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! 1. Introduction

let M= Mn, nz1, be a compact differentiable manifold without
boundary and % = %(M) be the Banach space of all C"-flows (i.e., vector
fields or ordinary differential equations) on M, endowed with the ¢'-
I toooloqy, r > 2.
This paper is about the bifurcation theory of flows and in order
i to clarify its meaning and scope we begin with some general considerations.
Bifurcation theory is the study of maps of a finite dimensional
P manifold A (parameter space) into %. Of very special interest is the
study of the intersection of the image of A with the set, £ czx, of all
, structurally stable flows on M. The first to adopt this point of view was
! J. Sotomayor [19] who considered the case where n = 2 and A 1is an interval.
“ He qives a fairly good description of how, generically, an arc in % is
b situated with respect to :. Although many of the concepts of this work can
be exténded to dimension n > 2 [21], it is clear that there one has to

settle for much less. For one thing 1 is no longer dense in % and won't

be so simply described. It is then natural to substitute for 1 the best
l known open subset of 1, namely the subset, A, of all Morse-Smale flows

on M. In T11] this point of view was adopted and a delicate analysis is
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MORSE-SMALE FLOWS

given of how, generically, an arc starting at a point X ¢ A meets the
boundary 94 for the first time; again the situation is far from simple.

The main goal of the present paper is (Theorem B) to show that
aiven any two flows X, Y € &4 there is a simple arc in ¥ connecting
them. Simple means that the arc contains at most finitely many points
outside of A and, roughly speaking, for these the singularities and
corresponding intersections of stable and unstable manifolds deviate in
the Teast possible way from the structurally stable situation. These
exceptional (bifurcation) points will belong to a codimension one sub-
manifold 21 < %, a natural extension of a set introduced in [19, 20].
The simple arc we get is stable in the sense that any nearby arc exhibits
the same type of behavior.

Our theorem then means that one can always go from X to Y
with a minimum of topological degeneracy, and this in a stable way. Of
course the broken Tine segment X0Y, where 0 is the zero flow, has only
the point 0 outside 4 but this arc is not stable and 0 1is the epitome
of topological degeneracy.

On a somewhat philosophical vein our theorem fits well within
Thom's framework of the theory of morphogenesis [24], whose fundamental
problem is to study how a "form" is transformed into another.

Simple arcs give a nice, differentiable way of describing some
operations with flows which have been used in the lTiterature. For instance,
the arqguments of [14] give a constructive proof of the existence of a simple
arc connecting any two gradient like flows on 52, the exceptional points

exhibiting no saddle connections. The recent work of G. Fleitas [4] implies
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that our theorem for gradient like flows on M3 is essentially equivalent
to an old theorem by Singer [15] about "moves” on Heegard diagrams. Also,
as G. Fleitas pointed out to us, the proof of the h-cobordism theorem in
[91 contains as a special case the construction of a simple arc between any
two gradient flows on Sn, n 6.

We now say a few words about the proof of the theorem. A najve
argument to disprove it would run as follows. Let M be the two torus,
and X, Y ¢ A, be non vanishing flows such that the rotation number of X
is 1 and that of Y is 2. Then along any arc from X to Y the ro-
tation number varies continuously and it is easily verified that every flow
with irrational rotation number corresponds to a bifurcation point. This
argument is correct as long as the arc stays on a region of % where the
rotation number is defined; i.e. on a region of non-vanishing flows. What
it actually shows is that there is no such arc theorem for diffeomorphisms
of S]. Thus one sees that the bifurcation theory of diffeomorphisms is
much more rigid than that of flows. To prove our theorem we start getting
rid of the closed orbits through the successive introduction of a saddle
node on each closed orbit. One then enters the realm of gradient-1ike
flows, passes to a flow which is locally a gradient, and then to a gradient
flow using the methods of [17]. The proof ends by showing, via transver-
sality, that most arcs within the gradient flows are simple. Incidentally,
the ahove mentioned introduction of saddle nodes gives an immediate way

to get the Morse inequalitites for Morse-Smale flows from the classical

Morse inequalities [16].

2. Definitions and statements of results

18
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let x eM and f be a local C2 diffeomorphism of a neigh-

P borhood U of x into M such that f(x) = x. One says that x is a
, hyperbolic fixed point of f 1if each eigenvalue of the derivative Txf

has absolute value different from one; x is a quasi-hyperbolic fixed

; point of f if (1) 1 1ds an eigenvalue of Txf with multiplicity one,

and (2) if v # 0 1is an eigenvector of Txf corresponding

to the eigenvalue 1, then the second derivative of f at x on

v, Tif(v,v), is not in the sum of the eigenspaces of T.f corresponding

to the eigenvalues of Txf different from 1. Here Tif(v,v) is taken
relative to some coordinate system near x. The non-degeneracy
condition (2) does not depend on the coordinate system chosen (see

[21]).

