, f) is strictly decreasing, and satisfies

P (0, f) = htop(f | Λ) > 0.

If r ≥ 2, then, since Λ is not an attractor, Theorem 4.11 in [1] gives

P (φu, f) < 0.

Thus, there is a unique δu ∈ [0, 1] such that P (δuφu, f) = 0.
Moreover, for each x ∈ Λ,

HD(W u(x)
⋂

Λ) = δu. (70)
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Define the unstable Hausdorff dimension of Λ to be the quantity δu in
(70). Denote this quantity by HDu(Λ). Replacing f by f−1, we obtain the
stable Hausdorff dimension of Λ to be the unique number δs = HDs(Λ) such
that, for each x ∈ Λ,

HD(W s(x)
⋂

Λ) = δs. (71)

Observe that if Λ1 ⊆ Λ2, then

HDu(Λ1) ≤ HDu(Λ2) and HDs(Λ1) ≤ HDs(Λ2).

By Manning and McCluskey, the quantities HDs(Λ), HDs(Λ) depend
continuously on f in the C1 topology. By work of Palis and Viana [34], we
have

HD(Λ) = HDu(Λ) +HDs(Λ), (72)

so,

the map f → HD(Λ(f)) is continuous (73)

in the Cr topology for r ≥ 1.
For r ≥ 2, the quantities HDu(Λ), HDs(Λ) are studied in detail in [33]

where they are also called limit capacities.
Fix r ≥ 2. Let U1 be the open subset of Dr(M2) so that if f ∈ U1, then

f has a hyperbolic basic set Λ(f) with persistent homoclinic tangencies. Let
n > 0 be a positive integer.

Claim: The set U1,n of diffeomorphisms f ∈ U1 such that there is a
hyperbolic basic set Λ1(f) h-related to Λ(f) such that HD(Λ1(f)) > 2 − 1

n

is dense and open in U1.
Once the claim is proved, if follows that if f ∈

⋂
n U1,n, then the homo-

clinic closure of Λ(f) has Hausdorff dimension two. This will prove Theorem
1.6.

Since it is immediate from (73) that U1,n is open in U1, it suffices to prove
that it is dense.

Consider f ∈ U1 with hyperbolic basic set Λ(f) having persistent homo-
clinic tangencies.

Below, we use the notation Λ1 ∼ Λ2 to mean that Λ1 is homoclinically
related to Λ2.
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Let p be a hyperbolic periodic point in Λ(f) with χ(p) > 0. Let ε > 0.
By Lemma 6.3, we can perturb f off a neighborhood of the orbit of p to
g in Dr(M2) so that g has an invariant hyperbolic basic set Λ2(g) ∼ Λ(g)
containing p such that there is an ergodic hyperbolic measure µ supported
on Λ2(g) so that

| χ(µ)− χ(p)
r
| < ε,

and

| hµ(g)− χ(p)
r
| < ε.

Let

t =
hµ(g)

χ(µ)
.

Since χ(p, g) = χ(p, f) > 0 for all such g, if ε is close enough to 0, we can
get t arbitrarily close to 1.

Thus, we can find a g Cr close to f so that there is a hyperbolic basic
set Λu(g) supporting a g−invariant ergodic measure µ such that there is a t
arbitrarily close to 1 such that

hµ(g)− tχ(µ, g) = 0.

As is well-known, the Birkhoff ergodic theorem applied to the function
φu(x, g) gives

−χ(µ) =

∫
φu(x, g)dµ(x).

We have shown the following:
Given n > 0, we can Cr perturb f to g so that there are a g−hyperbolic

basic set Λu(g) ∼ Λ(g), a µ ∈Me(Λ(g)), and a t ∈ (1− 1
2n
, 1) so that

Pµ(tφu, g) = 0.

Since P (tφu, g) is the supremum of such measures, we have that

P (tφu, g) ≥ 0.
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On the other hand we know that t→ P (tφu, g) is strictly decreasing and
P (φu, g) < 0. So, the number δu so that P (δuφu, g) = 0 is also in the interval
(1− 1

2n
, 1).

Since δu = HDu(Λu(g)), we get

HDu(Λu(g)) > 1− 1

2n
. (74)

But, g still has a homoclinic tangency. So, we can apply similar reasoning
to g−1 to get a g1 C

r near f having another g1−hyperbolic basic set Λs(g1) ∼
Λ(g), such that

HDs(Λs(g1)) > 1− 1

2n
. (75)

For g1 close enough to g, we also have a Λu(g1) near Λu(g) satisfying (74)
and Λu(g1) ∼ Λ(g1).

Next, since

Λu(g1) ∼ Λ(g1) ∼ Λs(g1),

we can use Lemma 8 in [26] to get a hyperbolic basic set Λ3(g1) ∼ Λ(g1)
containing both Λu(g1) and Λs(g1).

Hence, we have

HD(Λ3(g1)) = HDu(Λ3(g1)) +HDs(Λ3(g1))

≥ HDu(Λu(g1)) +HDs(Λs(g1))

≥ 2− 1

n

as required. This completes the proof of Theorem 1.6.
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