
Journal of Statistical Physics, Vol. 72, Nos. 5/6, 1993 

On the Estimation of Topological Entropy 

Sheldon Newhouse  1 and Thea Pignataro 2 

Received June 10, 1992; final April 27, 1993 

We study a method for estimating the topological entropy of a smooth dynami- 
cal system. Our method is based on estimating the logarithmic growth rates of 
suitably chosen curves in the system. We present two algorithms for this purpose 
and we analyze each according to its strengths and pitfalls. We also contrast 
these with a method based on the definition of topological entropy, using (n, e)- 
spanning sets. 

KEY WORDS: Topological entropy; volume growth; entropy; length growth; 
dynamical system. 

1. INTRODUCTION AND PRELIMINARIES 

The topological entropy of  a system is a quantitative measure of its orbit 
complexity. In a certain sense, it is the maximum amount of information 
lost per unit time by the system using measurements with finite precision. 
As such, the entropy is an important invariant to know. Since the defini- 
tion of the entropy requires an exponentially growing number of objects, it 
is impractical to expect that the definition can effectively be used to 
estimate it. Fortunately, there are several recent theorems which aid in its 
estimation. Block e t  al. (2) use the kneading theory in one-dimensional 
dynamics to develop an algorithm which gives an accurate estimate of the 
entropy for unimodal maps of the interval when the entropy is not too 
small. Here we present two algorithms which are suggested by recent 
results (to be described later) relating the entropy in smooth systems to the 
logarithmic growth rates of the volumes of disks in the phase space. Our 
algorithms give good empirical results in a number of cases, but at the 
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present time they are not well understood from the mathematical point of 
view. Vaienti "6) relates the entropy of hyperbolic attractors to the so-called 
Gibbs measures. 

As a by-product of our first length growth algorithm, it is worth 
noting that we obtain an empirical method for detecting chaotic transients 
in smooth systems. 

After our discussions of the use of length growth algorithms we 
briefly consider a method of estimation of entropy based on the Takens 
embedding technique. Our preliminary results show that even for low- 
dimensional systems, the latter method is not practical. Of course in the 
length growth methods we are given explicit forms for the systems, while 
the Takens method was designed for application to time series and hence 
involves the reconstruction of the system via time delay methods. 
Nevertheless, there are methods for the construction of Lyapunov 
exponents using the Takens method (e.g., refs. 4 and 17). Since our first 
length growth method is essentially a type of spatial average of Lyapunov 
exponents, it would be interesting to see if one could implement some 
combination of the length growth algorithm with the Takens embedding 
method to estimate entropy. 

We now proceed to a brief summary of the basic definitions and facts 
concerning topological entropy. 

Let (X, d) be a compact metric space with distance function d, and 
let f :  X ~ X be a continuous self-map of X. Let 5 > 0 be a positive real 
number, and let n be a positive integer. An n-orbit is a sequence x, 
f (x )  ..... f "  l(x) off- i terates of a point x in X. Two n-orbits {fix}, {fiy}, 
0 ~< i < n, are 5-distinguishable if there is a j e [0, n) for which d(fJx, fJy)> 5. 
Let r(n, 5, f )  denote the maximal number of e-distinguishable n-orbits. It is 
easy to see that there are numbers C >  0 and ~ > 0 such that r(n, ~, f)<~ 
Ce n~ for n~>0. 

Let 

and let 

1 
r(e, f )  = lim sup - log r(n, 5, f )  

n ----~ (x3 n 

h(f) = l im/(a,  f )  
e ~ 0  

The number h(f) is the topological entropy of f. For  e small, f has roughly 
e nh(f)  e-distinguishable n-orbits. 

A set Y ~ X  is called (n, e)-spanning if for each X e X  there is a y e  Y 
with d(ffx, fJy)<<.e for all j e l -0 ,  n). Let s(n,e, f)  denote the minimum 
cardinality of such a set and define 

s(5, f )  = lira sup 1 log s(n, 5, f )  
n ~ 9  n 
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It is easy to see that s(a, f)<~ r(e, f ) ~  s(a/2, f )  and, therefore, 

h(f) = lim s(e, f )  
e , ~ O  

The number h(f) satisfies the following properties. 

1. h(f ' )=nh(f) ,  n>~O. 
2. h(f  i ) = h ( f )  for f a homeomorphism. 

3. If f :  X-~X, g: Y ~  Y, and re: X--*Y are continuous onto 
mappings such that grc=rcf then h(f)>~h(g). Thus, if ~ is a 
homeomorphism (i.e., topological conjugacy), then h(f)= h(g). 

4. h(f) is independent of the metric d on X. 

5. h ( f ' ) =  ]tlh(f 1) if { f '}  is a continuous flow. 

6. h(f) = s u p ~ ( / ) h u ( f ) ,  where ~ ( f )  denotes the set of f-invariant 
probability measures on X and h,(f) denotes the measure-theoretic 
entropy. 

Note that the last property implies that if h(f) is positive, then f has 
invariant probability measures with positive entropy, indicating that f has 
some chaotic dynamics. 

The topological entropy h(f) is usually difficult to compute proceeding 
from its definition. In smooth systems, the following theorems will suggest 
algorithms which will enable us to estimate h(f) in many cases. 

Let M be a smooth manifold and f :  M ~ M be a smooth map. Let I 
denote an interval in the set of real numbers and let n be a positive integer. 
A mooth map 7: I ~  M is called a smooth curve in M. For such a curve we 
can let 

171 = f  17'(t)l dt 

denote its arc length. Then If'(7)] is the arc length of the nth iterate of 7. 
The quantity 

G(7, f )  = lim sup _1 log + ff '(7)l 
n ~ o o  n 

where log + (u) = max(log u, 0) is called the upper growth rate of the length 
of 7. When (7(7, f )  is actually a limit instead of a lim sup, i.e., when the limit 
exists, we write G(7, f )  instead of (J(7, f)-  If our space M happens to be a 
real interval, then the m a p f  is itself a curve, and we write G(f, f )  as G(f).  