Let X ¢ xr(M), and let ¢t be the T-parameter group corresponding

t
to X (i.e., Qiaéil , = X(x)). Thus ¢t is a diffeomorphism of M
t=0

for each real t and ¢° is the identity. A critical point x of X

¥s called hyperbolic (quasi-hyperbolic) if it is a hyperbolic (quasi-

hyperbolic) fixed point of ¢t for t # 0. A quasi-hyperbolic critical
point is also called a saddle node. let y be a closed orbit (periodic
solution) of X and let H be a small piece of hypersurface through

X ¢ vy transverse to Y. There is an induced diffeomorphism o (called

the Poincaré transformation) from a neighborhood of x in H dinto H de-
fined by o(z) = ¢t(z)(z) where t(z) = inf {t: ¢t(z) e H, t> 0}. The

orbit is called hyperbolic (quasi-hyperbolic) if x is a hyperbolic (quasi-

hyperbolic) fixed point of 6. These qualities for v do not depend on the
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choice of X in Y or H. The orbit of a point x ¢ M will be denoted o(x).

It is known [5], [6] that any hyperbolic (quasi-hyperbolic) cri-
tical point p has a smooth stable manifold ws(p) = {yeM: ¢t(y) +p
as t e} and a smooth unstable manifold w“(p) = {y ¢ M: ¢t(y) >p
as t + -=}. In the quasi-hyperbolic case, ws(p) has a smooth boundary
wss(p) consisting of those points y for which ¢t(y) approaches p ex-
ponentially as t + », and Nu(p) has a smooth boundary w“”(p) consisting
of the points y for which ¢t(y) approaches p exponentially as t » -m.‘
Similarly, a hyperbolic (quasi-hyperbolic) closed orbit has stable and un-
stable manifolds obtained by iteration through ¢t of the corresponding
manifolds for the fixed point of the Poincaré transformation.

Apoint x e M ds an -limit point of X 1if there are yeM
and a sequence t; >« such that ¢ti(y) + X. The point x s an o-limit
point of X if it is an w-limit point of -X. The 1imit set of X, denoted
L(X), is the closure of the union of the set of qo-limit points and the
set of u-Timit points of X. An element X e zr(M) is called a Morse-Smale
flow if

(1) L(X) consists of a finite number of hyperbolic critical points
and a finite number of hyperbalic closed orbits.
(2) the stable and unstable manifolds of the orbits in L(X) meet

transversely.
These flows have been studied in [16] and [12] where more references may
he found. A Morse-Smale flow without closed orbits (i.e. whose limit set
consists only of hyperbolic critical points) is called gradient-Tike.

For a positive integer j > 0, Tlet IRJ be the Euclidean space
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of dimension j. Take coordinates (x],...,xn, Yyseees ys) for

an xms']x IR1, and let 1: 1Rn ><1RS°]>< mh IR] be the natural projection

onto the last factor; i.e., = (x],..., Xps Yyoeees ys)= Ye- let H and P

be submanifolds of a manifold M with dimN=n, dimP=p, dimM=m=n+s,

and suppose that y ¢ N n P. Let Py = dim TyN n TyP.
We say y 1is a quasi-transversal intersection of N and P if

(1) dim (TyN + TyP) =m-~- 1 and

(2) if n+p=m, then there are coordinates ¢: U c M +[Rnx [RS-]x IR]

p p-p
near y in M and y: VcP-)]R]x R near y in P such
that

(a) ¢ly) = (0, 0, 0), ¢(NnaU) cr" x {0} x (0}, uly) = (0, 0)
(B) T 'R % (03) = T.Nn TP
Y . P v .
(¢) (0, 0) in m ' x {0} is a non-degenerate critical point of
the map wy ]ha L x {03}.
In other words, the submanifold w @a L x {0}) of P tangent
to TyN n TyP at y has first order contact with N at y. The motivation
for this definition is as follows. Suppose N = N0 and P = PO occur in
and P and P

generic 1-parameter families of manifolds N with N

t t 0 0
meeting quasi-transversely at y. If Nt and Pt are perturbed to families
N, and P,_, then there is a t, near 0 such that N, and P, meet
t t 0 t0 to

quasi-transversely near y, and the qualitative behavior of Nt n Ft for t
near t0 is the same as that of Nt n Pt for t near 0.

