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PREFACE

On June 19 - 27, .a summer school on dynamical systems was held at
Bressanone, Italy under the auspices of C.I.M.E. It was organized
by A. Moro and C. Marchioro. There were three series of lectures
given which appear in this volume, more or less in the original

form.*

The purpose of these lectures was to present some recent and active
lines of research work in dynamical systems in a form accessible to
interested students and researchers; i.e. they are not directed to
the expert. In the limited space of eight lectures it is clearly
impossible to develop a theory with complete proofs. Rather, it was
the goal to give in an informal style a coherent picture of three
areas in dynamical systems leading up to current research work and
to open problems. Here are some comments on the three sets of

lectures:

The lectures by S. Newhouse describe the qualitative theory of
dynamical systems as it was initiated by S. Smale in the sixties.

It deals with the topological description of the flow for typical

or generic systems. Structural stability is a central theme in these
lectures. Emphasis is placed both upon the characterization of
structurally stable systems and reasons why some systems fail to

be structurally stable. We mention, in particular, Newhouse's

* The original plan, to haye the lectures published in 1978 was not

realized. We thank Roberto Conti for his permission to have these manu-

scripts published with Birkhauser, Boston.
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description of the "shadowing lemma" which for the case of hyperbolic
systems was derived by Anosov in order to establish the structural
stability of those systems, In the last section, Newhouse describes
systems having infinitely many attracting periodic orbits on a compact
manifold, a property which is inconsistent with structural stability.
The discovery of this surprising and unintuitive phenomenon, namely
that in a generic one-parameter family a dynamical system may have
infinitely many attracting periodic orbits is due to S. Newhouse. In
the meantime it has been realized that this situation occurs in many
examples such as the forced van der Pol equation of nonlinear circuit
theory. In addition to the topological theory, Newhouse also gives

a glimpse into ergodic theory and describes some recent results of

Ruelle.

Guckenheimer's lectures deal with bifurcation theory. Historically
the term bifurcation theory refers to systems depending on a parameter
for which a stationary or a periodic orbit bifurcates into two or
several such orbits as the parameter passes a critical value, In
fluid dynamics the parameter is usually the Reynold's number and the
problem is the bifurcation of a nonstationary solution from the '"laminar"
stationary flow. In Guckenheimer's lecture the concept is taken in

a much more general sense, namely bifurcation theory refers to the
study of systems depending on one or more parameters and the changes
of topological character of the flow which occur as the parameter
changes. This may involve more complicated phenomena than bifurcation
of periodic orbits and Guckenheimer describes, for instance, such
fascinating phenomena as they occur for the Lorenz attractor and

bifurcations for the van der Pol equation.

Another major topic of
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Guckenheimer's lecture is the topological study of the iterates of a
mapping of an interval into itself. This seemingly simple question
hides a number of intriguing and complicated phenomena which in recent
years have been studied by many mathematicians and physicists, and
Guckenheimer himself has made several contributions to this subject.
Section 6 of his lectures contains a description of '"kneading sequences"
which were introduced by Milnor and Thurston into the subject. In
Section 7, Guckenheimer describes some applications to various popula-
tion models. He illustrates how rather simple models can lead to

complicated flows,

While the lectures of Guckenheimer and Newhouse relate to each other

in spirit, those of the undersigned deal with a Vvery different topic,
namely with integrable Hamiltonian systems. This is a very special
class of nonlinear systems possessing sufficiently many integrals so
that they can be solved more or less explicitly. For this reason,
integrable systems played a role in the last century before existence
theorems were available and before qualitative methods had been developed.
In the last ten years there has been renewed interest in integrable
systems since a number of partial differential equations have been
discovered which play the role of integrable systems of infinitely many
degrees of freedom. An example of this type is the Korteweg-de Vries
equation occurring in fluid mechanics. Moreover, a number of new

finite dimensional systems have been recognized as integrable ones.

As an example we mention the n-particle system of Calogero: it describes
the motion of n particles of equal mass moving on the line under the

influence of an inverse square potential. This example is treated in

detail in these lectures and its relation to Lie algebra is revealed.




In the other lectures Jacobi's geodesic flow on an ellipsoid and another
mechanical problem, going back to C. Neumann, are discussed and a
surprising relation of these mechanical systems and the Korteweg-de Vries
equation is shown. Although this subject has a long history there is no
systematic theory; it consists of a number of examples, coming from
physics, geometry or other fields and special techniques. Recent work
has shown close connection to algebraic geometry. Much remains to be

done in this field.

It is our hope that through this publication these ideas are made
available to a larger circle than the audience at the summer Institute
at Bressanone, and possibly find their way to some readers who take

an interest in this subject and contribute to it.

Jurgen K. Moser
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Introduction.

A basic question in the theory of dynamical systems is to study the
asymptotic behaviour of orbits. This has led to the development of many
different subjects in mathematics. To name a few, we have ergodic theory,
hamiltonian mechanics, and the qualitative theory of differential equa-
tions.

A particularly baffling and interesting problem is to describe
systems with non-trivial recurrence. For example, consider a smooth
area preserving diffeomorphism f of the two dimensional disk Dz.
According to the Poincaré'recurrence theorem, almost all points in D2
are recurrent. That is, for x off a set of Lebesgue measure zero, the
orbit of x accumulates on x infinitely often. However, except for
simple cases, we have no global model that describes all the motion. On
the other hand, if we consider the mapping g on the two-dimensional

2 1

torus T2 induced by the matrix 1 1l then again almost all points
)

are recurrent. However, in this case not only do we have a fairly good
picture of the total motion, but this picture persists for any g' which
is C close to g. This example gives an indication of some remarkable
progress which has been made in describing non-trivial recurrence during
the last twenty years.
The main feature possessed by the toral mapping g above which is
not shared by f is what is called hyperbolicity. 1In its present form,
this concept arose in the work of Anosov on geodesic flows on negatively
curved Riemannian manifolds [2]. 7Tt was subsequently realized by Smale

that hyperbolicity could be used to describe other systems with non~

trivial recurrence, and this led him to define Axiom A diffeomorphisms.
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The recurrent orbits in Axiom A diffeomorphisms lie in certain sets

which Smale called hyperbolic basic sets. These sets have been studied

by many authors. Perhaps the most significant result about hyperbolic
basic sets is that they can be modeled by certain symbolic spaces (called
subshifts of finite type), and this gives one very precise information
about their orbit structures.

If one thinks about the structure of hyperbolic basic sets a bit,
one realizes that they are special cases of certain sets which we call
h-closures which exist for many diffeomorphisms. At the present time we
have relatively little information about the fine structure of non-
hyperbolic h-closures, but hopefully we will understand more about them
in the future.

Our goal in these lectures is to introduce the reader to some of the
results in this fascinating area of mathematics. Considerations of time
and space have forced us to choose a rather limited set of topics to
present here. Our intention has been to describe a variety of results
with a special emphasis on the theory of attractors. While many refer-
ences are given in the ensuing sections, we recommend that the reader
consult the recent survey of Bowen [9], and the lectures of Ruelle [49]

for different perspectives.




1. Periodic points, flows, diffeomorphisms, and generic properties.

In this section, we shall begin to motivate the concept of hyper-
bolicity. First, let us consider the relationship between flows and
diffeomorphisms.

Let M be a compact c” manifold., A Ck vector field X on M
is a Ck mapping from M into the tangent bundle TM of M so that
X(x) ¢ TXM for each x ¢ M. Here TXM is the tangent space to M at
X. We shall always assume k > 1. The vector field X dinduces a Ck

mapping ¢ : BRx M > M where IR is the real line such that for each

x €M and t,s ¢ R we have

(1) ¢(0,x) = x
(2) ¢t + 5,%) = ¢(t,¢(s,x))

3 22 6,0 = x0e,2)

Conditions (1) and (2) imply that the mapping t - ¢(t,*) is a homo-
morphism from R to the group Difko of Ck diffeomorphisms of M.

The mapping ¢ 1is called the flow or one parameter group generated
by X. The mapping x —> ¢(1,x) is called the time-one map of the
flow ¢.

It is a fact that every Ck diffeomorphism f of a manifold M
arises as the time-one map of a Ck flow ¢ on a manifold M with
dim M = dim M + 1. The flow ¢ is called the suspension of f and is
defined as follows. TLet Ml = [0,1] x M, and define the equivalence
relation ~ omn Ml by (t,x) ~ (tl,xl) if and only if x = % and

t = t1 or x, = f(x), t = 1, and tl =0, or x= f(xl), t =0, and

tl = 1. The quotient space M1/~ =M inherits a differentiable
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6(s, (6,01 = {(s + t - [s + t], £L5¥thy}

where [s + t] 1is the greatest integer in s.+ t.

Examples: 1. Let 0< o< 1 and let Sl be the circle which we think

of as R/Z with IR the reals and Z the integers.
Let f(x) = x+ 0 mod 1. Then M is diffeomorphic to
the two torus TZ = H{2/22 and ¢ may be thought of as

the flow induced by the differential equations x=1 on

RZ ¥y =0

2. Let Dz = {(x,y)} e RZ: :‘:2+y2

in ®B% and let £ : D’ > D’ be a C° diffeomorphism

< 1} be the unit disk

from D2 into its interior which preserves orientation.
The suspension construction applied to f gives us a
flow ¢ on S1 X Dz (actually defined for forward time
only so we should say semi-flow) whose orbits come in at
the boundary. We could make this a global flow (via

differentiable change of coordinates) embedding S1 x D2

in 83, the 3-sphere, extending the vector field of ¢
to all of S3, and taking the flow of this extended vector

field.

If ¢ 1is the suspension of £, then they have essentially the same
qualitative features, and f gives us the advantage of one less
dimension. As we shall see, this enables us to describe interesting
3~dimensional flows with 2-dimensional diffeomorphisms.

For most of these lectures, we shall be concerned with diffeomor-

phisms. We begin by describing certain generic properties of diffeomor-




phisms. Fix an integer k 2 1, and let Difko be the set of Ck

diffeomorphisms of M. We give Difko a topology as follows. Fix a

finite covering of M by open coordinate charts (Ul,¢l),...,(Un,¢n)

of M with ¢i : Ui +R" a Ck diffeomorphism from Ui onto a bound-

ed open set Vi in the Euclidean space ﬂim, m = dim M. Choose the pairs

(Ui,¢i) so that ¢i . ¢;1 and its partial derivatives of order less

than or equal to k are uniformly continuous. -If O = (al,...,ar)

a multi-index of non-negative integers, we set ]uf: @1+...+ar. For

f,g € DIffM, Tet

V() = sup{DiCoeeT ~ o, 80D x e v, 107N e v, moTtx e U,

Sn, and 1< j <n}.

where Dz(g) is a partial derivative at x of £ of order la]. Given
€ >0, let B?(e) = {g € Difko : Y(g,f) <e£}. The sets B?(S) form
a neighborhood base for a topology on Difko called the uniform Ck
topology. This topology is indgpendent of the choices of the charts
(.90},

Let us consider the local structure near a periodic point, A point
P € M is periodic for f if there is an integer n 2 1 so that
£(p) = p. The least such n is called the period of p. A periodic
point . p of period n is hyperbolic if the derivative Tpfn of % at
p has no eigenvalues of absolute value 1. Note that Tpfn: TpM ~"TPM
is a2 linear automorphism, and any two local representatives of £ de-
fine conjugate automorphisms. Thus, the eigenvalues of Tpfn are well-

defined.