In this connection, Misiurewicz and Szlenk proved the following 
theorem. 

822/72/'5-6-31 
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T h e o r e m  1 ( M - S ) .  Let f be a piecewise monotonic map of the 
interval L Then 

h(f) = max(0, G(f)) 

This result was generalized as follows. (1~ 11,19,18) 
If f is a smooth self-map of the compact manifold M, and D k is the 

unit k-dimensional disk in R k, a smooth k-disk in M is a smooth map 
7: Dk ~ M. We define its k-dimensional volume (with multiplicities) to be 

171-~ IDk IAkZT(t)l d;~(t) 

where AkTT(t) denotes the k TM exterior power of the derivative T7 of 7 at 
the point t in D k and d2 denotes the standard volume element in D k. Using 
k-dimensional volume in the same way that arc length is used above, we 
define G(7, f )  to be 

lim sup -1 log + ifn(7) I 
n ~ c o  n 

and 

G(7, f ) =  lim l l o g +  Ifn(7)l 
n ~ o o  n 

when the latter limit exists. 
We define G( f )  = sup7 6(7, f ) ,  and 

G(f) = sup 
y for which  G ( 7 , f )  exis ts  

Theorem 2 (N,  Y) .  
smooth manifold M. Then 

G(y,f) 

1. Let f be a C * self-map of the compact 

h(f) = G(f) 

2. If f is a Coo diffeomorphism of the two-dimensional manifold M 2, 
or the time-t map of a three-dimensional differential equation, then 

h(f) = sup G(7, f )  
s m o o t h  cur.ves 7 

3. If f is a 
manifold M with 
decreases area, then 

C ~ diffeomorphism of a compact two-dimensional 
piecewise smooth boundary #M into itself, which 

h(f) = max G(qf, f )  
c~ a c o m p o n e n t  of ~ M  
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The last part  of this theorem states that an area dissipative 
diffeomorphism of a two-manifold with boundary into itself has its 
topological entropy given by the length growth rate of its boundary. 

2. THE LENGTH G R O W T H  A L G O R I T H M S  

2.1. The First Length G r o w t h  A lgor i thm 

In this section we shall describe the first algorithm to estimate the 
growth of the length of curves. We initially consider the H6non family of 
polynomial mappings of the plane into itself. (7) This is the family of map- 
pings 

fa.b(x, y)  = (a - x 2 -~ by, x)  

where a and b are parameters. Numerically, for a = 1.4 and b = 0.3, fa.b has 
a strange attractor A which is the co-limit set of the point (0, 0). That  is, 
the forward orbit of (0, 0) accumulates on A. The mapping has two fixed 
points ( x l , y l )  and (x2, y2) given by x l = - 1 . 5 8 3 . . . ,  y l = - 1 . 5 8 3 . . . ,  
x2 = 0.883..., Y2 = 0.883 .... In this case it can be shown that if 7o is a small 
interval about  (x2, y2) in the unstable manifold of (x2, y2 ), then 
h ( f ) = G ( 7 o ) .  Thus, to compute the entropy, one should compute the 
quantity G(7o). In practice, it turns out that one does not need to know the 
curve 7o exactly. In fact any curve which is C t near a piece of the orbit of 
7o will work. Such a curve 7 will be obtained by iterating a unit vector at 
(0, 0) I N I T  number  of times until it gets close to A and then choosing 7 to 
be short line segment centered at fINIr(0,  0) in the direction of the final 
unit vector. Then, G(7) will be estimated by computing (approximately of 
course) the positive part  of the logarithm of the length of f " (7)  for n = 1 
to n = N U M I T  and taking a least squares slope. 

We use the following procedure: 

1. Let Xo = (0, 0) and Vo = (1, 0). 

2. Given xn and vn for n ~> 0, let 

T~.f(v,,) 
xn+ 1 = f (x~)  and v ~ + l -  I TxJ(vn)l 

That  is, iterate the unit vector and rescale to obtain a new unit 
vector. We iterate a certain number  of times until x n is near A. 
Presumably, the vector vn will then be near some unstable direc- 
tion in A. At this stage, lay down a line segment 7 centered at xn 
which is completely in the basin of attraction of A. This is the 
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curve whose length growth rate we will estimate. We assume that 
7 is parametrized by a small interval/ ,  and its tangent vector ~ is 
a unit vector at each point. 

3. For n =  1 to NUMIT, let L n equal the positive part of the 
logarithm of the length of fn(7). 

4. Plot L n against n and take the best least squares fit. The slope of 
this fit is an estimate of G(7). 

The procedure to compute Ln requires rescaling since the numbers 
are generally growing exponentially. We use the following procedure. For 
simplicity of notation, let us write log for log + in what follows. Thinking 
of L.  as log~zlTf"r dx, we take points xk in the interval I and 
approximate ~i lTf"~] dx by 

1 N--1 
- -  Z ebnk 
N k = o  

where 

b.k = log ITxkfn~l 

Let bn = maxk bnk; then 

\ N  ( 1  N--1 = ) N 1 
log ~ o  eb'~ = log k:oE eb" + b.k- b. _ log N 

= bn + log eb~ b. _ log N 
k~O 

The numbers bnk are the same ones that would be obtained in 
computing Lyapunov exponents along the orbit of xk with the initial vector 
~. They are computed recursively as in a Lyapunov exponent calculation in 
the following way. Let Vo, k = ~, bok = 1. For n ~> O, let 

Tf .~J(v . , k )  

v , ,+l ,k-IZf ,x~f(v, , ,k) l  

and let 

Then, let 

an+l,k = ITs~ 

n 1 
bn+~'k--n + 1 bn, k + ~- -~  log(an+ 1,k) 
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We get reasonable estimates for G(7) which agree to a certain extent 
with rigorously obtainable numbers in several cases. Figure 1 contains a 
plot of L ,  against n in the case a = 1.4, b = 0.3. 