For example, a sphere and a plane in H{B which are tangent at a
point meet quasi-transversely there and can be imbedded in one parameter

families as indicated. Similarly, two curves in 1R3 which intersect

21



i, T 3. = —n

S. NEWHOUSE - M. M. PEIXOTO

non-tangentially at a point are quasi-transversal there.
Suppose p and q are different hyperbolic critical points of
X e x'(M), and let SERRRRY be the eigenvalues of Tq¢] Ww(q) with

Tyl syl <o s IAal, and yqs....n, be the eigenvalues of

B8

1,8 .
Tp¢ W (p) with 1> ]u]I > |u2| >0z I”BI' Let Jq and Kq denote

the eigenspaces of Tq¢]|wu(q) corresponding to A; and {Az,...,xa}, and

Tet JD and K_ denote the eigenspaces of Tp¢1|wskp) corresponding to

¥y and {uz,..?,us}. Write u = dim w“(q), s = dim ws(p), and assume
0D<u<dimM, 0<s <dimM. We say that w”(p) and ws(q) have an
orbit o(x) of type one intersections if the followina conditions are

satisfied:

(1) Ay dsreal, 1 <2y < |3

IA

-+ s [A [, and dim Jg =1

(2) M is real, 1 > uy > qul

v

.2 ]uBI, and dim Jp =1

(3) there is a smooth hypersurface H transverse to o(x) at
X such that
(a) WY(p) n H and ws(q) n H have a quasi-transversal
intersection at x.

(6) Tim (T,65)(T,(W(p) 0 1)) = K~ and

Hin (T (T, (4(0) n 1) = K,

where the limits are taken with respect to metrics
in the appropriate Grassmann bundles.
(8) if w#(q) is the unique ¢t invariant (u-1)-dimensional
submanifold of WY(g) tangent to K_, and w?(p) is the

q
unique ¢t -invariant (s-1)-dimensional submanifold of

22
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W (p) tangent to Kp [6], then w#(q) is transverse to all

the stable manifolds of critical points different from gq, and

w?(p) js transverse to all the unstable manifolds of critical

points different from p.

Type one intersections were considered in [11]. We next define
three subsets Q;, Qs 03 of x'(M), which will include the bifurcation
points on simple arcs. 0 is the set of X such that

(1) L(X) consists of a finite number of critical points and closed
orbits, all hyperbolic except one critical point, p, which
is quasi-hyperbolic.

(2) the stable and unstable manifolds of orbits in L(X) meet

transversely and W (p)-1{p}) n (W(p)-{p}) is a single orbit.

02 is the set of X such that

(1) L(x) consists of a finite number of hyperbolic critical points
and one quasi-hyperbolic critical point p,
(2) the stable and unstable manifolds of L(X) meet transversely,

and W(p) n Ns(p) = {p}.

03 is the set of X such that

(1) L(X) is a finite set of hyperbolic critical points

(2) there are points p and q such that W (p) and W (q)
have an orbit o(x) of type one intersections, and the inter-
sections of stable and unstable manifolds not in o{x) are
transverse.
Let X] = 01 u 02 v 03. An element X in I will be called

a flow of type one.

23
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PROPOSITION 1 - For r > 2, the set £ < xr(M) of flows of type one is
an embedded submanifold of 1r(M)
of codimension one. Moreover, each X € I has a neighborhood U in

Ir(M) such that U - ) € A.

This proposition is a generalization of a result due to Sotomayor
for dim M = 2 [20]. While more general results of this kind are true, the

proposition will suffice for our considerations here.

Let ¢k,r = Ck(I,xr(M)) be the set of cK mappings of the unit
interval I = [0, 1] into the Banach space zr(M) with the uniform Ck

topology, k =21, r > 2. For £ e @k,r’ we write £ = g(t).

¢k,r may be simply described as follows. Let w: TM + M denote

the natural projection, and let ¢ = {nt I xMos ™Mlm(t, x) = x for all
tel, xeM. If ¢: UxVaIxM isa local coordinate chart in

I'xM with UclI, V cnf", then‘re1ative to ¢, any n ¢ ¢ is expressed
as a mapping n¢ Ux Vsr™ We call such an n a Tocal expression

for n. Llet (t, x],...,xm) be the local coordinates in U x V, let

a = (“1""’“j)’ B = (81---,8m_j) be j and (m - j) - tuples of non-

negative integers, and let ¥ be a non-neqative integer. Set

Let ¢$’r be the set of all

lcx|=a-|+'+ajg ]B|=81+'+Bm_j-

n in & such that for any local expression n of n, each partial
lol+la]+r_

derivative
aX%at axB

exists and is continuous for v < k and

a a s 8
< oy ] —
la] + |8] < r. Here 3X* = aXy ... anJ, axB = aXJ.+1 .

5_.
. aXm m=J and

0<j<m

Give ¢¥,r the topology of uniform convergence of the indicated

24
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partial derivatives. One may check by induction on k + r that the

Qk,r k,r

evaluation map ev: > & defined by ev(n) (t, x) = n{t)(x)

is a homeomorphism. As a consequence, we see that ¢~ is dense in

o5 for all 0 <k, r.