For convenience of notation, we will frequently indentify TPM
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Theorem (1.1). (Hartman and Grobman). Suppose p is a hyperbolic fimed
point of a Ck diffeomorphism £ : M » M. There is a neighborhood U
of p in M and homeomorphism h : U -~ R™  such that h(p) = 0 and
nfnt = Tpf where both sides are defined.

Thus, via a continuous change of coordinates, f looks like the
linear mapping Tpf. The structure of Tpf is given by linear algebra.
There is a direct sum decomposition R™ = £° ¢ ¥ 1nto invariant sub-
spaces so that TprEs has eigenvalues of norm less than one while
Tpf|Eu has eigenvalues of norm greater than one. For some norm on I{m,
[lTpf‘EsIf <1 and {!Tpf-1|Eui| < 1. Some hyperbolic linear automor-

phisms are sketched in the next figure.

£(x,y) = (ux,)y) £(x,y) = (ox + By,-Bx + ay)
0 <py <1 <A 0 < QZ + 62 <1

C\\

»

'

f(x,y,2z) = (ax + By,-Bx + ay,\z)
0 <a®+8% <1, 151

L

Figure 1.1




The map h in theorem (1.1) is called a ¢° linearization. For
c* linearization theorems, r 2 1, and other normal forms, see [58],
[60]. For a hyperbolic periodic point p of period n > 1, £ looks
like Tpfn near p.

An elegant proof of theorem (1.1) which even works in Banach spaces
is due independently to Palis [40] and Pugh [45]. The idea is as follows.

One may assume f : R© + RO and f(0) = 0. Let I = Tof. With
a suitable choice of bump function o (a function which is one on a
neighborhood of 0 and zero off a slightly bigger neighborhood), one
may replace f by of + (1 - @)L and assume that

1) £(x) =1Lx for x outside some neighborhood of 0

(2) the Lipschitz constant of f-L is small®

Then one tries to find h = id + u where id is the identity
map and u is a bounded continuous function.

Consider

@ Cropm = ma+ ¢y
with ¢1 and ¢2 Lipschitz functions with small ¢° and Lipschitz

sizes, and h = id + u. We get

L+ Lu+ ¢l(id +u) = L + ¢2 + u(L + ¢2)
Lu - u(L + ¢2) = ¢2 - ¢1(id + u)

u-1te@ s 0,) = L'l{¢2 - $,(d + w].

The operator H: u —> y - Lulu(L + ¢2) is invertible, so we get

u = H“lL‘1(¢2 " 8 d+ W) = (. For ¢, and ¢, small, ¥ isa
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we have h, ,, °h = id by uniqueness.
9170, %9 v umia

Similarly, h, ,, oh, , = id, so h, , is a homeomorphism. If
8,76;"79,6, 6,9,

= L + ¢1, then h¢ ‘o is the required linearization for theorem

1
(1.1).

Now let d be a distance function on M induced by a Riemann

metric. Given a point x e M, 1let Ws(x,f) ={y e M : d(fnx,fny) >0
u S ~1 S
as n * o}, and let W (x,£) = Wx,f ). One calls W (x,f) the

stable set of x Wu(x,f) the unstable set of x. The next result

shows that for a hyperbolic period point these sets have nice structure.

Theorem (1.2) (Stable mant fold theorem for a point.) Suppose p is

a hyperbolic periodic point of «a Ck diffeomorphism £ with splitting

TPM = E; eaEs. Then Ws(p,f) i8 a Ck injectively immersed copy of

R® with s = dim E§ and W(p,f) e tangent at p to E;.

Early versions of this theorem were given by Poincaré and then by

Hadamard and Perron. The outline we give here is based on the treatment

of Hirsch and Pugh [17]. A proof based on the implicit function theorem

is due to Irwin [19].

Related and important results are in Hirsch-Pugh~




Shub [18].

The basic idea of the proof of theorem (1.2) is as follows. Let
s = dim.E; and u = dim Eg. Replace f by a power of f so0 we may
assume f(p) = p.

Choose a neighborhood U of p and a diffeomorphism ¢: U B < ®Y

such that  ¢(p) = 0, Toqb(E:) = R®° x {0}, and Tod)(E:) = {0} x Y,

Here we identify TO(DRS x D{u) with IR® x R Y, For U small,

¥ o= ¢f¢-1 =L+ Y where L 1is a linear hyperbolic map and ¢ is Cl

u

small. Let B be the product of the unit balls in R° and

RY. Now ‘fsl B as in the next figure.

u

/E
—

B

Figure 1.2

Also, f l(B n-g-lB) nBn E~lB = ¥_2B n ?ﬁlB n B is a thinner

strip in the B{u—direction. It is reasonable and provable that (NNEFnB
nz0

is a Ck manifold, and equals the set of points in B whose forward
orbits remain there and approach 0. Actually, it turns out better to
congider the transformation FE> defined by graph (F?(g)) =‘E~l (graph

g) where g is a Ck mapping from 8° to BY of Lipschitz constant
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< 1. Then, for any such g, ng(g) converges to a unique g so that
Fw(g) = g' and T g = 0. TFor details, see [17], [18]. We warn the reader
that PE is not a contraction in any suitable metric., Now, wioc(p,f) =

¢_1 (graph g) is called the local stable manifold of p for £. Then,

W (p,£) = Uf_nwioc(p,f) is an expanding union of imersed disks, and
nz0

hence it is an injectively immersed Euclidean space.

Applying theorem (1.2) to fﬂl gives a similar structure to %P(p,ﬂg
Ws(p,f) and Wu(p,f) are called the stable and unstable manifolds of p.
It was realized long ago that it is impossible to describe the

orbit structures of all differential equations or all diffeomorphisms.

Poincare and Birkhoff emphasized the concept of typical or general systems

in which certain exceptional or rare phenomena were to be excluded.

There are many precise notions of typicality which can be introduced

in the space Difko. One of the most frequently used is the notion

of residuality. A subset B ¢ Difko is called residual if it contains

a countable intersection of dense open sets. Residual sets are dense,

and a countable intersection of residual sets is again residual. Pro-

perties which are true for residual sets are called generic. It is to

be hoped that one day we will be able to understand the orbit structures

of elements in a residual set in Difko. At present, we are far from

this goal. The next two results describe some useful generic properties.
Let ¢l H Nl -+ M and ¢2 H N2 + M be two immersions. We say that,

¢l is transverse to ¢2 (or that ¢1 and ¢2 are transverse) if. for

any x € Nl’ y € Nz, such that ¢1(x) = ¢2(y) we have T¢ICQ)M = Tx¢l

(Tle) + Ty¢2(TyN2). That is, the tangent space to Nl at ¢1(X) and

N2 at ¢2(y) span the tangent space to M at ¢1(X) = ¢2(Y)‘




12

Sometimes we identify Nl and N2 with their images and just say that

Nl and N2 are transverse,

Theorem (1.3) (Kupka-Smale). There i8 a residual set B c Difko 80

that each £ in B has only hyperbolic periodic points and the stable

and wnstable manifolds of the periodic points are transverse.

A point xe¢M is non-wandering for f if for every neighborhood

U of x there is an integer n > 0 wuch that f°U nU =@, The set

of non-wandering points is denoted Q(f). It is closed f-invariant set,

and it contains all the recurrent behavior of f£.

Theorem (1,4) (Pugh [44]) There is a residual set B c DifflM so that

for f ¢ B, the preiodic points of f are dense in Q(E).

It is still unknown if theorem (1,4) holds in Difko, k>1. 1
1

t
does hold if M 1is the circle, §

Proofs of theorem (1.3) are in [371, [41]. The best proof of

theorem (1.4) is in [46].

f T
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2. Hyperbolic Sets and Homoclinic Points.

In this section we extend the condition of hyperbolicity to larger
sets than a single orbit. The extended condition is fairly restrictive,
but it permits us to understand many complicated orbit structures.

We have already defined hyperbolic periodic points, and we have
established some of their properties. It is clear how to define a
hyperbolic non-periodic orbit o(x). One should require a splitting
TM=E e E, so that T E(ED) = EZ,» T E(E)) = E; , and some sort of
contraction for Tf[ES and expansion for Tf[Eu. Suitable definitions

of the contraction and expansion are that, in some Riemann norm [-

on

™, there is a constant 1 < A so that for v € o(x).

lTyfv{ S N T T Ei ,
and

IT fv| » Avl if v e EY.
y ¥y

If Ac¥M is closed invariant set, i.e. f(A) = A, then A is called
hyperoblic if all of ‘the orbits in A are hyperbolic in a uniform way.

More precisely, we have the following. A Riemann metric on TM

-

induces a norm on each TxM' We will call this a Riemann norm.

Definition 2.1. A closed f-invariant set A is hyperbolic if there is

a splitting TXM = Ei & E: for each x € A, which varies continuously
with x € A, q constant A >1, and a Riemamn nowmm I+ such that

S, _ .8 uy _ pu

(1) Txf(Ex) = Efx’ Txf(Ex) EfX

2) t e ] < v for v e Ey, and [T £()|2Alv] for veEL.

It can be proved that the bundles E° and EU are unique subject




to conditions (2.1.1) and (2.1.2). The continuity of x ’“"Ei and
X ~—$'E; also follows from (2.1.1) and (2.1.2). The norm * in
definition (2.1) is called adapted to A,

A definition of hyperbolicity which is independent of any particular

Riemann matric involves replacing (2.1.2) with

(2.1.2)" {Txf“(v)[ <A Pyl voe Ei ,

ITxfn(v)f Iy, v e E;

for any n 2 0 and some constants C > 0, X > 1 independent of n.
Then changing the norm merely changes C and A, We will always use
an adapted norm.

Definition (2.1) has the defect that it is hard to establish its
existence in examples. There is an equivalent formulation of hyperboli~
city which is easier to use.

Let M be Riemannian manifold with norm on TM, and let
TM=E _9$E for x € M. let €{x) be a positive real-valued func-

X 1x 2x
tion on M. Define the e(x)-sector Se(x)<Elx’ sz) of (Elx’ EZX) by
Sa(x)(Elx’EZX) = {(Vl,vz) B O, fvzf < e(x)[vﬂ}

When the splitting TXM = E @& E is understood, we write for

1x 2x sE(x)

' - . T M
Se(x) EigoBy,) and Sex) for TM Sex)r I A >1 and A < M

we say TXfIA is a J-expansion if 1Txf(v)]2 A]vf for all v e A.

Theorem (2.2). Let £ bhe g ct diffeomorphism of the compact Riemarmion
manifold M, and let ) cM be q closed f ~invariant set. Then A s

hyperbolic for f if and only i1f there are a splitting TXM = E1v ® EZx




mtinuity of x ““9‘Ei and

@

'2.1.2). The norm in

s independent of any particular

with
s
v € E,
x
u
, vV € E
b4

A>T independent of n.

and A, We will always use

it is hard to establish its

-ent formulation of hyperboli-

rm

on TM, and let

a positive real-valued func-

(Elx’ EZX) of (Elx’ EZX) by
x fvzf < E(X)[vﬁ}
erstood, we write § for

£(x)
- If A >1 and A cTM,
) x

) 2 Afv]  for all v e a.

shism of the compact Riemanmian

~invariant set. Then A <isg

1 splitting TXM =E_® E,
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for x e A, an integer m > 0, aconstant X > 1, and q positive real-

ued function € : A+ R satisfying the following conditions.
(1) sup {max(e(x),a(x)_l)} < o
xeh

(2) For each x e A, we have
m =1
(a) T f ISE<X) € S.(gm) and both T f ISE(X) and

=y B .
Txf ISE(X) are X -expansions.