In Fig. 1, n runs from MINIT = 5 to MAXIT = 300 in increments of 5, 
and INIT was 1000. If we let MAXIT be much larger, then the L, vs. n plot 
falls off slightly, so that the least squares slope decreases. This occurs 
because our discrete approximation to 7 has too few points to accurately 
estimate the length of f " o  7 for n large. Thus, there is an inherent tradeoff 
in our procedure. 

Assuming 

h ( f ) =  lim l l o g +  If"o~] 
n ~ o o  n 

we want n large in order to approximate h( f )  by ( I /n) tog  + If~o?l  [or  the 
least squares slope of {(q, L q ) } ] ,  but for large n, we need many points and 
much computer time to estimate L, .  In practice, we examine a plot of L ,  
vs. n to see which values to use in the least squares fit. The problem of 
varying MINIT,  MAXIT, the number of data points (ISIZE), and the initial 
starting vector is heavily dependent on the map or differential equation 
under consideration. We will not discuss this in detail here. 

As a method of checking our estimates, we may consider the case 
b = 0. In this case, we have the map (x, y) ~ ( a -  x 2, x). Its orbit structure 
is determined by the one-dimensional unimodal map f a: x--* a - x  2. We 
may as well assume that fa is defined on the interval [ - 2 ,  2]. Here it is 
known that if fa has a single periodic sink, then the entropy can be 
calculated in terms of the orbit of the sink. The procedure is as follows. Let 
Zo, zl ,..., z~_ 1 be the successive iterates of the sink, fi(zo) = zi. Place them 

L~ 

t50 

125 

100 

75 

50 

25 

0 

least squares slope is 0.4640 

I I I 

2; 50 7; 100 125 150 175 200 225 2;0 275 300 
n 

Fig. 1. H ~n on  m a p  with a = 1.4, b = 0.3. 
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in the interval [ - 2 ,  2] and relabel them so that they form an increasing 
sequence~ Zio , z i l , . . . , z i ~  1. 

Consider the v -  1 intervals I j=  [zij, zij+~] with 0 ~<~-  1. Define a 
(v - 1) • (v - 1) matrix A of O's and l's by 

Ak~ = 1 if and only if f(Ik) ~_ (It) 

Let 2(A) be the unique real eigenvalue of A of largest modulus. Then 

h(f~) = log 2(A). 
We give two examples. 

1. a = 1.76. Here there is a period-3 sink approximately equal to 1.76. 
The intervals Io, I~ are Io = [ - 1 . 3 3 , - 0 . 0 2 3 ] ,  I~= [ -0 .023 ,  1.76]. The 
matrix A is (o 1), and the entropy is log[(1 + ~/-5)/2] ~ 0.48121. 

2. a =  1.6280. Here there is a period-5 sink approximately at 1.625. 
The matrix A is 

ti ~176 011001 it 
and the entropy is approximately 0.4140. 

Figure 2a shows a plot of the output of algorithm 1 with INIT = 1, 
MAXIT = 50 for a = 1.76, while Fig. 2b contains the output for a = 1.628. 
Figure 2c shows the output of algorithm 1 with n running from 150 to 600. 
Note that the right side of the graph begins to decrease. This indicates that 
there is a transient chaotic set on which the entropy lives, and that most 
points eventually settle down to the period-five sink. 

As one can see, there is good agreement with the precise theoretical 
results. 

Typically, in a smooth system, there may be several regions with 
positive entropy, and the entropy of f will be the maximum of those 
entropies. For  instance, suppose one has several strange attractors with 
positive entropy. One could of course apply the above algorithm in each 
basin separately, but it is interesting to take a line segment crossing several 
basins and to try to see how its length grows in a particular subregion. This 
suggests a slight modification of algorithm 1 which we shall call algorithm 
la. Let R = RI be regions in the plane and let 7 be a line segment in R 
meeting R1. For  each integer n~>0, let WS(Rl, n)= {x: fJx~Ra for 
O<~j<~n}. The set y-I(WS(R~, n)) is the set of points x in the domain of 
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least squares slope is 0.4816 least squares slope is 0.4144 

50 50 ! ~  

L~ 25 

0 0 l" ~ ~ ~ 
0 25 50 75 100 

n 
(b! 

least squares slope is 0.4144 

200 

150 ~ ~  

L~ 100 - 

50' 

0 L i i 
150 300 450 600 

~2 
(c) 

H6non map with b=0. (a) a= 1.76, (b) a= 1.628, (c) a= 1.628. 

L~ 25 

Fig. 2. 

2; 7; 1;0 

7 such that fJ(y(x)) e R 1 for j e  [0, n). The length o f f  l(7-1(WS(R1, n))) 
is 

f, I T~(,lf"~ 7(t)l dt 
- l (  WS(Rb n)) 

and will be denoted l(fno 7, R1). We set 

and 

6(7, R1)~= lim sup -1 log + l(fn ~ 7, R1) 
n ~ o o  n 

G(7 , R 1 ) =  l i m  l l o g +  l(fnoT, e l )  
n ~ o o  n 

Algorithm la is the same as algorithm 1 except that we use INIT = 0 and 
we compute [Tfko?(t)[ only at points in WS(R1, k). This algorithm gives 
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useful information if most of the points on 7 lie in WS(RI, MAXIT). 
Peculiar output from algorithm la suggests that the relations between V, 
R1, the entropy-producing sets in R1, and the parameters like INIT, 
MAXIT, etc., should be investigated more closely. 