A curve ¢ ¢ ¢k’r

will be called simple if it has the following
properties

(1) g, and g arein A
(2) for tel, £y fails to be in s if and only if it lies in b

(3) & is transverse to -

REMARKS: 1) Since DA is embedded in x" (M), if ¢ 1is a simple curve,
then £y £ 4 for at most finitely many t's.

2) Using Proposition 1 and the fact that A 1is open in z' (M), one easily

sees that the set of simple curves is open in ok’r.

For r >3, Tlet 3r = Cr(M,na) denote the space of ¢’ real-

valued functions on M with the uniform C" topology, and let Gr']

r-1 r-1

denote the space of C riemannian metrics with its uniform C topology

as an open subset of the space of covariant symmetric 2-tensor fields on M.

r-1

Recall that given g ¢ G and f ¢ Sr. one defines the gradient

Flow gradgf determined by g and f by the equation
9, (grad f(x),v) = -df,(v) for x <M, veTM.

A function f ¢ 3r is called a Morse function if it has only non-
degenerate critical points.
Given a Riemannian metric g and a smooth one parameter family of

functions F there is an induced arc of flows given by

t’

£y = gradgFt.

25
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Similarly, for a fixed Morse function f and a smooth one parameter family

of metrics Gt’ there is an induced curve of flows given by

£, = grad. f.
t Gt

Our main results are the following.

Give Ck(I,Sr) and Ck(I,Gr']) their uniform Ck-topologies.

THEOREM A - Fix r =3, k > 1.
(1) Given any C™-Riemannian metric g on TM, there is an open
dense set U1 c Ck(I,Sr) of one parameter families of functions on M

such that for F ¢ U1, the induced arc of flows £y = graqut is simple.

(2) Given any €™ Morse function f on M, there is an open
dense set Uz c Ck(I,Gr']) of one parameter families of
Riemannian metrics on TM such that for @ € U2, the in-

duced arc £y = gradG f is simple.
t

THEOREM B - Suppose -k > 1 and r > 2. Then for any two Morse-Smale

flows X and Y on M, there is a simple curve

k,r

Eed such that £n = X and g =Y.

Remarks: 1. It is very likely that a simple are g 1is structurally stable

in the sense defined by Sotomayor; i.e., if n s near g, there
is a homeomorphism h: I = I such that uM is topologically equi-

valent to Eh(t) for all t.

2. Some of the motivation for theorem A(1) came from a theorem
due to J. Mather which says that any two stable real-valued functions
on M may be joined by a curve of functions containing at most

finitely many non-stable elements, [3]. We caution the reader, however,
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that, due to the presence of saddle connections, stable functions
often give rise to non-structurally stable gradient flows. Further-
more, non-stable functions may yield structurally stable gradient
flows as is the case when several non-degenerate critical points

have the same image.

3. Proof of Theorem B

In this section we give the proof of Theorem B assuming
Theorem A and Proposition 1 have been proved. A discussion of the proofs
of these last two results will be deferred to s4.
LEMMA 1 - Let X be a C" Morse-Smale flowon M. r > 2. Then there
is a simple curve £ ¢ ¢k,r such that £ = X and £y = X]

is gradient-like.

Proof: We will show how to break each closed orbit by the introduction of

a saddle node which splits into two hyperbolic critical points.

Taking a preliminary approximation, we may assume X is of class
%, Let I =[-1,1], 0° denote the closed unit ball in R%, & = s,u
with s+u = dim M-1, and let (x,y,v) be coordinates on D°x DY x L.
Choose a closed orbit ¥y of X, a point pe Y, and a flow box neighbor-
hood U of p so that there is a diffeomorphism ¢: U - DS x DY x I
such that
(1) ¢(p) = (0,0,0)

(2) 471 (0% x (0} x I,) < WS(Y) and o7 ((0} x DY 1,) < Wi(r)

_ _ 2
(3) X' =¢,X = v

(4) UnL(X)ecr.

27
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i Here, of course, ¢,X = To o X o ¢7', dim WHY) = ut1, and

) dim wS(y) = s+].

Let Yt be the one-parameter family of vector fields on

‘ D> x oY x I defined by Yt(x,y,v) = (—x,y,vz-t) for t near 0.