Theorem 2.2 says that to establish hyperbolicity, one only needs to

find a field of cones CX in TXM for x ¢ A such that TXf maps C

to C. , and for some m > 0, T £ expands C_, and T £ O expands
fx be X X
?KM - Cx' The fields x ——9-CX do not even have to be continuous.
In most applications, however, they are piecewise continuous.
For a proof of theorem (2.2), see [33], [34].
Let us give a well-known example of a hyperbolic set--the Smale

horseshoe diffeomorphism.

Let Q be a square in the plane Iiz and define f from Q into

2
"™ as described in figure 2.1. The map f first squeezes Q horizon—

tally, then stretches it vertically, and finally wraps the top of Q

around as in the figure. Write f(A) = A', £(B) = B", etc.

/ A' , D' ¢' B
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£(Q)
/
—t
A1 A2
/j
Q
Figure 2.1

Label the two components of f£(Q) nQ by A, and A.. We assume

1 2

o 0 -1

Txf = -1 for x ¢ f Al ,
0 o

and

-Cf 0 -1

Tf = for x e £ "A

b3 -1 2
0 -0

where 0 <o <%. Then Q n £(Q) n £(Q n £(Q)) = Q n £Q n sz consists

2 . . j . .
of 2 vertical strips, fJQ consists of 2" vertical strips, and
0<j=n

m fJQ = Cl x I  where Cl is a Cantor set and I 4is an interval.

Similarly, m fJQ =TI sz with CZ a Cantor set, and
- <y <0

m £9Q=C, x C, is a Cantor set. The splittingon T A is given by the
—cocjeoo 1 2 X

horizontal and vertical subspaces, and we may take A= Oé_l CcC= 1.

s

The dynamics of fffx can be conveniently described as follows.

Let 22 = {1,2}2 be the set of bi-infinite sequences of 1's and 2's

with the product (compact-open) topology, and write elements of 22 by x




™~

Q by Al and AZ' We assume

x e f A

c x e f A

PE@) = Qo fQ n sz consists

n
sts of 2 vertical strips, and
ntor set and I is an interval,

C2 a Cantor set, and
splitting on TXA is given by the

may take A= o C=1.

»

-ently described as follows.

‘te sequences of 1's and 2's

1 write elements of 22 by x
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where  x(i) =1 or 2 and i ¢ Z. Define the shift map o ; 22 he 22

By o(x)({) = x(i + 1); that is, 0 shifts a sequence Xx one step to

the left,
Now if x ¢ A, then fl(x) € Al u AZ’ so we may define a sequence
alx) € 22 by
h(x) (1) =1 if f(x) ¢ Al
=2 if £l ch, .
Then one can prove that h : A %>22 is a homeomorphism and hf = ch,
or hfnl = g,

From this it follows that the periodic orbits of f]A

are dense in A.

For a sequence x ¢ Zz is periodic if and only if there is a k>0

such that x(i + k) = x() for all 1. 1If X e 22 and U is any

neighborhood of x, choose a k > 0 such that y ¢ U whenever

y(1) = x(i) for 1] < k. The sequence z defined by

i

z(1) = x({) for |i| <k

2(i) = x() for |i| > k where -k < £ <k and

i = £ mod(2k + 1)

is periodic and lies in U. Thus the periodic orbits of o are dense
in ZZ’ and this implies the same for £lA.

In general, if f : X » X and g Y ->Y are homeomorphisms, one
says that f is topologically conjugate (or topologically equivalent)
to g if there is a homeomorphism h : X » v satisfying hf = gh. The
topological equivalence h preserves all the dynamical structure of £.
For a given £, one would like to find a simple g to use a model for
f.

Remark. Horseshoes actually occur in simple mappings.

Fix numbers
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a>0 and 0 <b <1, and consider the one-parameter family of mappings

fC(X,Y)= (y,-ayz‘bx +c) =(Xl,yl) from 1{2 to Rz . One easily checks

that gc(xl,yl) =(b_1(—axi -y + C)’Xl) is the inverse of fC so fc

is a diffeomorphism of 1{2. The images of horizontal lines are vertical,

and the images of vertical lines are parabolas. Using theorem 2.2, the
reader may prove that there is a cta,b) > 0 so that for c¢ > c(a,b),
the only bounded invariant set for fc is a set A(fc) on which f

is topologically equivalent to & on ZZ.
Let us return to our horseshoe map f£. It follows easily from

theorem 2.2 that if g is Cl near f, then the largest g-invariant

subset A(g) of Q is also hyperbolic for g. For this note that
-1
Mg) = gnQ, and we need only choose m = 1, A= QE_ , e(x) =1
neZ

for all x, and the tangents to the coordinate lines as Elx and E2x'

Also, g|A(g) remains topologically equivalent to (O,ZZ).
Horseshoe type mappings were discovered by Smale [55] in trying to

geometrically descirbe a variant of Van der Pol's equation studied by

Levinson [20]. They arise in many physical situations near what are

called homoclinic points.

If p 1is a hyperbolic periodic point of a Cl diffeomorphism f

then a point x e W'(p) n WS(P) - {p} is call a homoclinie point. If
the intersection of w“(p) and Ws(p) at x 1is transverse, the homo-

clinic point is called transverse.

Theorem (2.3) (Smale homoclinic theorem [551). Let f be g Cl diffeo-
morphism with a hyperbolic periodic point p having a transverse homo-

clinic point x. There is a integer m > 0 such that f£° has a closed
invariant set A containing x and p so that 0 s topologically

equivalent to the shift automorphism (0,Z,). Moreover, A is a hyper-

s
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ie set for fO.

vrollary (2.4). Each transverse homoclinic point of a diffeomorphism

§ 1s in the closure of the hyperbolic periodic points of f.

Let us sketch a proof of the homoclinic theorem.
Let p be a hyperbolic periodic point of the diffeomorphism f.
fieplacing f by a power of £, we assume f(p) = P. Let x be a

s . . u s .
fransverse homoclinic intersection of W (p) and W (p). Write

# = dim W (p) and u = dim W'(p). Let D° be an s-disk in W°(p) with

u

p.x} < D° - 90°, and let D be a u-disk in WY(p) with p e D zp%

and  x ¢ f(Du - SDu) - (Du - aD“). In suitable coordinates about DS,

8
E,8m; £¢0°%, n e D%} where § > 0 is small. Thus we have the follow~

w#e may think of a small tubular neighborhood of D° ag ¥ = p® sp" =

ing figure.
S
N
. P o x/ 7
- <% 7
1 /
Figure 2.2.

Let us use C(z,F) to denote the connected component of a point

¢ dn a set F,

Notice that if § > 0 4is small, then iterates ang tend to
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accumulate along Wu(p) as in figure 2.3.

I

fuNg
3 ///////

e

3}
2
20|

i
s

Figure 2.3

Let us set A?’S = C(x,an§ n Nz), and A;’é= C(x,anz(xNz). I we adjust

the boundary of p" appropriately, then for large n and small S, An’(S

and Ag’d look somewhat like the A1 and the A2 of the horseshoe

diffeomorphism. 1In figure 2.4, we indicate several possibles for ang.
Note that Wu(p) and Ws(p)

need not be transverse everywhere,

n,d
A2
/
5
n {
AL’ i
1
Figure 2.4

Let LI Nd + D% and Wu : NS + &% pe the projections. TFor
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2.3, ) -1
F e N@’ set d (F) = gup {diam 7 é(z) n F} and dS(F) =
zeDS
aup u{diam T (z) n Fl.
gedD
Assume n is large and & is small. Then a little thought shows
s that there are constants c¢ > 0, X > 1 such that for any finite sequence
N
8 . . .
éii,..-,lm) with i = 1 or 2,
(1) (A\ nk(An,S) is a disk homeomorphic to D° x D" and
X
a ( (~\ nk(An,S)) <™
® O<k<m
Similarly,
n,8 s (2) (‘\ nk(An,é) is a disk homeomorphic to D° x DV with
A7 = Clx,f Ng n<N§). I we adjust -msk<0
. for lar 0,8
ge n and small &, Al’ ; d ( m nk A 6)) <™
nd the A2 of the horseshoe ¥ -msics0
ate several possib S
possibles for ané‘ Some typical sets nk(An,é) are shaded in figure 2.5a and
2 transverse everywhere. (‘\ k0<k<1§ x
t¥pical sets —m<k<0 £ (An’ ) are shaded in figure 2.5b.

be the Projections. For

Figure 2.5a Figure 2.5b
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Now it follows that if (i_m, i—m+l""’ io,...,im) is any finite

sequence of 1's and 2's then

(3) (‘1 nk(An 6) is a disk of diameter less than ClA*m where
~m<k<m Tk

C1 >0 1is a positive constant.

Hence, for i = (ik f nk Al 6 is a single point. Set
keZ
h(l)—m ™ 5 So £™n(i) « Ari"6 for all k. Hence £ (f"h(1))e
keZ k
amS o 22» for all k, so f'h(i) = ho(i). If we let 4 =
1k+1 k

nk(An s u A;’é), then h: 22 A dis 1 -1, onto, and conjugates

kez

O with fniA. Statement (3) shows that h is continuous. Thus, h is

a homeomorphism since Zz is compact.

The proof of (1) and (2) as well as the hyperbolicity of A

involve the same estimate as the following basic result known as the

A-lemma.

Proposition (2.5) (M)-lemma) [39]. Iet f be a oF diffeomorphism

with a hyperbolic periodic point p, and let D" be g u-disk in W (p).

Let A be wu~disk meeting W°(p) transversely at some point x. Then

!
k\/}fn(A) contains u-disks arbitrarily Cl close to DY
nz0

. s u .
Proof. Let (u,v) be coordinates on R x R We assume p is

fixed by £. The general case is then obtained by replacing f by some

n

f and A by some frA. Since wu(p) and wS(p) are C1 manifolds,

we can use the implicit function theorem to produce a coordinate chart

(U,9$) centered at P so that they become flat. Thus, U is a neighbor—

hood of p and ¢ : U+ R® x RY is a Cl diffeomorphism so that

o(p) = (0,0), ¢_l((v=0)) < Ws(p), and ¢~l((u—0)) < w“(p). Replacing

E
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n n
¥ by f 1(x) and A by £ l(A) n U for some n, > 0, we say assume

% ¢ ¢—l((v = 0)) and A c U, Write f = ¢f¢*l so that for (u,v) near

{0,0), £ is given by u, = Au + fl(u,v), vy = Bv + fz(u,v) with |A] <1

1
and [B_lf <1 (the coordinates ¢ may be chosen this way by linear
algebra). We assume the partial derivatives flu(0,0), flv(0,0),fzuﬂ)p)
and £ (0,0) are all zero.
2v L
Choose A <1 so that [A[ <X and [Bn| > A™"|n| for all n =0
u )I < § we have
in R . Then choose 61 > 0 so that whenever f(u,v 10
; -1 .
atf, ()| <% and |(B + £,,@vn] > A" n| if n =0, Sset

%= ¢(x) and b = ¢(A). Pick n, >0 so that n = n, implies

2
§§n(§)1 < 51. Let X > 0 be such that if (&,n) 4is a vector in
n
2% x Y tangent to E>ZZ; then +%+-§ %. Since Ws(p) is invariant,
?2(u,0) = 0, so we may choose 62 >0 so that |[v] < 62 and |u| < 51

tmply AT - Ifzu(u,v)]K > 1.

Suppose (£,n) is a vector in R° x R

and z = (u,v) is a point with |u| <&, and v] < 6.