2.2. The Second Length Growth Algorithm 

In this section we present a second algorithm for the estimation of 
length growth, which is based on the following observations. 

Table l .  H~non Map wi th  1 . 4 ~ a ~ l . 7 a n d  0 ~ b ~ 0 . 0 7  = 

b 
0,00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

a 

1.40 0.0261 0.1152 0.1614 0.1985 0.2155 0.1152 0.2368 0.2617 
1.41 0.0988 0.1437 0.1906 0.2095 0.2300 0.1437 0.2558 0.2771 
1.42 0.1247 0.1826 0.2013 0.2242 0.2338 0.1827 0.2698 0.2947 
1.43 0.1545 0.1993 0.2161 0.2342 0.2387 0.1996 0.2832 0.3030 
1.44 0.1898 0.2100 0.2264 0.2323 0.2556 0.2101 0.2971 0.3215 
1.45 0.1984 0.2226 0.2314 0.2491 0.2697 0.2262 0.3125 0.3561 
1.46 0.2140 0.2303 0.2375 0.2616 0.2877 0.2331 0.3467 0.3678 
1.47 0.2286 0.2303 0.2575 0.2799 0.2998 0.2350 0.3643 0.3773 
1.48 0.2303 0.2492 0.2739 0.2914 0.3162 0.2534 0.3743 0.3825 
1.49 0.2391 0.2622 0.2883 0.3089 0.3546 0.2657 0.3821 0.3889 
1.50 0.2570 0.2810 0.3010 0.3305 0.3670 0.2872 0.3879 0.3970 
1.51 0.2708 0.2918 0.3203 0.3635 0.3764 0.2969 0.3951 0.4031 
1.51 0.2893 0.3109 0.3569 0.3731 0.3821 0.3159 0.4013 0.4109 
1.53 0.3009 0.3446 0.3685 0.3822 0.3900 0.3460 0.4088 0.4132 
1.54 0.3235 0.3652 0.3780 0.3873 0.3971 0.3651 0.4136 0.4141 
1.55 0.3588 0.3734 0.3831 0.3932 0.4035 0.3745 0.4141 0.4157 
1.56 0.3700 0.3820 0.3910 0.4008 0.4109 0.3821 0.4140 0.4203 
1.57 0.3794 0.3888 0.3968 0.4101 0.4136 0.3884 0.4202 0.4275 
1.58 0.3845 0.3967 0.4060 0.4159 0.4138 0.3968 0.4278 0.4324 
1.59 0.3930 0.4031 0.4129 0.4145 0.4173 0.4034 0.4306 0.4369 
1.60 0.3995 0.4109 0.4141 0.4161 0.4261 0.4109 0.4373 0.4410 
1.61 0.4086 0.4141 0.4148 0.4256 0.4316 0.4140 0.4440 0.4413 
1.62 0.4138 0.4147 0.4230 0.4304 0.4386 0.4143 0.4432 0.4419 
1.63 0.4137 0.4194 0.4304 0.4375 0.4410 0.420l 0.4456 0.4418 
1.64 0.4180 0.4288 0.4360 0.4416 0.4444 0.4283 0.4454 0.4413 
1.65 0.4275 0.4350 0.4416 0.4482 0.4514 0.4355 0.4447 0.4437 
1.66 0.4329 0.4418 0.4468 0.4529 0.4553 0.4416 0.4513 0.4437 
1.67 0.4409 0.4465 0.4533 0.4565 0.4581 0.446l 0.4593 0.4587 
1.68 0.4433 0.4533 0.4609 0.4633 0.4606 0.452l 0.4632 0.4618 
1.69 0.4524 0.4617 0.4652 0.4462 0.4625 0.4609 0.4614 0.4695 
1.70 0.4613 0.4671 0.4681 0.4693 0.4694 0.4678 0.4678 0.4787 

a The data were produced with ISIZE = 512000. 
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Assume 7 is given. Let Vo= 171 and V,=  ]fno7l. Then, 

1 n&l Vk+ 1 1 (log Vn-log Vo) 
n k~o l~ V---~=n 

Thus, (1/n)(log V n - l o g  Vo) is the average of the quantities log(Vk+ l/Vk) 
for 0 ~< k ~ n - 1. The quantity Vk + 1/Vk equals 