! Thus, Yt has no critical points for t < 0, one saddle node critical
‘ point for t =0, and two hyperbolic critical points for t » 0. Take
a Euclidean subball D? of D° centered at 0 such that

j| +”1 (b D? x {0} x {-13) {is transverse in ¢ (DS x D" x {-11) to

wr Wy a ¢’](DS x DY x {-1}) for every critical element Y' (i.e.,
bl
;

| closed orbit or critical point) of X. This can be done since if z is

i near Y and z ¢ W(¥'), then w“(v') contains a (u#1)-disk through

E z C' near ¢'1({0} x DY x 11) by the x-lemma [12]. Similarly, we may

M‘ take a subball D? of D! centered at 0 such that ¢_]({0} x bd D? x {1})
m‘ is transverse in ¢'](DS « DY x {13) to W(v') n ¢'](DS x DY x {13) for

i every critical element Y' of X.

. Now one can choose a neighborhood Uy of 0 in I, anda C”

1
real bump function y: I.| + [0, 1], taking the value one on U1 and

!‘ zero off a slightly bigger set, so that the following properties hold.
Il Let Z'(x,y,v) = w(v) Y (x,y,v) + (1-0(v)) X' (x,y,v).

i” it Then

(2) bd W$(0,7') n D% x DY x (-1} s C' near bd DS x {0} x {-13.
| 1

(1) 7' has a saddle node critical point at (0,0,0).

:1 (3) bd W(0,2') a D% x DY x (1} is C' near {0} x bd Dy x {11.

; These properties imply that the vector field 7 on M defined by

28




MORSE-SMALE FLOWS

2(m) = o}

02" o ¢(m), me U, Z(m) = X(m), m e M-U, is an element of
the submanifold Q1 < I defined in §2. Now, let
Zp(6y,v) = w(v) Yi(x,y,v) + (1-p(v)) X' (x,y,v), and Z(m) =

¢;1 ° Z% o ¢(m), m e U, while Zt(m) = X(m) for m e M-U.

Then, using arguments similar to those in [11], one can verify that for
e >0 smll, Z [t] < e represents a simple arc with Z < Q, and
Zy e s for 0< |t] < e. Employing filtrations, one first checks that
the bifurcations of the Timit set L(Zt) are as required. Then the uni-
form estimates of the A-lemma [12] insure that the appropriate transver-
sality conditions are fulfilled. §4 contains a few more details on
these points.

Now, it is easily shown that, for ¢ > 0 small, there is a
smooth arc E4s 0 <t < 14 with £y = X, £y = Zt-] for l-¢ < t < T4¢,
and Eyp € A for t# 1. Thus, after reprfrmetrizing the arc, we obtain

a simple curve ¢,, 0 <t <1, such that ¢ = X for all t,
t tuu  [M-u

E-](z]) is a single point, L(El) n U consists of two hyperbolic cri-
tical points, and L(£1) - U=1L(X) - v. The lemma follows by repeating

the construction for each closed orbit.

LEMMA 2 - Let X]
k,r
¢

be the gradient-like flow of Lemma 1. There is a curve
£ e with £ = X-I, e A for 0 <t <1, and E-l = qraduf

for some Morse function f on M and some Riemannian metric g on M.

Proof: We observe that it is sufficient to find a curve £y such that
£y = X], £ € A for 0 <t <1, and X2 = g is a gradient in

a neighborhood of each critical point. That is, there are a small neigh-

borhood U of L(X2), a Riemannian metric g on U, and a real-valued

function f on U such that X? = gradgf. Once this is done, we may
-
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proceed as follows [17]. Changing f by constant values near each
critical point, we may assume that f(p) = dim w”(p) for each p ¢ L(X).

Then we may extend f to M so that X2 is never tangent to
M-L(X2)

a level surface of f, and the set of critical points of f is L(Xz).
Finally, using a partition of unity, one may extend g to M so that
X2 = gradg f.
We now show how to construct the curve £y alluded to in the
proceding paragraph. Fix p ¢ L(X). As before, we may assume that X
is of class C™. Making a further preliminary modification, we may arrange
for X1 to be equal to its linear part near p. This can be done with
a C1 small approximation within the ¢~ vector fields on M.
Thus, if dim w“(p) =u and dim ws(p) =s, 0<u<dimM
there is a neighborhood U of p in M anda ¢* diffeomorphism
o1 U+ D°x ¥ such that
(1) ¢(p) = (0,0)
(2)  ¢,%;(x,y) = (Ax,By)
where A: RS» st is a linear automorphism whose eigenvalues
have negative real parts, and B: ®RY =rY is a Tinear

automorphism whose eigenvalues have positive real parts.

(3) ln L(X]) = {p}.