Letting ngkg,n) = (£',n"), we have

Mel + Je | ]

AHnl - e, e

E‘ l¢a + £L08+ flvnt
- <
Jn' h ifzug + (B + fZV)ﬁT =

AKIn| + Iflv[ In| AK + fflvl

BRI P R P
< XK + Kl'
where K, = sup If (u,v)f.
L l(u,V)fS51 v

If fi(z) e {(u,v) : lu] < 61, vl < 62} for 0<is<m-1, and

we write Tz?m(i,ﬂ) = (&m,nm), then




24

127

A
[rx?‘i < AOK + K)) + K = AR+ K]+ K,
and

Em m-.:li Kl
LE o me y x Ib ™R o+
[ml 1 =0 1-X
n i

K

1 -
ETIITR
__nz...

Now iterates of points in £ “A near (v = 0) first stay near

(v = 0), then they stay near (0,0), and finally they stay near (u = 0).
n

In the first case, vectors tangent to iterates of f ZA stay in the

sector SK (R.u

s Rr® ). In the second case, all the partial derivatives
2

u
flu’ flv’ f2u’ f2V are small, so the tangent vectors converge to R

exponentially. In the last case, |f1vf is small, so an estimate

similar to that of the first case shows the tangent vectors remain close

to m?.

n.
Now choose ng >0 so that f 3Du

< ¢“1({0} *x RY). The above
estimate shows that kv}fn(é) contains u-disks arbitrarily Cl close to
nz0

-n
f 3Du, and hence to D" itself.

Returning to the proof of the homoclinic theorem, the reader may
use estimates like those of Proposition (2.5) to show that if 6 > 0 is
small, and n is large, then some sector SK(T(dDu),TDS) over

n,s n,§ . . . n
Al U A2 is invariant and expanded by Tf . Also, the complement

of SK(T(éDu),TDS) is invariant and expanded by £, Having done this
statements (1) and (2) are proved by i7gqition on m. Also, it is

immediate from theorem (2.2) that A = K fnk(Ag’é v Ag’s) is
hyperbolic for £,

For more details see [55] or [25].
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3. Homoclinic classes, shadowing lemma, and hyperbolic basic sets.

In this lecture we will derive some simple consequences of the homo-
élinié theorem and. the X—lemha, and we will study the structure of hyper-

solic sets.

. Lét H(f) - be the set of hyperbolic periodic points of f - and
égume H(f) #.0. For p e H(f), o(p) is the orbit of p; and we let

~¥g(c(p)) = k_) Wu(x) be the unstable manifold of the orbit of 'p.

, ; xeo(p
dimilarly; we let Wiolp)) = kv) %w°(x) . be the stable manifold.of the
- SR x%€0(p)
hit of  p.

Define a relation =~ on H(f) by saying p ~ q :if Wu(o(p)),has a

non-empty transverse intersection with Ws(o(p)) and Wu(o(q)) has a

 ﬁ§n*e@pty transverse intersection with ;Ws(o(p)). This relation: is

elearly reflexive and symmetric. It follows from the A~lemma that it is

transitive. For if Py~ Py and Py ~ Pgs let 'z be a point of :trans~

verge intersection of Wu(o(pl)) n Ws(o(pz)), and let z' be a point of
transverse intersection of Wu(o(pz)) and Ws(o(p3)). Say

o3 k|
2 e WiE lpl)~n W(E 2p2) and z' € W (f 3p2) n Ws(f 4p3). Let T be so

that fT(pi) =P for i = 1,2,3. From the = A-lemma for fT, we have

al i}
that Wu(f 1pl) contains disks which C1 accumulate on Wu(f 2pz), s0

14-3 3 b
f 3°2 Wu(f 1p1) contains disks which C1 accumulate on Wu(f 3p2).
i5m3y%,

Hence, Wu(f pl) has non-empty transverse intersections with

3
wa(f 4p3). Similarly, Wu(o(ps)) has non-empty transverse intersections
with Ws(o(pl)). We say p is homoelinically related or h-velated to q
{f ‘p~.q, and we call the equivalence class of p its homoclinic class

or - h=class. Denote the h-class of p by Hp(f). Note that the
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homoclinic theorem (2.3) gives that every transverse homoclinic point of
a pe H(f) is a limit of a sequence ql,qz,... in H(f) where each
9y is h-related to p. Clearly Hp(f) > of(p) and Hp(f) is f-invariant.
It is easy to show, as we will shortly, that Hp(f) ivo(p) if and only if
p has a transverse homoclinic point. 1In the latter case, the closure

of Hp(f) equals the closure of the orbits of the transverse homoclinic

points of p.

Proposition (5.1) (Birkhoff [31). Let £ : X+ X bea homeomorphism
of the complete metric space X. Assume the topology for X has a
countable base, and for every open set U c X, \_) £70 s dense in X.

nz0
Then there igs a point =x € X whose forward and backward orbits are dense

in X.

Proof. Let {Va}aeA be a countable open base for the topology of
X. Since \v)an01 is dense and open, so is | £y , and, conse-

n=0 n a nz0
quently, so is \%) f VQ n kg) £ Va' By the Baire Category Theorem,
<0 n=20

anu n kv) ana] = B dense in X. But any x € B has both its
aeA n<0 nz0

forward and backward orbits dense in X.

Note that the preceding proof actually gives that the set of points
whose forward and backward orbits are dense is residual. A homeomorphism

f : X+ X which has dense orbit is called topologically transitive.

Proposition (3.2). For any p e H(f), the set Closure Hp(f) = Cf Hp(f)

is a closed, f-invariant set on which f is topologically transitive.

Proof. For hyperbolic periodic points Ty and Ty let us write
rl > r2 if Wu(rl) - {rl} has a non-empty transverse intersection with

ws(rz) - {rz}. By the A~lemma applied to £’ where T 1is a common

s

|
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1

_period of r and r,, we see that ¥, > r, implies that Wu(rl) C

2

u
secumulates on W (rz). Thus, r, > r, and r, > r,

_ Almo, if r, > Ty, then erl > erz for any integer j.

. N
imply that T I

Let Ul and U2 be non—-empty open subsets .of Cf Hp(f). We must

#how that the forward orbit of Uz‘fmeets U

18 nothing to prove, so assume there are points 9 € U1 n Hp(f) and

1 1f Hp(f) = o(p), there

: gz € Uz n Hp(f) such that o(ql) # o(qz).

Since 9y ~ 9 there are an integer

20 o= o -
Then, £ q; > £ 9, > £ 4y >4, > ;- Con~

o and a point az € o(qz)

a -
yﬁach that  f 9 > 4y > 9;-

tinuing, we get fJaq > q for.each j 2 1. Letting j be the period
1 2 - ot

af 9 gives 9 > 52 > 9+ Looking at figure (3.1), we see that this

implies that 52 is a limit of a sequence r of transverse

12Tgs e

homoclinic points of ;- By the homoclinic theorem these homoclinic

points r, are in cLH

(£) = C¢ Hp(f). For large i, and some fixed

9
k, we have ri is in fkuz. Clearly, the forward orbit of eri meets
Ul for arbitrarily large 3. Thus, U1 n (v) fnU2 # § as required.

n>0

qu
3
-

=) >
i v

Figure 3.1

Let us call the closure Cf Hp(f) of an h-class of f an h~closure.
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The h-closures for a diffeomorphism form sets with dense orbits and

periodic points dense. 1In general, very little is known about their fine

structure. For instance, it is not known when they have positive

Lebesgue measure. 1In the case where f

. . 1
18 a generic ( area preserv-—

ing diffeomorphism of a compact two manifold, each h~closure has

Hausdorff dimension 2 [31].

We will see that when an h-closure is

hyperbolic, then it has a rich structure. Also, we will examine open sets

of diffeomorphisms which have non-hyperbolic h-closures.

Out next theorem states that the orbits forward and backward asymp-

totic to a hyperbolic set behave nicely. Let d be the distance func-

tion induced by a Riemann metric. For a point x ¢ M and a number

€ > 0, let W:(x) = W:(x,f) ={yenM: d(fnx,fny) <e€

for n > 0}, and
s -1
let w;(x) = Wz(x,f) = We(xaf ).

One calls W:(x)(wz(x)) the stable
(unstable) set of size ¢ of x.

Theorem (3.3) (Hirsch and Puch [171). Let f : Mo M be a c¥ dif-

feomorphism, &k >1, Tet A bea hyperbolic set for £ with splitting

» Xe h, and endow ™M with an adapted metriec. Then, for
€ >0 small and x ¢ A,

TM=E g gl
X X X

(1) w:(x,f) and w:(x,f) are c* disks through x varying

continuously with x in the Ck topology.

(2) ws(x,f) is tangent at x to Ei and wg(x,f) is tangent

at x to E
X

It follows from the definitions of w:(x) and w;(x) that

fw:(x) < wg(fx) and f‘lWZ(x) [ Wg(f-lx). Also, theorem (3.3) implies

that Ws(x) = kvj £ ws(fnx) and w“(x) = L‘) fnwu(f‘nx) for x ¢ A.
€ €
n>0 n>0
Therefore, as in the case of periodic points, ws(x) and w“(x> are

injectively immersed copies of Euclidean spaces.




sets with dense orbits and
little is known about their fine
. when they have positive

is. a generic C1 area preserv-
old, each h~closure has

that when an h~élosureiis

Also, we will examine open sets
lic h-closures.

its fo;ward and backward asymp=-
Let d be the distance func—
;6int ¥ €M anda numbér

.n

z x,fny) <€ for a3 0}, and

iis W:(x) (W';(x)) the stable

f:M>Mbea & dif-
olic set for £ with splitting

n adapted metrie. Then, for

disks through x varying
topology.

-and WZ(x,f) ig tangent

(%)} and W:(x) that

Also, theorem (3.3) implies

u an:(f-nx) for x ¢ A.
n>0 - .

'S, Ws(x) and Wu(x) are

| spaces.
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A ‘homeomorphism £ : X' X 'of a compact metric space X - is called

srponsive if there is an € > 0 so that d(fnx,fny) f_vs for all =,

implies x = y. ~Any such € is called an expansive constant for

Proposition (3.4). "If KN +is a hyperbolic set for £, then €A is

expansive.

S

Proof. 'The splitting TAM =E @ E" is‘continuous‘, and for small

€, Wz(x) is a disk tangent to E: at - x, and Wg(x) is a disk tangent

€0 E: at : x.  Thus, Wz(x) nwi(x) =-{x}.  But, if d(fnx,fny) < g for

: n
1>0, then y ¢ Wz(x), and if d(f x,fny) <€ for n <0, then

Ye W:(x). I’hus; v W:(x)- n»W:(x) = {x}.

If a hyperbolic set. A has the property that there is an € > 0

such that W:(x) n Wg(y) < A for all: x,y ¢ A, then one says that; A has

& local product structure. - The name comes from the fact that if the

condition holds and' x € A, then, for small €, there is a neighborhood

Hx of x in' A which is homeomorphic to the product {W:(x)vn A}XgW:(x)n A

0f course, compactness allows one to choose '€ independent of = x.

Let a < b be integers or a = ~® or b =+« ., For §>0,a

such that

é~pseudo-orbit  for f is a sequence {xi}a<i<b

d(fxi,'xi_H_) < 6§ for all i. The orbit o(x) = {fix : i e Z} e-shadows

the pseudo-orbit {xi} if d(fix,xi) < € forall 1. Most of the

properties of hyperbolic sets may be proved from theorem (3.3) and the

following result.