'f 
V--~ [Tf(yk(t))l, lT•(t)[ dt 

Tablel l .  H6non Map wi th  1.71~<a~<2andO~<b~<O.07 a 

b 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0,07 

a 

1.71 0 .4689  0 .4701  0 . 4 6 9 9  0 . 4 6 8 2  0 . 4 7 6 2  0 .4701  0 .4 7 7 9  0.4827 
1.72 0 . 4 7 3 0  0 . 4 7 2 7  0 .4735  0 .4678  0 . 4 8 1 6  0 .4 7 4 8  0 .4875  0.4882 
1.73 0 . 4 7 7 2  0 . 4 7 9 2  0 .4758  0 .4719  0 . 4 8 5 2  0 .4761  0 . 4 9 2 9  0.4893 
1.74 0 . 4 8 0 4  0 . 4 7 8 2  0 .4773  0 . 4 8 0 9  0 ,4875  0 . 4 7 8 0  0 . 4 9 8 4  0.5030 
1.75 0 .4813  0 .4781  0 . 4 8 2 2  0 . 4 9 0 4  0 .4963  0 .4 7 8 8  0 . 5 0 3 6  ~5124 
1.76 0 .4811  0 . 4 8 0 8  0 . 4 8 8 0  0 . 4 9 6 7  0 . 5 0 2 6  0 .4 8 2 8  0 . 5 1 7 2  0.5264 
1.77 0 .4844  0 .4848  0 .4953  0 . 5 0 1 0  0 .5119  0 .4 8 7 9  0 . 5 2 3 6  0.5371 
1.78 0 . 4 8 3 9  0 .4903  0 . 5 0 5 4  0 .5115  0 .5141  0 . 4 9 1 4  0 . 5 3 5 0  0.5411 
1.79 0 , 4 8 2 2  0 .4973  0 .5078  0 . 5 1 7 6  0 ,5193  0 . 4 9 4 7  0 .5 4 3 7  0.5498 
1.80 0 . 4 8 7 0  0 . 5 0 2 2  0 . 5 1 5 2  0 .5205  0 , 5 2 8 4  0 . 5 0 2 2  0 .5 4 8 3  0.5556 
1.81 0 . 4 9 8 2  0 . 5 0 6 7  0 . 5 2 0 7  0 .5261  0 . 5 3 7 9  0 .5 0 5 3  0 .5 5 6 5  0.5588 
1.82 0 .5108  0 . 5 1 3 7  0 . 5 2 2 5  0 , 5 3 5 4  0 .5473  0 ,5141  0 . 5 6 1 7  0.5663 
1.83 0 . 5 2 1 2  0 . 5 2 3 0  0 , 5 2 5 7  0 ,5411  0 .5541  0 . 5 2 3 5  0 .5 6 5 2  0,5740 
1.84 0 . 5 2 9 5  0 .5291  0 . 5 3 5 6  0 ,5493  0 . 5 6 1 2  0 . 5 2 8 0  0 .5 7 2 7  0.5863 
1.85 0 . 5 3 9 4  0 . 5 3 7 2  0 . 5 4 4 0  0 .5579  0 ,5681  0 . 5 3 5 8  0 ,5 8 1 8  0.5954 
1.86 0 . 5 4 2 7  0 . 5 4 5 7  0 .5551  0 . 5 6 3 5  0 . 5 7 0 2  0 .5 4 5 8  0 . 5 9 4 0  0.6117 
1.87 0 . 5 4 7 5  0 . 5 5 6 2  0 .5639  0 .5705  0 . 5 7 1 4  0 . 5 5 6 2  0 . 6 0 1 7  0.6701 
1.88 0 . 5 5 8 7  0 . 5 6 5 7  0 . 5 7 1 0  0 .5735  0 . 5 7 9 2  0 .5 6 5 9  0 . 6 1 8 6  0.6555 
1.89 0 . 5 6 6 9  0 . 5 7 2 2  0 .5801  0 . 5 7 7 5  0 . 5 8 6 5  0 . 5 7 2 4  0 . 7 0 7 7  0.6841 
1.90 0 . 5 5 7 4  0 . 5 8 1 2  0 . 5 8 4 9  0 . 5 8 7 7  0 . 5 9 9 6  0 .5811  0 . 6 8 2 2  0.7623 
1.91 0 . 5 8 4 9  0 . 5 8 9 4  0 . 5 8 8 3  3 . 5 9 7 6  0 . 6 0 7 6  0 , 5 8 9 6  0 .6 3 7 9  0.7069 
1.92 0 .5940  0 . 5 9 6 7  0 . 5 9 9 4  0 .6099  0 .6268  0 .5 9 6 5  0 .6 3 7 8  ~7834 
1.93 0 .6028  0 . 6 0 3 0  0 . 6 0 8 2  0 . 6 1 8 6  0 . 7 2 5 4  0 . 6 0 3 0  0 .6241  0.6918 
1.94 0 .6095  0 . 6 1 2 2  0 .6209  0 .6381  0 , 6 8 5 4  0 .6 1 2 5  0 . 6 3 8 0  0.6415 
1.95 0 . 6 1 4 0  0 . 6 2 1 7  0 . 6 3 1 0  0 . 6 9 3 0  0 . 7 0 9 2  0 .6 2 1 5  0 .6 7 4 8  0.6269 
1.96 0 .6256  0 .6331  0 . 6 5 1 0  0 . 7 0 4 6  0 , 7 0 1 7  0 .6 3 3 3  0 . 7 2 2 6  0.6214 
1.97 0 .6342  0 , 6 4 1 4  0 . 7 1 7 6  0 . 7 0 4 2  0 .7269  0 .6 4 1 3  0 . 7 3 6 7  0.7008 
1.98 0 .6495  0 .6621  0 . 7 5 8 9  0 . 7 2 5 7  0 . 7 1 6 4  0.6620 *** 0.6936 
1,99 0 .6629  0 . 6 9 8 0  0 . 7 2 0 2  0 . 7 2 6 7  0 , 7 1 5 2  0.6856 *** 0.7356 
2,00 0 .6931  0 . 7 3 4 8  0 . 7 2 9 7  0 . 7 2 4 4  0 , 7 3 1 5  0.6943 *** 0.7156 

a The data were produced with ISIZE = 512000. 
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where 7k(t)=fk(7(t)).  This can be thought of as the integral of u ~ [ Tf(u)[ 
with respect to the normalized arc length measure on fko  7. After discreti- 
zation this yields the formula for algorithm 2. For each k, a weighted 
average of the expansion of Tf along Yk is evaluated. This calculation 
hides the large numbers that appear in algorithms 1 and la, since one 
renormalizes at each iterate. Using algorithm 2 with 7 the line segment 
joining ( - 1 ,  0) and (1,0), and taking the region RI to be the strip 
- 3  ~< x ~< 3, we obtained estimates of h(fa, b) for various a, b in the H6non 
mappings described previously. Tables I and II present the results in matrix 

Table III. Variances Corresponding to Table I I  ~ 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
C/ 