Here again D°(DY) s the closed unit disk in nzshqu), and
(x,y) are coordinates on D° x pY,
Let At’ *0<ts 1, bea smooth curve of linear isomorphisms

of U(s sc that A0 = A, A]x = -2x for all x, and for each t, the

30
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eigenvalues of At have negative real parts. Similarly, let Bt’

0<t <1, bea smooth curve of Tinear isomorphisms of E{‘ so that

B0 = B, B]y =2y for all y, and the eigenvalues of Bt have

positive real parts for each t. Now choose small neighborhoods U.l c U2
of (0,0) in DS« DY anda C° real bump function y: D5 x DY & [0,1]
such that y(x,y) = 1, (x,y) ¢ U;» and w(x,¥) = 0, (x,y) € D5 x DY - U2.
Let Yt(x,y) = (Atx,Bty), 0<ts<1, and define

gy(m) = 83 (vo(m) Yilom)) + (T-ypo(m))s,X; (6(m)))s m € U, and g (m) = X;(m), m e M-U.

Then Ep € & for all 0 st <1 by the construction of At'Bt and
the a-lemma. Also, £ ¢'](U1) is a gradient. Now, repeating this
process for each critical point of X.l gives the Temma.
REMARKS: 1) Let X be as in Lemma 1, and let Y = &y be the gradient
vector field obtained in Lemma 2. For each integer
0 <2 s<dimM, let CA be the number of critical points of Y whose
unstable manifolds have dimension aA. Then CA = MA + ﬁk+1 where MA
is the number of critical points of X whose unstable manifolds have
dimension 2, and ﬁk is the number of closed orbits of X whose un-
stable manifolds have dimension A. Thus the usual Morse inequalities
for the CA‘s give rise to the Morse inequalities for X obtained by

Smale in [161.

2) In [7], K. Meyer constructs Lyapunov functions for a Morse-
Smale flow. With methods similar to the proof of Lemma 2, one
may show that if f is any Lyapunov function for a gradient 1ike Morse-

= X

Smale flow X], then there is a curve Egs 0<t<1, with £0 1°
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Ey € A for all t, and £y = gradg f for some metric g on M.

X

We now prove Theorem B. Let Xo’ X] e A. Say that X0 1
if there is a simple curve £ ¢ ¢k’r such that &g = X0 and g = X1.
Clearly this is an equivalence relation on a. Our goal is to prove that
X=Y forany X and Y in a.

Using Lemmas 1 and 2, we may find Morse functions fo, f1 and
Riemannian metrics 990 % such that gradgof0 and gradg1f] are in
Ay, X = gradgnfo, and Y = gradg]f]. Changing fo and 9 slightly

as in [17], we may assume gradg fo € A. Now choose arcs Gt in
1

Ck(I,Gr']) and Ft in ck(l,gr), 0<ts<T1, such that Go =9,

G] = 9y F0 = fo’ and F1 = f1. Applying Theorem A, we may perturb

G and F to conclude that gr‘adgaf0 = gr‘adg]f0 S gradg]f1. Hence

X=VY.

4. Proof of Proposition 1 and Theorem A

Proof of Proposition 1: The proof combines arguments in [11] and [21].

Similar methods were use to prove related results for diffeomorphisms
in [117.

A critical element of X is either a critical point or a
closed orbit. The period of a critical point is 0, whereas the period
of a closed orbit ¥ s inf{t > Q: ¢t(X)=X,X€Y}. Fix a riemannian
metric a on TM. If Y {s a hyperbolic or quasi-hyperbolic critical
element of X, then the metric g induces metrics g on WS(Y) and

9, on W), Let d, and d. denote the distance functions induced
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on WW(¥) and W (Y), and, for a positive integer n, set

Bﬂ(n) = {y e W\v): d,(y,¥) <n} and B:(n) = {y e W(): d(y,7) < n).
Let rx(n) denote the set of critical elements of X of period less than
n which we think of as a set of subsets of M or (taking its union) a
subset of M.

Let 01(n) be the set of all X ¢ ' (M) such that

(1) X has one quasi-hyperbolic critical point p, and the re-
maining critical elements of period less than n are hyperbolic

(2) for Yis¥p € rX(n), BY (n) s transverse to B> {(n). It
M Y2

follows from [21] that each 01(n) is an embedded submanifold of %' (M)
of codimension one 1. Also, if Y e 01(n), with quasi-hyperbolic criti-
cal point p, there are neighborhoods U of Y in (M), V of p,

r-1

V' of rY(n) - {p} in M, anda C function f: U+ R such that

£71(0) = 0;(n) n U, and the following holds. If Y, e U - Q(n) =
FYR - {0}), then

(m Iy (n) a V' has only hyperbolic critical elements
1
(2) r, (n) nV is either empty or has two hyperbolic critical points
Y
(3) for any Y, v e Ty (n), B:(n) is transverse to B:(n).
1 .

Now, let X ¢ Q] have the quasi-hyperbolic critical point p.
Clearly, X ¢ Q](n) for each n. We will show that if n is large

enough and U is a small neighborhood of X as above, then Q](n) nlUc Q]

! Actually, 01(n) is an open subset of a submanifold considered in [21].
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and U - Q](n) <« A. This will prove Proposition 1 for Q1.