Theorem (3.5) (Shadowing Lemma). Suppose A is a hyperbolic set for £

with a local product structure. For every € > 0 there isa 8> 0

g0 that every &-pseudo-orbit in A ean be e-shadowed by an orbit in A.

With a slightly different formulation theorem (3.5) was first proved
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by Anosov [2]. The formulation we give is due to Bowen [7].

Proof. There are constants € >0 and X > 1 with the following

properties. If 0 < €1 < 60, then

(a) for x,y € A, Wz (x) n w: (y) ¢ A is at most one point,
1 1

(b) v e wg (x) implies d(f-ny,f~nx) §>A-ns

for n > 0,
1 L -

and

(¢) v e Wz (x) dimplies d(fny,fnx) ka“nel for n > 0.
1

From the local product structure we may find a constant ¢ > 1 such that

0
Pick an integer N > 0 such that A-NZC < 1. Observe that it is

if z e Wg x) n WE (y), then d(z,x) < cd(x,y) and d(z,y) < cd(x,¥).
0

enough to shadow fN psuedo—orbits. For if we can do this and ¢ > 0

is arbitrary, pick €1 such that d(x,y) < € implies d(fjx,ij) < %
for 0 < j < N. Choose Gl > 0 such that each él—pseudo—orbit for £V
can be El—shadowed. Then choose 6 > 0 so that if {xi} is a
§~pseudo-orbit for f, then {xNi} is a 61—pseudo-orbit for fN, and for

. . 3 €
< < = .
each i and O < 3 <N, one has d(f Xi’xi+j) < 5 Now let y be a

point in A such that d(ley,xNi) < e, for all i. Then for f

1
. Ni+j Ni+j 3j i
< 3 < <
0<3 <N, d(f y’XNi+j) < d(f y,f xNi) + d(f xNi’XNi+j) <
We now show fN pseudo-orbits can be shadowed. Let € > 0. Let
§ > 0 be such that 3C§ < €. Assume ¢ small enough that x,y ¢ A '
1-x

and d(x,y) < 26 imply w: (x) n Wz (y) dis a unique point.
0 0

We work with pseudo-oribts indexed on all of Z.

. N
Let {xi}-m<i<m be a {-pseudo-orbit for f in A, and let b > 1 ——

be an integer.

We will produce a point wb ¢ A such that d(fJwa,xj) < e for

|j} f.b‘ Once this is done, we let w be an accumulation point of {Wb},



to Bowen [7].

“A>'1 " with the following

i at-most. one point,

€y for n > 0,

>
El for n>0.

constant ¢ > 1  such that
and -d(z,y) < cd(x,y).
< 1. Observe that it is

can do this and &> 0

fm

implies d(f1x,fy) <
N

oo

él—pseudo—orbit for
it if {xi} is a
udo-orbit for f", and for
% . Nowylet ¥y be a
1l7i." Then for

3
Eags Xyaag) < €
wed.  Let € >.0. Let

L enough that X,y € A

1ique point.

Iz

N

in A, and let b > 1

d(ijWb’xj) < g for

umulation point of {Wb},

then d(ijw,xj) < e -for all ~ j - as:.required.

20=Xb.

i;étively, that for.:j > 1, we have a point ?fj

_ Now, we have d(fN(xb_l),xb) < §. Set Assume,

such that

kol ~Ni
Y < 3¢8C T A
i=0

" e =Nou N s .
- = K nw .)]s then we claim that
we set kzj+1 f [WEO(f #b"(J'l-l)) t,50(23)]

for 1<k <.

252 %p-g4k

éatisfies (l)j+1

41

and (2)j+1

~ ' N N
First observe that by (l)j’ d(f xb—(j-l-l)’zj) < d(f xb—(j+l)’xb—-j) +

can: be defined.

:;%_j,zj) <28, ‘'so Zi41

~ N N
Also, by the choice of ¢, d(f zj+l’f xb—(j+l)) < 2¢§. - Thus,

ich i 1 .
j+l’xb (3+1))<7‘ 2c5<6 which is ()+l

Now, d(f z

,zj) < cd(f X (3+1)’z ) < e- 28.

(kt+1)N kN
zj+1,f zj) <

N s
i1 have' d(f
Since f zj+1 € Wao(zj)’ we . have (

acey “KNyes for k > 0.
d(f zj+l,zj)§)\ 2¢§ - fo >

For 1_<_k§j+1,

N{k~1) N(k-1)

f

d(f ZJ+1 Xy- (3+1)+k) < d(f 3+1’ Zj) +d(f Zj’xb-j-}-(k-l))

11 k= 1, this gives d(f ) < 28+ 6 < 3es. If

2541 T o= (1) +k

J ¢k <3 +1, it gives

k-2
2e6 + 3¢S § AT
i=0

k-1

- (k-1)N <36y A
150

Ni
417 %= ()0 S A

d (fmcz

which is (2)j+1

= bez
Now, setting wb = 2b°

|3l < b as required.

. N
(1)2b and (2)Zb give us d(f w

bo¥y) <

< ¢ for

Corollary (3.6). For & > 0 semall, set w ) = U w (x) and
‘ Xel
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wz(A) = k,) Wi(x). There is a neighborhood U of A such that
xEA

@ () fuewtm
ns0 €

(b) (ﬁ\ £ < W)
n20 €
and
=
(¢) nez

Proof. Statement (¢) follows from (a) and (b) and the local product
structure. We prove only (a) since the proof of (b) follows replacing f
by f—l. Let € > 0 be small and choose 51 € (0,e) so that every

61-pseudo-orbit in A can be = -shadowed by an orbit in A. Choose 8

2
CSl 6l
§ e (0, 7?) so that d(x,y) < § dimplies d(fx,fy) <5 - Let s
U= Bﬁ(A) ={y e M : dist(y,A) < §}. If x ¢ (A\ £, then for each
n<0

i > 0 there is an X € A such that d(f x,xiy_i §. Then

i+l i+l 81
d(fxg,x, ) < dlEx, £ + d(E x,x,,0) < 5 +8 <38, s0 {Xi}iZO

is a Gl—pseudo-orbit.
Let {fly} be an orbit in A %'—shadowing it. Then, for i >0,
=

a(try, %) fvd(fiy,xi) + dlx, 50

raim

+ %. = £, S0 X € Wz(y).

A neighborhood U of A as in Corollary (3.6) is called a
fundamental neighborhood for A.

Note that (3.6a) implies that any point x whose forward orbit stays
near A is actually forward asymptotic to a point of A,

The next result asserts that the orbit structures of hyperbolic sets

persist under perturbation.

Theorem (8.7) (Stability). Let L be a hyperbolic set for £ with a
local product structure. There ave neighborhoods U of A in M and
N of £ 1in DifflM g0 that if g e N, then A(g) = (ﬁ\gnU i8 a
hyperbolic set for g with a local product structure. nMoreover; there

is a homeomorphism hg : A > A(g) such that ghg = hgf and hg varies



of - A such that

d (b) and the local prodmt
£ (b) follows replacing £
(0,€)  so that every

orbit in A,
: 61
] fy) i 'E— . Let

Choose -

\ £70, then for each
0 :
© £ 8. Then

'1
5+ §< 61, so {xi}i}_'of

it. Then, for 1> 0,
s 80 X € W:(y).

3.6) ‘ is called a

whose forward orbit stays

ot of A.

stures of hyperbolic sets

‘e set for f with a
U of A in M and
8) = mgnU is a

n
ture.

Moreover, there

=hf and h A
e g varies

sontinuously with g.

. Proof. ‘Let U A be a small fundamental neighborhood for A as in

torollary (3.6). If g 'is Cl near £, then A(g) = Q g™ (U) is a
‘ e
hyperbolic set for g by theorem (2.2). ' Also, since . A(g) c int U, it

has a local product structure.  To produce the homeomorphism h, we

rst let € > 0 be an expansive constant for f|A(f). Let §

e (0;¢)

-

¢ such that every 61 pseudo~orbit for £ in ~A(f) can be

{m

. : 8
shadowed by an orbit. Then, let § ¢ (0, —535) be suchthat d(x,y) < ¢

= §
implies d(fx,fy) _<_'§!'- oLet U= BS(A(f)), and let g be such . that
s :

dlgx,fx) < —-3}— for all 'x. If 'x e A(g) = mgn(U)', then for each i
. n
there is an %, € A(£) such that d(xi,gix) < 8. Since

5 i i i i+l .
- é(fxi,xi_H) < d(fxi,fg x) + d(fg x,gg x) + d(g x,xi_'_l)‘i 61, {xi} is a

‘§1~p«seudo—orbit. Let - ¢(x) € A(f)  be such that d(fiq)(x) ,xi) _<_% for

all i

Then, d(ficbx,gix) < d(fidvx,xi) + d(xi,gix) i% for all i. By the

choice of €, ¢(x) 1is unique with this property. Let us prove that ¢

ig continuous. If ¢ dis not continuous at x e A(g), there is a 60 >0

and ‘a sequence Yy € A(g) such that Y T X as k > o and

(ynk) be a subsequence such that
@yn converges to a point z ¢ A(f). Then, d(¢x,z) > 60. But for all
k

d(¢x,¢y,) > 6, for all k. Let

i,

i, i i i i i i i
d(£79x,£72) < d(f7dx,g %) + d(g'x,g'y_ ) +d(gy_ ,f 9y )
. N By Py

i 1 £ i i € 1 i
+ d(fh oy LE'z) <S4+ d(gx,gy. ) + S+ d(fTey LE£12)
nk -2 n 2 ny

Fixing 1 and letting k -+ = gives d(flq)x,flz)ie for each 'i. This

contradicts the choice of €.

Thus, we have proved that for each xe A(g) there is a unique
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d(x) € A(f) whose f-orbit stays within % of the g-orbit of x, and

x —> ¢(x) is continuous. Interchanging f and g gives a continuous

function h : A(f) = A(g) such that d(gihx,flx) f.%' for all i. Then,
ho¢ = idA(g) and doh = idA(f)’ so h is a homeomorphism. Clearly,

gh = hf. We let the reader verify that g —> hg is continuous.

A hyperbolic set A for f which has a local product structure and
has the additional property that flA has a dense orbit is called a
hyperbolic basic set.

Such sets have been studied a great deal. Their orbit sturctures
can be modeled very well by certain generalizations of the 2-shift
described above.

Let J = {1,...,N}, and let ZN = JZ be the set of bi-infinite
sequences of the elements of J with the compact open topology. One
defines the shift on ZN as before by (a)(i) = a(i + 1) for ac« ZN.
This is the full N-shift. If A = (Aij) is an N x N matrix whose

entries are 0's and 1's, we may consider the subset I,k < § defined

A N
by
ZA = {a e ZN : Ag(i),§(i+l) =1 for all i}.
Thus a sequence (...a_laoal,...) is in ZA if and only if each of its
2-blocks a,a yields 1 when used as indices for the matrix A. The

i+l
set ZA is a closed 0O-invariant set and O)Z

itself) is called a subshift of finite type.

N (or sometimes ZA

Theorem (3.8). Let A be a hyperbolic basic set for a C1 diffeomor-
phism £. Then there are a matrix A of 0's and 1's and a finite-
to-one continuous surjection T : ZA -~ A so that the following diagram

commutes

P



the: g-orbit of  x, and

ad g gives a continuous

) < for all - i.. Then,

rfm

ymeomorphism. = ‘Clearly,
hg is continuous.