1.71 0.0001 0.0002 0.0001 0.0002 0.0001 0.0000 0.0002 0.0001 
1.72 0.0001 0.0000 0.0001 0.0004 0.0001 0.0001 0.0001 0.0002 
1.73 0.0000 0.0001 0.0011 0.0002 0.0002 0.0001 0.0001 0.0001 
1.74 0.0001 0.0002 0.0004 0.0002 0.0001 0.0002 0.0004 0.0001 
1.75 0.0006 0.0008 0.0004 0.0004 0.0003 0.0002 0.0002 0.0004 
1.76 0.0002 0.0003 0.0010 0.0000 0.0001 0.0005 0.0015 0.0000 
1.77 0.0010 0.0003 0.0002 0.0001 0.0001 0.0001 0.0003 0.0001 
1.78 0.0005 0.0000 0,0001 0.0000 0.0001 ,0.0001 0.0001 0.0000 
1.79 0.0007 0.0003 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 
1.80 0.0002 0.0004 0.0007 0.0000 0.0001 0.0001 0.0000 0.0001 
1.81 0.0003 0.0002 0.0000 0.0002 0.0001 0.0001 0.0001 0.0001 
1.82 0.0001 0.0001 0.0001 0.0001 0.0000 0.0002 0.0003 0.0000 
1.83 0.0000 0.0001 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 
1.84 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
1.85 0.0001 0.0001 0.0001 0.0003 0.0000 0.0001 0.0001 0.0000 
1.86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1.87 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000 0.0000 0.0448 
1,88 0,0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0275 
1.89 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0,0233 0.0125 
1.90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0095 0.0514 
1.91 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0156 0.0197 
1.92 0.0000 0.0000 0.0009 0.0000 0,0000 0.0000 0.0147 0.0725 
1.93 0.0000 0.0000 0.0000 0.0000 0.0223 0.0000 0.0139 0.0117 
1.94 0.0000 0.0000 0.0000 0.0000 0.0064 0.0000 0.0111 0.0329 
1.95 0.0000 0.0000 0.0000 0.0070 0.0193 0.0000 0.0250 0.0298 
1.96 0.0000 0.0000 0.0001 0.0097 0.0308 0.0000 0.0150 0.0292 
1.97 0.0000 0.0000 0.0127 0.0269 0.0325 0.0000 0.0195 0.0506 
1.98 0.0000 0.0000 0.0467 0.0378 0.0215 0.0000 0.0195 0.0409 
1.99 0.0000 0.0046 0.0097 0.0519 0.0562 0.0002 0.0195 0.0466 
2.00 0.0000 0.0117 0.0242 0.0272 0.0376 0.0007 0.0195 0.0285 

a The data were produced with ISIZE = 512000. 
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format. The value of a is fixed across rows, while b is fixed going down 
columns. Entries with asterisks indicate poor  convergence, which we 
ascribe to the fact that most points eventually escape the region R1. 

We also estimated h(fa,  b) with ~ a line segment of unit length centered 
at the rightmost fixed point of fa, b in the direction of the expanding eigen- 
vector. We use I S I Z E =  32000 and MAXIT = 50. The results are fairly 
consistent with the previous ones. 

In each case when ambiguities appear, going to higher ISIZE or 
specifying different line segments seems to resolve them. As an empirical 
measure of the adequacy of ISIZE in algorithm 2, we used the variance 

1 MAXIT 

E 
A(IT) k = MINIT 

log(Vk+~121 Vk+~ 2 

where A ( I T ) = M A X I T - M I N I T .  When this variance was larger than 
10 -3, an increase in ISIZE seemed to be necessary. This is evident in 
Table III,  which shows the value of the variance in each of the cases corre- 
sponding to the entropy estimates in Table II. 

2.3. App l ica t ions  to D i f fe rent ia l  Equat ions 

Next we present an example of algorithm I applied to differential 
equations. The Lorenz system is the set of ordinary differential equations 

= a ( y  - x )  

j~ = - x z  + rx  - y 

~ = x y - b z  

where a, r, and b are real parameters. (9) Fixing b = 8/3 and o- = 10, one sees 
the following. For  0 < r < 1, the origin (0, 0, 0) is a globally attracting fixed 
point. When 1 < r < 24.74, the origin becomes unstable and the two fixed 
points (4- [ b ( r -  1)] 1/2, + [ b ( r -  1)] 1/2, r -  1) ~ become locally attracting. 
For  r>24.74,  the chaotic behavior known as the Lorentz attractor 
appears. We estimated the entropy of the time-one map of the Lorentz 
system for various parameter  values. The result using algorithm 1 with 
r = 28 is shown in Table IV. 

We used the algorithm to estimate the entropy for some other 
parameters in the Lorentz system as well. Figure 3 shows some outputs for 
r = 22. Note the clear presence of chaotic transients in this case. Figure 4 
shows some outputs for r = 24, 26. 
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Table IV. Lorenz System wi th  a = 1 0 ,  r - -28 ,  b = 2 . 6  a 

N L E 

100 0.894741E+02 0.894741E+00 
200 0.180095E+03 0.900476E+00 
300 0.270800E+03 0.902666E+00 
400 0.361462E+03 0.903654E+00 
500 0.452383E+03 0.904765E+00 
600 0.543644E+03 0.906073E+00 
700 0.633327E+03 0.904753E+00 
800 0.727047E+03 0.908808E+00 
900 0.815244E+03 0.905827E+00 

1000 0.905984E+03 0.905984E+00 
1100 0.995469E+03 0.904972E+00 
1200 0.108633E+04 0.905272E+00 
1300 0.117884E+04 0.906797E+00 
1400 0.127094E+04 0.907817E+00 
1500 0.136123E+04 0.907484E+00 

a N =  number of iterates of time-one map, L = log of length, 
E =  estimate of entropy = L/N. ISIZE =2500, M A X I T =  
1500. 