For Y near X, let ¢$ be the 1-parameter group associated
to Y. In the notation of [11], choose a filtration for X separating
its cycles. This amounts to a sequence M = My=2Miy=2 o My 8
of compact submanifolds with boundary of M (except M and ¢ of
course) such that for i < n,

(4) M, < int M,

(8) oy(My) < int M, for t>0
() L ox(M-M; 1)) = LX) u (W(p) o WS(p)).
ietdr
Now for n Tlarger than all of the periods of the critical ele-
ments of X, choose neighborhoods V of p, V' of rX(n) - {p}, U
of X as above. From (4), (5), and (6), one sees that if these neighbor-
hoods are small and Y ¢ U 01(n), then L(Y) c Vy V', L(Y) V' is
hyperbolic, L(Y) n V is a quasi-hyperbolic critical point, and
W (p) n ws(p) - {p} s a single orbit. Now the a-lemma gives that
for n large, U small, and Y e Un QT(n), w“(y,v) is transverse to
W (v,Y) for any critical elements Y,y of Y. Thus Uq Q](n) < Q.
Mso, if YeU-0.(n), by (2) and the fact that W'(p) n WS(p) - {p}
is a single orbit, L(Y) has either a hyperbolic closed orbit near
wn) n W3 (n) or two critical points in V.. Thus L(Y) has only finitely
many critical elements. Moreover, shrinking U again, the i-lemma
yields the transversality conditions to give U - Q](n) c A.
The proof of Proposition 1 for 02 is similar. For 03, pro-
ceed as follows. Let 03(n) be the set of X in x"(M) such that L(X)

is a finite number of hyperbolic critical points, and, for some fixed

34
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0,q € L(x), Bg(n) n BZ(n) has exactly one orbit of type one intersections, the
other orbits being transversal intersections. Then, by [211], Q3(n) is an
embedded codimension one submanifold of xr(M). Again one shows (by means

of a filtration and the A-lemma) that for X ¢ 03 there are an integer

n >0 and a neighborhood U of X in £"(M) such that U qn 03(n) cUn Q4

and U - Og(n) < A. MNote that X dis gq-stable [18] this time so the control

on L(X) is easy.

proof of Theorem A: {1) The proof is a refined application of transversality

methods (see e.g. [1], [23]) where one has to verify
that the local approximations may be made without modifying the metric.

Fix a C* metric g, and fe Ck(I,Sr), k=1, r>3. We show
that f may be approximated by a curve & such that qradgg is simple. This
is enough since the set of simple curves is open.

For a map h: N+ P between manifolds and W < P a submanifold,
we write h ® W to mean that h is transverse to M.

We may assume with a preliminary change in f that f ¢ Cr(I,Sr),
so that the evaluation map ev(f) 1is in c"(IxMR). Let T*M, denote the
zero-section of the cotangent bundle T*M, a: IxM s+ I b e the projection,
and let F = F(f): IxM > T*M be given by F(t,m) = dft(m). By standard
transversality arguments, there is a dense open set 3] c Cr(I,3r) such that

if fc R], then F # T*Mo and has only non-degenerate critical

F(Tem,)
points with distinct values. Thus for f e H], F_1(T*M0) is a one-dimensional

manifold, and each ft has only finitely many critical points. Hence

L(gradq ft) is finite for each t, and gr‘adq ft e A if and only if it is
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Kupka-Smale (i.e., it has only hyperbolic critical points and their stable
and unstable manifolds meet transversely). For f ¢ B, let C(f) be
the set of critical points of an-](T*MO), and let C,(f) = nC(f).

One may verify with Tocal coordinates that if (x,t) e C(f),
X 1is a quasi-hyperbolic critical point of gradg ft,
(x,t) ¢ F‘](R*Mo) - C(f), then x 1is a hyperbolic critical point of

and if

gradg ft.* With a refinement of the proof of Theorem A in [17] (so that
g is unchanaed), one may find a residual subset B2 c B] such that for
feB and te C](f), the stable and unstable manifolds of L(gradg ft)
are transverse - which means that gradg ft € Qz. Moreover, since
F & T*Mo, the curve qradg f 1is transverse to 02 at t.