:al product structure and

ise orbit is called a

Their orbit sturctures

ons of the 2-shift

he set of bi~infinite

t open topology. One

a(i + 1) for ae ZN.
N x N . matrix whose
§ubset ZA c ZN defined

: 1 for all i}.

nd only if each of its
for the matrix A. The

(or sometimes ZA

1 ..
for a € diffeomor-
1 1's and a finite-

the following diagram

This important result was proved by Sinai [53] when A =M, and

later by Bowen [4] for general basic sets. The proof involves special
“ganverings of A by local product sets called Markov partitions. This

s treated nicely in [7].

The mapping ‘7 ~is 1 ='1 on many points in ZA and the cardinaiity

gf: ﬂ-l(x) is bounded by N2 for each x. where N is the order of

the matrix A [9]. The space ZA codes the action of £ on A ina
. wery comprehensive way, and can be used to prove many facts about f]A.
For dinstance the minimal sets in- A  are zero-dimensiomal [5], [22], and

“one can compute the number of periodic points of period n. of f [68]

for each n > 1.

femark: 1. Theorem (3.8) holds for hyperbolic sets with local product
structures (i.e. without assuming fIA has a dense orbit). However, if

4 is a hyperbolic set with a local product structure, one can prove that

Qe = Al”-"UAn is a finite union of subsets Ai such that flAi

has a dense orbit. Here Q(f[A) is the non-wandering set of f re-

stricted to - A. This decomposition is similar to the one we will give

in Proposition (4.2). Since one is usually interested in studying re-

currence phenomena of f]A, it is no harm to assume at the outset that

f|A has a dense orbit.
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4. Hyperbolic Limit Sets

Let us now describe some diffeomorphisms all of whose recurrence is
hyperbolic.

A point X ¢ M is an o-limit point of f if there are a point
y ¢ M and a sequence of integers 0 < ny < n, < oeen such that
f—ni(y) > x as 1+ », Similarly, x is an w-limit point of f if
there are a y and a sequence 0 < ny < nz < ... such that
fni(Y) > x as i+,

The set of o-limit points of y is denoted a(y) and the set of
w-limit points of y is denoted w(y).

Let La(f) be the set of o-limit points of £, and let Lw(f) be
the set of w-limit points of f£. Define L(f) = CZ(La(f) U Lw(f))' We
call L(f) the limit set of f. It is clearly closed and invariant, and
all orbits approach L(f) in the future and past. We shall study the
situation when L(f) is hyperbolic.

First we recall the topological notion of the index of a mapping.
See [10] for a general treatment of this theory. Let A be the closed
unit ball in W™ and 3A = Sn”1 be the (n-1)-sphere. If f : A > r"
is a continuous map with no fixed points on 3A, one defines the index
of £ on A to be the degree of the map x » Tif%%i%T for x ¢ Sn—l.
This is denoted 1Ind(f,d). If ¢ :R" > R™ is an orientation preserving
homeomorphism, D = ¢(A), and f 4is a continuous map from D to r"
without fixed points on 23D, set Ind(f,D) = Ind(¢—1f¢,A). We call
Ind(f,D) the index of f on D. It does not depend on the orientation
preserving homeomorphism ¢.

It is a standard fact that if Ind(f,D) # 0, then f has a fixed

point in D.
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f. if there are a point

1, < ...

) such that

1 w-limit point of f if

..+ such that

oted a(y) and the set of

s of £, and let Lw(f) be
f) =

} CC(La(f) U Lw(f))' We
ly closed and invariant, and

past. We shall study the

! the index of a mapping.
Y- Let A be the closed
J-sphere. If f : A+ RY

4, one defines the iﬁdex

Ty for xe s

S an orientation preserving

-

ous map frem D to IR"®

(67 £6,4). We call

depend on the orientation

0, then f has a fixed

For example, consider the mappings fl(x,y) = (% X,2y), fz(x,y) =

,;f%Y), f3(x,y) =‘C%x,—2y) on IRZ. If A is the unit disk in

. one may. compute Ind(fl,A) = ~1 and Ind(fz,A) = Ind(f3,A) =1,

generally, if L : r? > r® ’is a linear hyperbolic automorphism,

we may compute its index on the unit disk A as follows. If

“§1m~WQ(o,L), then Ind(f,A) = (—-1)u if "L preserves the orienta-

utl

of Wn(o,L), and it is (~-1) if 'L reverses the orientation

un(o,L). In any case, Ind(f,A) = +1. ‘If D - is any n~disk

ﬁ&ining 0 ‘in its interior, them - Ind(L,D) = Iad{(L,A).

position (4.1). If L(f) is hyperbolic, then the periodic orbits
dense in L{f). »

Proof.

Let E° @ E' = TL(f}M be the continuous splitting of

~i£)n given by the definition of hyperbolicity. Then L(f) =

ee. U Ln where L, n Lj = ¢ and each L, 1is a closed f-invariant

i i
t on which dim E' and dim E° are constant.

Let x € L, for some

i
Since w(y) <« L(f) =

1 £41<n, and let y e M be such that  x e w(y).

and the collection {Lj} consists of closed disjoint sets, one

3
#sea that w(y) < L

5" Let exp be the exponential map of a Riemann

wetric on TM adapted to A.

For zl,z2 near x, let Tzl’zz : Tle -+ Tzzn be the map induced

by parallel translation along the geodesic from 2 to Z,-

small § > 0, and let U= {(u;v) ¢ E: ® E: : Jul <8 and |v] < 83,

Choose a

Then expxU is a small product neighborhood of =x. Write U1 = expxU.

Since w(y) < Li’ there is an integer N > 0 so that fny is near
n

L, for all n > N, and there are integers N < n, <n, so that f ly

1 1 2
)
and f y are near x in U

I

Let C be the connected component of f

o n,.-n
Yy in vynel Zy.
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Since ij remains near Li for 6y <] E‘nz, it keeps behaving hyper-
-1
bolically, and we see that C and f 1C are as in figure 4.1

Figure 4.1

Consider the hyperbolic linear map & = 1t _ oT f with
Z,Z, 2
: oy n, 2171
z,=f"y and z,=f "y . We have that ¢ maps T M to T M and
1 2 zy N

its index on a neighborhood of 0 1in Tz M is 4 1. But from figure
n,~n 1

21 has no fixed points on the boundary of . ¢ and its index

¢.1) f

on C is the same as that of ¢ on a small neighborhood of 0 in
L]
Tz M. So f has a fixed point in C. This proves the periodic
1
points are dense in Lw(f). The proof for La(f) is similar.

Proposition (4.2) (Spectral Decomposition). If L(f) is hyperbolic,
then L(f) = Alu...uAn where {Ai} is a disjoint collection of elosed

imvariant sets with periodic points dense. Moreover, for each i,

f]Ai 18 topologically transitive, and Ai has a local product struc-

ture.
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£ 2y
n.,-n
£ 2 1
n.-n
zfz 1 vien
1
T M to T M and
il 2

. But from figure
C and its index

rhood of 0O in

oves the periodic

5 similar.

) is hyperbolic,
sllection of closed
, for each i,

»eal product struc-

Proof. Let Per(f) denote the set of periodic points of f. We

¥now by (4.1) that L(f) = CL Per(f). Observe that f has only finitely

#any. h-classes. For if PysPysr-es is an infinite sequence of points in

Per(f) which converge to a point vy, then for large 1i,j, Py~ pj by
gtable manifold theory. The same argument shows that C£ Hp(f) nCL Hq(f)

? ¢ implies H (f) = H (f). Now, just take H (f),....;H (f) to be
p q 2% Py
the ‘distinct h-classes, and let Ai = CZHp (f)  be the h-closure of Py
: i
We only need to prove that Ai has a local product structure.

1f € >0 isvsmall, then any point z in Wg(x) n Wz(y) with

;= cL Hp (f) is a point of transverse intersection of WZ(X)
i .
z(y). But Wu(o(pi)) accumulates on Wg(x) and Ws(o(pi))

: S . P P -
#ccumulates on' W_(y), so 2z is a limit of transverse homoclinic points

éf o(pi), i.e., transverse intersections of Wu(o(pi)) and Ws(o(pi)).

In the proof of proposition (3.2), we saw that such points were limits

the orbits of transverse homoclinic points.of P Hence, by

theorem (2.3), 2z is a limit of points in Hp (f). Thus, z ¢ C& HP £).
i i

wollary (4.3). If L(£) <is hyperbolic, then

H= \_} W (x) = \y} W'(x). That is, each stable and unstable set
xeL(f) xeL(f)
_in M is an immersed submanifold of M.

Proof. From (4.2), L(f) = Al ....An where each Ai has a local

product structure. If x ¢ M, then the w-limit set of x is in some

%i' By (3.6a), x € Wz(y) for some y ¢ Ai' Then W (x) = Ws(y).

The proof for W(x) 1is similar.

#emark: One can strengthen the condition that L(f) is hyperbolic by

~pequiring that all of the non-wandering set

Q(f) be hyperbolic. If

in addition one assumes the period points of £ are dense in §(f),

then one gets what is called an Axiom A diffeomorphism. Proposition
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4.2) was first proved by Smale in [56] for Axiom A diffeomorphisms, and

Jorollary (4.3) was first proved in [16] for Axiom A diffeomorphisms. #

Proposition (4.1) (with a different proof) and the present treatment of

(4.2) were given in [28]. :
Let us look at some examples. B
1. This first example is an extension of the horseshoe map to an

Axiom A diffeomorphism f on 82 whose limit set consists of the pre- ¥

vious conjugate of the 2-shift, A(f), and two hyperbolic fixed points s

Py and Py- We take P, to be a sink (attracting fixed point) as i -~

figure (4.2), and 12 to be a source (repelling fixed point) "at «."

£(Q)

Figure 4.2

2. Anosov diffeomorphisms. These are diffeomorphisms £ for which

the whole manifold M is hyperbolic. The simplest examples are the

following. Let M = ™=r"= I]Rn/Zn be the n-torus, and let

A:z® »z% bean automorphism. Thus, A can be represented as an

n x n matrix with integer entries and determinant + 1. Assume A has
n

no eigenvalues of norm 1. We think of A as a map of RrY to W

. . N s u
also. There is a direct sum decomposition ®R™ = £° @ E' and a norm on
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n s u

8o that A(ES) =&

» AEY = £, |A|E®| <1, and |A7M[EY] < 1.

Further, A induces a map A Tn + 7% and the splitting E° o johe pro-

lects to an A-invariant splitting ES & B with KIES contracting -and

expanding. ~Hence, A is Anosov. The map A is called a linear

21 2
1.1

In all knowh cases, an Anosov diffeomorphism £ : M+ M has L(f) =

ta al automorphism. A simple example is given by. A ='[ ]‘ on IR

But, this property has only been proved under additional restrictions

on the topology of M. It holds if M~ is homeomorphic to a torus [23],

on certain manifolds called infranil manifolds [23], or if dim E° or EV

i 1 [27].  However, it can be proved that an Anosov diffeomorphism

satisfies Axiom A ([17] or t28]). Three other additional problems on

Anosov diffeomorphisms are:

If £ :M->M is Anosov, is the universal covering space of

M diffeomorphic to - R"?

Does every Anosov diffeomorphism have a fixed point?

Is every Anosov diffeomorphism topologically conjugate to an

infranil manifold automorphism (see [11] for definition)?

Gradients. let ¢ : M-+ IR  be a C2 real-valued function with
iﬁandegenerate critical points. Given a Coo Riemann metric g on TM,

one defines the gradient vector field gradg¢ by

gx(gradg $(x),Y) = Tx¢(Y) for xeM, Ye TxM .