3. THE DIRECT METHOD 

3.1. The Algorithm 

For  comparison, topological entropy was calculated using what will 
be referred to as the Takens method. Beginning with a single time series of 
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Fig, 3. Lorenz equation with r = 22. 
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Fig. 4. Lorenz equation with r = (a)24, (b)26. 

data {xi} Ni=l, the underlying attractor is reconstructed using time-delay 
coordinates. (12~ This means a sequence of n-dimensional vectors 

S n ~ -  { ( x i ,  X i + l  ..... X i + n  1)}N= 1 n + l  

is used to represent points on the attractor, M, in R n. So long as n ~> 2m + 1 
(where m is the actual dimension of M), Takens proved that, in the ideal 
case when N = oo and certain generic assumptions are made, there is a one- 
to-one correspondence between the positive limit set of  the dynamical 
system producing the attractor and the set of limit points of the sequence 
Sn. (15) In other words, there is a one-to-one correspondence between the 
asymptotic behavior of the real and reconstructed systems. This fact has 
been used to calculate the dimension of M, both for numerically generated 
time series and for those from physical experiments (e.g., ref. 14). The 
limitations of these methods for calculating dimension have been explored(6' 8) 
and similar difficulties can be expected in calculating topological entropy 
along these linesJ TM 

In the case of  entropy, an approximate (n, e)-spanning set Sn,~ is 
obtained from the sequence of vectors S~ in the following way. For 
n > 2m + 1, the n-dimensional vectors represent points on the embedding of 
M into 112m+~ together with a segment of their orbits of  length 
n - (2m + 1). Choosing a subset S~,, c S~ whose vectors all differ by at least 
e from each other in some coordinate and such that all other vectors in S~ 
lie within e of  some vector in Sn,~ gives an (n - 2m - 1, e)-spanning set. For 
large n, this is our approximate (n, e)-spanning set. Again, there is a 
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rigorous foundation to saying that the topological entropy of the dynami- 
cal system restricted to the positive limit set is 

log C.,~ 
lim lim sup - -  
~ 0  n ~ o o  H 

where C.,~ is the cardinality of S.,~. ~15) In practice, C..~ is calculated as a 
function of increasing n, over a range of small values of e, with the 
maximum value of n as large as computationally feasible. Then log C.,~ is 
plotted against n for fixed e, with the asymptotic slope giving the entropy 
as e tends to zero. Looking at slopes rather than ratios helps to minimize 
the effects of slowly vanishing nonasymptotic terms (a standard procedure 
used in dimension calculations). 

3.2. N u m e r i c a l  Resul ts  

Transients are avoided by skipping a number of iterations or integra- 
tion steps before forming the time series. The idea is that the calculations 
should begin on or near the attractor. The first computational hurdle is the 
length N of the time series that is needed to create a reasonable reconstruc- 
tion of the attractor. This can be determined by plotting C,,~ vs. N. Once 
N is sufficiently large so that S covers M, C.,~ should stop increasing as a 
function of N, as in Fig. 5. Since this frequently occurred only after N had 
reached several million, least squares fits of the data to a constant minus 
a multiple of 1/N, 1/N 2, and 1 /x /N were performed in an attempt to 
predict the asymptotic value of C.,~ (i.e., the constant in the fit). In general, 
this did not prove useful, since a million or more data points were still 
needed to capture the asymptotics. Also, there was no clear-cut best fit. The 
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Lorenz system with a = lO, r = 28, b = 2.6. 
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three cases were almost evenly divided as being the best fit for given 
sets of data (1/N was slightly favored overall). In all cases, each of the 
correlation coefficients was greater than or equal to 0.90 in absolute value, 
with the best fit case usually being 0.99. 

The next complication is the tradeoff between memory and CPU time. 
Calculations are done in double precision and the length n of the vectors 
being compared is taken to be as large as possible (a maximum of 21 in the 
calculations described here). Since the number of vectors is large, sorting 
and storing become prohibitive, and computations become CPU intensive. 

The analysis was performed on several different models, with varying 
degrees of success. Total automorphisms and unimodal one-dimensional 
maps, for which the topological entropy is known rigorously, were used as 
test cases. These yielded reasonably accurate results using the Takens method. 

Recall that entropy is estimated by the slope of the straight line 
between successive points on the graph log C,.~ vs. n. For the H6non map 
with a = 1.4 and b =0.3, the results are summarized in Table V. They are 
in agreement with those using the length growth methods, giving 
approximately 0.46 for the entropy. It should be noted that the estimates 
for large n and/or small ~ may be less accurate because these are precisely 
the cases when the difficulties described in connection with Fig. 5 arise. 

Although calculations for the Lorenz system with r = 2 8  are still 
underway, the results do not seem promising. Because of the large number 
of points needed in the time series, the time-one-tenth map was used. 3 This 

3 The equations were integrated using a fourth-order Runge-Kutta scheme with a time step of 
10 -2 . The time series was formed by keeping every tenth point. 