By Proposition 1, for f ¢ l%, there is a neighborhood U of
C](f) such that gradg foea for tel- C](f). Fixing such an f, we
show that it may be modified on a neighborhood of I-U so that gradq f
becomes simple. -

let J <1 bea finite union of closed intervals with
bd Jd cint U and J n C](f) = ¢. There is an open neighborhood 34 of
f in Cr(I,Sr) so that for h ¢ lﬁ and t ¢ J, L(gradg ht) is a finite
set of hyperbolic critical points. Clearly, it suffices to show that a re-
sidual set R« 34 has the property that if f ¢ 35, t ¢ J, then
uradq ft /46 if and only if gradg ft € 03 and gradg f 4 03. We first
show that for f 1in a residual set B c 34’ gradg ft éa, ted, if and
only if there is one orbit of quasi-transversal intersections of stable and
unstable manifolds. Then we show how td make the exceptional orbits into

type one intersections.

* This follows by taking suitable local coordinate expressions for ft
near x (see [27 and [3]).
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For ted, fe¢ B4, let  STYURERES S denote the critical

points of gradq ft’ and suppose that wu(xit)’ ws(xit) are their re-

spective unstable and stable manifolds. Let wu; = dim wu(xit)’

= dim ws(xit)’ and let D% denote the closed unit ball in the Euclidean
space R%, 0 < g < dim M. For each i,t, there are embeddings
u. u. S. S

wt1= D' - M, wt’: D' +M sothat
uj S
(M vy (0) = vy (0) =
u, u, s, S,
(2) v, (0 7) e Wixgy)s vy (1) € Wilxgy)

Let ¢“ denote the one parameter group determined by gradq ft

(i.e. dv ¢t(x) qradqft(x)). For each 1i,t, there is an induced embedding

u.
Uy R'sM defined by

. e
521(y) . ¢rt*(y)¢:1(r(y) y)

where r{y) =1+ ]y|. Since f ¢ Cr(I,Sr) ~ C"(IxMR), the mapping
5 u,

R

S. u.
pij = 0q5(f): (Eaxay) » (b (x)s ¥ (¥)) of JxbdD into

MM is C"'_1 (for |y| # 0) by stable manifold theory (this can be gotten
most easily from the proof in [71).

Let diag = {(x,y) € MxM | x = y} denote the diagonal in MM,
and let «: J x bd Dsi x muj + J be the projection. Since r > 3, there
is a residual set Bé c By such that f ¢ Bé implies that Pij h diag and

nlp;}(diag) has non-degenerate critical points with distinct images. If

(t,x,y) is a critical point of n|;}(diag), conditions (1) and (2)(a) in
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the definition of a quasi-transversal intersection are satisfied at
e ( ) = uj(y). W1th a further approximation, we may fulfill the remaining
condition snd make ¢t (x) wt (y) a quasi-transversal intersection of
w! (x) and W° (y). Also, all other points of pij(diag) correspond to
transverse intersections. Restricting Bé further we may assume that if
f e Bé, then for each t ¢ J, gradg ft has at most one orbit of quasi-
transversal intersections, the other intersections being transverse.

Now we restrict Bé to 85 so that the quasi-transversal in-
tersections become of type one. Suppose x e w”(p) n ws(q) and o(x) is

and orbit of quasi-transversal 1ntersect1ons for grad f. with t ¢ J,

t
f e g- Let grad f Et’ and let ¢t be the t1me-one map of Ege With
a first restr1ct1on we may assume the eigenvalues of T ¢t w“(q) and

tl Wp) are distinct, say these are 1 < Ay < e < A, and 1 > By > eee > o,
resoect1ve1y. Let E° o E] e ® Ez be the decomposition of TqM where
S = T ws(q) and E1 is the eigenspace of T ¢t corresponding to A..

From invariant manifold theory [6], there is a C] diffeomorphism

Lt R KRKR“ ] + M such that

(a) z(0,0,0) = q
(b) &R x(01x10}) < W(q)
() x ¢ cRSmEt)
(d) ;ﬁasmzx{n)) is Tocally invariant under the one parameter group
e of g (e, oY (tR¥e10)) n cEIRERET) € c@SRRI0)) for v s 0).
With a second restriction of %s we may assume that Ww(p) is
transverse to ;GRSxRx{O}) which will insure that the first Grassmann condition

in part (3) of the definition of type one intersection holds. Proceeding
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similarly in a coordinate system near p, we may arrange for the second
part of part (3) to hold. Finally, we obtain part (4) by means of approxi-
mations as in [17], but without changing the metric g. Then we have that

gradg ft £ & if and only if gradg ft € 03.

The condition that pij(f) # diag iusures that gradg flJ 4 0,.
This completes the proof of part (1) of Theorem A.

The proof of part (2) is similar, and in fact, easier. This
is because for a fixed Morse function f, any curve of riemannian metrics
ge Ck(I,Gr—1) gives rise to a curve gradq f so that L(gradq f) s
finite and hyperbolic for each t. Also, ai] of the approximat%gns in [17]
away from the critical points of a given gradient flow of a Morse function

may be realized by perturbations of the metric.
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