1t 1s easily seen that gradg¢ is a Cl vector field. 1Its solution

curves are the orthogonal trajectories of the level sets of ‘§. Let f

be its time-one map.

Then L(f) consists of hyperbolic fixed points and coincides with

the critical points of ¢.
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Simple examples on the 2-sphere 52 and the 2-torus T2 are pic-

tured below. We have drawn invariant curves.

Figure 4.3

4. In the first three examples, the limit set was actually equal to
the non-wandering set, so each f satisfied Axiom A. This example of £
on 52 has L(f) finitely many hyperbolic fixed points with Q(f) in-

finite and not hyperbolic.

Figure 4.4
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The circles represent sources and sinks and there are two saddle

;ints Py and’ Py We have that Wu(pl) n Ws(pz) consists of two
fbits of transverse intersections, and Wu(pz) n Ws(pl) consists of an

rhit o(x) of non~transverse intersections. Also, - Q(f) = o(x) u L{f).

General diffeomorphisms with L(f) hyperbolic may be viewed as

soking somewhat like these examples with complicated hyperbolic sets

We now briefly consider the concepts of structural stability and
E%stability. A diffeomorphism f : M+ M is called structurally stable
. there is a neighborhood N. of £ in DifflM such that for each g

N, there is a homeomorphism hg : M= M such that hgf = gh . This

menns: that the entire orbit structure of £ persists under Cl small

perturbation. If f satisfies Axiom A, then one says f satisfies the

#trong transversality condition if wu(x) is transverse to WS(x) for

#ach x ¢ M. Recall that Wu(x) and Ws(x) are manifolds in the

Axiom A case.

Theorem (4.4) (Robbin, Robinson [50], [511). If £ satisfies Axiom A

and the strong transversality condition, then f is structurally stable.

The extended horseshoe diffeomorphism in example 1 satisfies

Axiom A and strong transversality, so it is structurally stable. It is

amusing and non-trivial to try to prove directly that this diffeomorphism

is structurally stable.

Theorem (4.4) had been proved by Palis and Smale in the case when

of)

is finite [69], and by Anosov for Anosov diffeomorphisms. We re-

mark that if L(f) is hyperbolic and f satisfies the strong trans-

versality condition, then f satisfies Axiom A [28]. Hence, theorem

{4.4) holds with these weaker assumptions. It has been conjectured that
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Axiom A and strong transversality are necessary and sufficient for struc~
tural stability.

A weaker concept of stability than structural stability is that of
fl-stability. One says f din f{l-stable if there is a neighborhood N of
f in DifflM such that for each g € N there is a homeomorphism
hg : QUF) + Q(g) such that hgf = ghg.

If f satisfies Axiom A and Q(f) = L(f) = Aiu"'UAn is the spec-

tral decomposition, then a ayele is a sequence Ai ""’Ai such that
T

= < 3 u S
Ai Ai and, for each 0< 3§ <r, W (Ai )Ny (/\i ) # ¢,

0 r i j+1

Theorem (4.5) (Smale [57]1). If f satisfies Awiom 4 and has no cycles,
then £ s Q-stable.

Again, it is sufficient to assume that L(f). is hyperbolic and
there are no cycles [28]. Also, in this case there is the conjecture
that Axiom A and no cycles is equivalent to {l-stability. In the direc-
tion of the converses to theorems (4.4) and (4.5) see Pliss [42], Mane
[21], and theorem (1.2) in [30].

While there has been relatively little progress on the precise
converses to theorems (4.4) and (4.5), it has been shown that somewhat
stronger notions of stabilities do characterize Axiom A and strong
transversality and Axiom A and no cycles. Say that £ is absolutely
fi~stable if there are a neighborhood N of f in DifflM and a con-
stant k > 0 so that for g € N there is a homeomorphism
hg : UE) » Q(g) such that ghg = hgf and the ¢° distance from
h, to the inclusion i : Q(f) >M is less than k times the C°
distance from f to g. Guckenheimer [67], extending earlier work of
Franks [64], proved that an absolutely §-~stable f must satisfy Axiom A

and must have no cycles. The analogous result holds for absolute

(e
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structural stability [65]). Another characterization of Axiom A and
strong transversality is Franks' time-dependent stability [66].

The main importance of the Axiom A and no cycle diffeomorphisms is
that, at present, they give the largest open set of diffeomorphisms

whose orbit structures are well understood.

We conclude this section with a proof of a form of the Q~stability
theorem slightly more special than that in [28]. A more general version
in which L(f) is replaced by the closure of the set of recurrent points
(Birkhoff center) is proved by I. Malta in [71].

If A 1is a hyperbolic basic set for an Axiom A diffeomorphism,
then W (A) n W (A) = A. This is not true if only L(f) is hyperbolic,
80 we must modify our definition of cycle for the next theorem. If
L(f) dis hyperbolic with spectral decomposition L(f) = Alu"'UAn then

a cycle is a sequence A, ,A, ,...,A, such that A, = A, , and for

i00d i i i

0 "1 r 0 r
Oi<r, ) - A ) 0 G ) - A ) £
3 15 3+1 3+1
Theorem (4.6) If L(f) <& hyperbolic and has no eyeles, then L(f) =
(f) and f 1is -stable.
Let L(f) = Alu....UAn be the spectral decomposition of L(£).

Write A, > A, if A, = A, or there is a sequence A, ,A, ,...,A such
S o ] i
u s
that A = A, A, =A,and (WA, )D~A D>n (W@, dY-A Y£¢
o i 3 oo i RS R W]
for 0 < k < r. The no cycle condition ensures that 2 1is a partial

ordering on {Al,...,An}.
Extend this to a total ordering on {Al,...,An} which we still

denote by >. Relabel so that An E.An- > .o > A

1 =~ 71

Lemma (4.7). There is a sequence M = Mn o Man 5 .. D M1 o MO =@

of compact subsets of M with the following properties
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(1) f(Mi) < int Mi

(2) Ai < mt(Mi - Mi—l)
- 3 -
(3) hy = w@m SICHES )
() Uy =\Uee vy =) oy for 0<1<a
5 k| i 3 S i -
i<i j<i m>{
A sequence Mn > Mn—l S5 ... D MO of sets as in lemma (4.7) is

called a filtration for L(f). The sets Mi, l1=<41i<n-1, can be
chosen to be smooth submanifolds with boundary, but this is not impor-
tant for our purposes. For more general filtrations see [28], [341],
and [71 ].

Let us defer the proof of (4.7) temporarily.

Proof of theorem (4.6): let M = Mn Y Mn—l 5 ... D MO =@ bea

filtration for L(f) as in lemma (4.7), and let Ui c int(Mi - Mi—l)

be a compact neighborhood of Ai satiéfying the conclusions of
Corollary (3.6) and theorem (3.7). Choose an integer N > 0 so that

fJ(M_ - M, ) < int U, for each i = 1,...,n. From the properties

. i-1 i

~N<j<N n

of lemma (4.7), it is easy to see that Q(f) c K_) Ui and that
i=1

QUE) n Ui c Ai- Thus, Q(f) = L(f). Also, for g Cl near £, we

. J _
have g(Mi) c int Mi and (ﬁ\ g (Mi Mi—l) c Ui’ 80

~N<j<N
i k| - 3
(ﬁ\ gM, -M )= g (U). Set A, =A(f) = (ﬂ\ £7(u,),
—o0< j <o i i-1 —o0< j <0 1 * i 00 § <00 1
. n
and let A,(g) = (ﬁ\ gl ). Then, we have Q(g) c \NJ A (g). By
i . i i
—0o<j <00 i=1

theorem (3.7) there are homeomorphisms hi : Ai(f) - Ai(g) such that

hif = ghi. Since the periodic points of f are dense in k~) Ai(f)’
n i % 3
the same holds for g on k,}A'(g)’ so  Q(g) = \v)A.(g). Also, the ;
7 1 N 1 5 11
i i=1 8 W (A

hi's provide a conjugacy between f'Q(f) and g‘Q(g).
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1g ‘the conclusions of

an_ integer. ‘N >0 so that

*1,...,n. From the properties

n
£) \_} U, and that

i=1

- for g € near  f, we
-l) < Ui’ S0

A= = 3
rom @ = () day,

—00<j<oc
n
ve 2@ <\ ) @. By
: i=1
: Ai(f) -> Ai(g) such - that
are dense in - k_) Ai(f),
i

: n
(g) = k“}Ai(g). Also, the
i=1
nd g|R(g).
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Ve now proceed toward the proof of lemma (4.7). We need some

eparatory lemmas.

(4.8) (Smale). Suppose F - is a compact - f-imvariant set -and Q

;ébmpact netighborhood of F. such that (ﬁ\ £78(Q) = F. Then there
: m20
compact neighborhood: V : of: F such that V < int Q  and

cint V.

Proof. Let Ar =QnfQ a...0n er, r.2.0. Then ‘A, o A  D..J

[¢] 1

. (’\ Ai'= F.. Since f(¥) ¢ 'F, there is an integer r > 0  such that
120 :

int Q and £(A) c dnt Q. But then, f(A) = £(A) nQ=

1 C‘Ar, and an easy induction gives fJAr = A Hence

r+j

ere is an'integer s > 0 “such that fs(Ar) cidnt A . Let W_, bea

for j = 0.

1€ int Q@ and

Continue inductively defining a compact neighborhood

campact neighborhood of fs-lAr such that W__
gs- < dint Ar.

such -that Wj c: int Q. and fwj c int w.+ for 0 s j < s.

j+1
£f(V) < int V' and

#

W, UuW Uulees UW gives us
s=1

0 1

as required.

In the next two lemmas, we assume L(f) = Alu...uAn is hyperbolic

with no cycles.

lemma (4.9).  If Ai # Aj’ then the following statements are equivalent
(a) CLW'(A) n A#D

(b) C& w“(Ai) n (Ws(Aj) RN
u u
(e) CL W (Ai) n (W (Aj) - Aj) 0.

Proof. We first prove (b) —=> (a). If z ¢ ce* (A n (wS(AJ.>-

;éj)), then £z approéches Aj as n + . Since f°CL Wu(Ai) =

4 Wu(Ai) for each  n, this gives us CL Wu(Ai) n Aj # § which is (a).




Now we prove (a) == (b).

Let Uj be a compact neighborhood of Aj such that
{ﬁ\ £y, < WS(A.) as given by Corollary (3.6). Set v = £y
m<0 3 J J <

' J

S

let F CZ(Uj - fU?). First note that ¥ # $. Indeed; if 'F were

empty, then U; = fU§ whence WS(Aj) = Aj and Wu(Aj) is a

neighborhood of Aj in M. Since Ai # Aj’ Wu(Ai) n Wu(Aj) = @, so
(a) could not hold. Thus F # #. Next we claim that if V is any

neighborhood of F in M, then \~) fm(V) U Wu(Aj) is a neighborhood
m20
of Aj in M.  From this, (a)  implies that Wu(Ai) nve#p As ¥V

is any neighborhood of ¥, this implies (b). We must prove the claim.
Suppose, by way of contradiction, that XysXgpees is a sequence in ‘M

converging to a point of Aj such that x5 ¢ kg}
m=0
ceach k > 1. Since X, ¢ Wu(Aj), there is an integer n 2 0 such that
-1,
£ k(xk) ¢ Uj' Let n, be the least such integer. Because Aj is

fm(V) u Wu(Aj) for

f~invariant we have that e +® as k = o, Choose a subsequence of
-1 -n ~Ik

{f k(xk)}, say f 1(xk ), £ (xk ),... which converges to a point
1

2
z in M. By the definition of s one has fmz € Uj for m =z 1, or

fz € U;. Also, z e C&L (M - Uj)’ so fz ¢ CL(M - ij) n U; c F. This
-n +1 n -1

k,

means that, for large v, £ (x, ) e V or X € f (V). This
kv v

contradicts the assumption that % ¢ \wj £7(V) and proves that
v n>0

(a) ==> (b). The proof that (a) =—> (c) is similar and will be

omitted.
Lemma (4.10). If CL W (A n Ay # 0, then By > A .