T a b l e V .  H6non  Map  w i t h a = l , 4 a n d b = 0 . 3  

Epsilon Entropy estimate = slope between successive values of n in parentheses 

0.3 OA5 0.44 0.44 
(6-11) (11-16) (16-21) 

0.2 0.47 0.45 0.43 0.45 0.46 0.45 
(4-5) (5-6) (6-7) (7-9) (9-11) (11-15) 

O. l 0.49 0.43 0.46 0.49 0.48 0.45 0.46 0.46 
(4-5) (5~;) (6-7) (7-8) (8-9) (9-10) (10-12) (12-14)  

0.05 0.44 0.44 0.47 0.48 0.47 0.45 0.45 0.47 
(4-5) (5-6) (6-7) (7-8) (8-9) (9 10) (10-12) (12-15) 

0.025 0.44 0.45 0.47 0.47 0.47 0.46 0,45 
(4-5) (5-6) ((~7) (7-8) (8-10) (10-12) (12-14) 

0.46 
(14-16) 
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Table VI. Lorenz System with a=10,  
r--28, b = 2 . 6  

Time-one-tenth map 
Values of n Entropy estimate 

4-6 0.274 
6-8 0.284 
8-10 0.267 

10-12 0.249 
12-14 0.221 
14-16 0.190 
16-18 0.168 
18-20 0.161 

means the results should be multiplied by a factor of 10 in order to 
compare them with the estimates obtained in the previous section. Table VI 
shows an example of what happens. The numbers are decreasing more 
slowly than our patience. 

4. POSSIBILITIES FOR FURTHER S T U D Y  

1. It would be nice to devise a length growth algorithm which could 
be applied to time series. Something similar to the way in which 
Lyapunov exponents are calculated from such data (4~ might work. 

2. As noted at the end of Section 2.1, the algorithms described here 
are sensitive to the particular situation in which they are being 
applied. It would be helpful to develop methods which would be 
generally applicable. 

3. Several notions of entropy, exponents, etc., exist (for example, 
ref. 1). A better understanding of how they are related may lead to 
useful algorithms, as well as deeper mathematical insight. A similar 
remark can be made regarding the relation of topological entropy 
to Hausdorff dimension. (5~ 

5. S O M E  M A T H E M A T I C A L  C O M P L E M E N T S  

In certain situations it is possible to estimate the difference between 

1 
- l o g  + If"o 71 
n 

and h(f). As we shall see, the typical error is O(1/n). 
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Suppose f is a C ~ diffeomorphism of a compact  manifold M, and A 
is a compact,  isolated, invariant, uniformly hyperbolic set which is 
topologically transitive. An isolating neighborhood U of A is a compact  
neighborhood such that 0n ~ z f~U = A. It is known that such neighborhoods 
always exist. Given a set A and a positive integer n, let WS(A, n)= {x ~ M: 
f J x e A  for j e  [0, n)}. Thus, WS(A, n) is the set of points which remain in 
A for time 0 through n - 1 .  The quantity V , =  t[f"-ioTlT-~(Ws(U, n))]] 
is the volume of the ( n - l )  th iterate of the points of 7 which are in 
W~(U,n). 

Theorem 3. With f and A as above, suppose 7 is a Coo disk of the 
same dimension as the unstable manifolds of A, which meets some stable 
manifold of A transversely at some point. Then there are constants C1 > 0 
and C2 > 0 such that for every positive integer n 

cl  h - -~< log + V n -  ~<C2 
?/ n 

The proof  uses Markov  partitions and is fairly elementary. Here is a 
sketch. 

Let us use the notation an"~bn to mean that there are constants 
C1 > 0, C2 > 0 independent of n such that C1 < a,/bn < C2 for all n. After a 
finite number  of iterates, the disk 7 is close to a disk W in the unstable 
manifold of a point x in A. Let S , =  [ [ f , - l o  WI W I(Ws(U, n))][. Then, 
Vn"~Sn. If ~ is a Markov  partition for A, (3~ then the elements of 
(rectangles) form the symbols of a finite-state Markov  shift which exhibits 
A as a finite-to-one factor. The number  qn of words of length n starting at 
a fixed symbol satisfies qn ~ eh". We may assume that the orbit of x never 
hits the stable or unstable boundaries of the elements of ~ .  Then, if qn is the 
number  of words of length n which begin at the rectangle which contains x, 
it is not difficult to show that S~ ~ qn ~ eh~, which is the statement of the 
theorem. 

The next result generalizes one in ref. 11. 
A diffeomorphism is called dissipative on a set A if, in some metric, the 

absolute value of the Jacobian determinant of its derivative is less than one 
at each point in A. Given A and a curve 7, we let 

G(7, A ) = lim sup 1 log + [ [ f " o  717 - i  WS(A, n) ]1 
n - ~ o o  n 

Thus, G(7, A) is the logarithmic growth rate of the part  of the iterates of 
7 which remain in A for 0 ~< j < n. 

822/72/5-6-32 
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T h e o r e m  4. Suppose  f is a dissipative d i f feomorphism of a two- 
dimensional  manifold  M, and N is a compac t  smoo th  submanifold  with 
nonempty  bounda ry  ON. Let  A = 0 , />o f n ~  be the largest f - invar ian t  set in 
N. Then 

h ( f l A )  = G(0~ ,  ~ )  

Remarks .  1. The  previous theorem has appl icat ions to var ious forms 
of po lynomia l  d i f feomorphisms of the plane R 2. If  f ( x ,  y )  = (g (x )  + by, x), 
where g ( x )  is an even po lynomia l  in the variable x and ]b[ < 1, then there 
is a rectangle ~ such that  h ( f [  0 n ~ z f n M ) =  G(7, ~ ) ,  where 7 is the top of 
~ .  In m a n y  cases, it m a y  be true that  the en t ropy  of the largest invar iant  
set in M equals G(7, M), where ~, is a small line segment in the unstable 
manifold  of  one of the fixed points  of f 

2. At present  we do not  have a r igorous useful error  bound  on the 
difference between the est imates of ( l / n ) l o g  § I f  no ~[ given by a lgor i thms 1 
and 2 and  the ac tual  value of this quantity.  Nevertheless,  empirically, we 
seem to obta in  reasonable  est imates for the en t ropy  in m a n y  cases. 

3. Similarly, we have no meaningful  error  est imates for the Takens  
method.  
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