Proof. Suppose CL Wu(Ai) n Aj + p. If Ai = Aj’ there is

nothing to prove, so assume Ai # A,. By lemma (4.9), there is a point

3
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in- C£ Wu(Ai) n (WS(Aj) - Aj)' By Corollary (4.3), we may find

: 51 such that z

1€ Wu(A, Y. Thus, ‘A, > A,. Because there are no
! i i, — 3

1 1

veles, A, # A, . If A, = A, we are done. If not, we may again

’ i 3 i, i

pply lemma (4.8) to get CL Wu(Ai) n (WS(Ai ) - Ai ) # §. Repeating
: . } 1 1

he process, we get Ai such that Ai jiAi R Ai # Ai , and

2 2 1 2 1
. 15«“(1\1):11\:.L # 8. If A,
2

= Ai’ we are done. If not, we continue.

t2

ince there are only finitely many Ak's and there are no cycles, the

ocess must terminate with some A, = A, and A, > A,.
~ i, i 1, =3

Proof of lemma 4.7. Consider the ordered set An‘z An—li"'zﬂl'

(4.10), we have 1 > j dimplies CP Wu(Aj) n Ai = . This implies

. Let Q1 be a compact neighborhood of

u

khéf cLew (Al) = Al
/ Wu(Al) = Al not meeting K«} Ai' Then, if x € (~\ mel’ it follows

- i>1 m>0

that f mx € Ql from m > 0, so the o~limit set of x, a(x), is in

| ) u N s -
%1 n L(f) = Al. Therefore, x ¢ W (Al) c Al’ s0 L J £ (Ql) Al. By
{4.8), there is a compact neighborhood M, of Al such that

31 ¢ int Q1 and f(Ml) c int Ml. Thus, {F\ me1 c (~“me1 = Al'
n>0 m=0

i1th MO =@, (4.7.1), (4.7.2), (4.7.3), and (4.7.4) hold for i = 1.

pductively, suppose M

has been constructed so that (4.7.1), (4.7.2),

i
{4,7.3) and (4.7.4) hold for i.

Now we may choose a compact neigh-

. U
_‘Borhood Qi+l of CEW (Ai+1) not meeting T A.. By (4.7.3) for
m
i, Mi n (k,j Aj) =@, s0oif x¢ (—\ f (Qi+1 U Mi)’ then
51 m>0

alx) c UAj. Thus, X ¢ ki) w“(AJ.) c int(Q .y u M) by (4.7.4)
j<itl

for i. Using (4.8), there is a compact neighborhood Mi+l of

c int(Qi+l v Mi) and f(M

) ¢ int M

cL Wu(Aj) such that M

i+l i+l i+

jaT41
Thus, (4.7.1) holds for i + 1. Since Ai+1 n Mi = @,
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A, c int (Mi+l - Mi)’ and, since A

is invariant
i+1 4

i+l
i _ . 3 B
A. c{ﬂ\ £ (Mi+1 Mi). On the other hand, if x ¢ [T\f (Mi+l Mi)’
i+l 5 J

u s .
then a(x) < Ai+l and w(x) c Ai+1’ 50 X ¢ W (Ai+l) nw (Ai+l)' Since

u s -
there are no cycles, W (Aiil> nwW (Ai+l) = Ai+l’ so (4.7.2) and (4.7.3)

hold for i + 1. Further, Qi+l U Mi is a neighborhood of

k')'Cﬂ Wu(A,) and we have seen that (ﬁw fm(Q.+l U M) c k~) Wu(A,).
j<i+l J w>0 * Po<dn

. m .
Since ("\ £ (Qi+l u Mi) = (A\ fm(Mi+l)’ (4.7.4) holds for i + 1.
m>0 m>0

This completes the proof of lemma (4.7).



invariant,
. k|
if x e (T\f (Mi+1 Mi)’
3
u s x
W (Ai+l) nw (Ai+l)' Since

1417 so (4.7.2) and (4.7.3)

eighborhood of

[ u
(Qi+1 U Mi) c jgi{lw (Aj),

.4) holds for i + 1.

S

tet £y M->M bea C1 diffeomorphism. A closed f-invariant set

% an attractor ' if there is a compact neighborhood U of - A ' such

£(U) < int u, (ﬁ\ fn(U) = f\, and flA has a dense orbit. Thus,
nz0 .
svery - x ¢ U, w(x). c A where w(x) —is the (-limit set of x. The

aet W) = {yeM:wly) ¢ Al = k_} £ ™y is called the basin of
n>0
¥or a given diffeomorphism it is important to describe its.attrac-—

. They give the time evolution of certain open sets in M.°

 1f-an attractor A  is hyperbolic then one has considerable informa-

about its structure. Let us begin with a few examples.

The simplest example is, of course the orbit of a periodic sink.

is the orbit o(p) ' of a periodic point p. of a period n . such

Tpfn has all its eigenvalues of norm less than 1. In this case
wre 1s a small neighborhood U of p such that fn(U) < int U, and

te{p)) =’ku} f—mﬂt:} fJU) is a union of 'n open cells which are
‘ mn=0 j=0

. emuted by - £.

At the other end of the spectrum, we have the topologically transi-

ive Anosov diffeomorphisms which were described in the last section.

A third ‘and intriguing example is known as the solenoid.

Let Sl ={z e ¢ : [zI =1} be the unit circle in the complex

siane, and ‘let 2 ={ze¢: |z] <1} be the unit 2-disk.

Consider the mapping f : Sl X D2 +-Sl X D2 defined by f(z,w) =

{ﬁg, % + %) . If we think S1 X D2 as the solid torus in B{3, then

‘i{%l X DZ) c int(Sl X Dz) and f wraps Sl x D2 around itself twice

_asin figure 5.1.
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Figure 5.1

2
Also, f({z} % Dz) < {zz} x D”, and f(Sl x DZ) n {22} % D2 consists of
the two disks f£({z} x D2) v f({-z} x D2) = {(zz, %- + %) = Iw[ 5Al}

U{(Zz, - §~+‘%) : ]w! f.l}' Using theorem (2.2) it is easy to verify

that A =1/\l fn(S1 X Dz) is a hyperbolic set. Also, for each
n>

(W) € A, W5, (2,) < {2} x D% < W ((z,w)).

1/2

It is easy to see that f]A has a dense orbit using proposition

(3.1). PFor this, it suffices to show that if U and V are open sets

in S1 x D2 which meet A, then for some n > 0, fn(U nA)nVvah# ¢.

Toward this end, let g(z) = z2 for z ¢ Sl. Note that

(a) If I is an interval in Sl, there is an integer N > O

such that n 2 N implies gn(I) = Sl.

Let r : S1 X D2 ke S1 be the projection. Let (z,w) € V n A.

Taking £ for 4> 0, expands WS((Z,W)) for small €, so we may



2 2 2
) n {2z} x D" consists of

(2%, 2 +% = Ju <1}

,2) it is easy to verify

:. "Also, for each

orbit using propoesition
U and V are open sets
0, £ AN VAt b
Note that
is an integer N > 0

1

Let {(z,w) ¢ Vn A.

or small €, so we may
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a¢ an integer n, > 0 and a point 1z, € g—nl(z) such that

1 1
{zl} X Dz) € Vv Now pick a point (2',w'). € U n A ‘and a small

0 such that W:((z',w')) < U n A, Since rwg((z',w')) is an in-

n
> 0 such that rf ZWE((Z',W')) = st

al in Sl, we can find an n

2
: n
, there is:a point . p in f 2w:((z',w')) n {zl} x DZ. Hence,

n nl+n 2

e Un A and  f lp eVnlh, so f Wnh)nvalAsd

required.
The construction of the solenoid (as a hyperbolic attractor) is due
male [56].

1t leads to a general construction of one dimensional hyperbolic

actors due to Williams [61]. To describe this construction we need

tefinitions.

Let ¢1 : R >R and ¢, : R > R be defined by

1

¢1(u)=e"2, u#0

1
2
¢2(u)=eua u>0

<

Let S be the set of functions 8-¢1, B-¢2 where £ varies

rough the real numbers.

The graphs of elements of $ have infinite contact with

{u,v) € IR2 : v =0} at (0,0).

A compact branched l-manifold K is compact Hausdorff topological

#pace satisfying the following property. There is a finite subset

.2 X such that each point x in B has a neighborhood which is

homeomorphic to a finite union of graphs of elements of S, and each

¥¢K-B has a neighborhood which is homeomorphic to a real openinterval.
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Typical pictures of branched l-manifolds are in Figure 5.2. )
Znuihet

with ¢

Figure 5.2

The set B in K 1is called the branch set of K.

#ith tt

There is a finite open covering {Ua} of K such that for each

Uu there is a homeomorphism ¢& : Ua > Ya where Yu = Yiu...u Y: and lengthe
Yz = {(u, ¢i(u)) € IRZ} where ¢? e S for i=1,...,n. The open inter- the Anc
vals correspond to ¢? = 0. 1f
The family {(Uu,ua)} defines a Cr differentiable structure on K the set
as usual by saying that a function f : K > IR is Cr if it is con- #losed
tinuous and for each a, fow;l extends to a C'  function from neigh- #ive ﬁ
borhood Va of wa(Ua) to IR. Since the graphs of two elements of i £
S have infinite order contact at any point where they meet, K has a Byafl,,a
well-defined tangent bundle. One defines Riemann metrics and € maps natural
between C" branched l-manifolds and other manifolds as usual. Every tuduces
compact Cr branched l-manifold can be Cr embedded in IR3 for r>0. {ﬁﬂo»ao
We now always assume that K is a compact Cl branched l-manifold aense,
with a fixed Riemann metric. Let [:| be the induced norm on TK. g o
An expanding map of K is a Cl map g : K > K so that there are lent to
constants ¢ > 0, X > 1 so that [Tx(gn)(v)| >c An[vl for all that if
x €K n>0, and v ¢ TXK. P e A=
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Ffor example, if g(z) = zn, n>0 on K= Sl, then g is expanding.

195,

ns, = {p}, and let g be the map g described in figure 5.3.

sther: example is to take K to be a wedge of two circles, say S

th Sl

S, »>8, +8_+358

1 1 2 1

S, >S5, +5

2 1 2

Figure 5.3

th the indicated orientations, g doubles lengths on Sz, triples

upths on Sl’ and g(p) = p. This expanding is intimately related to

11

is a map, we define the inverse limit of g to be

¢« Anosov diffeomorphism induced by {2 lJ

If g : X=X

~

e get K = {(ao,al,...) Pa; e K and g(ai+l) = ai}. Then K is a

gged set in the product of K with itself countably many times and we
ve K the relative topology. One thinks.of a point a = (ao,al,...)

¥ as a point a

0 € K together with a choice of pre-images

,;,az,aB, etc. One frequently writes K = lim K <& K. There is a
-

atural projection 5 : K » K defined by ¢(a) = a The map g : K+ K

0
: K+ K defined by é((ao,al,...)) =

~

sduces a homeomorphism g

k;gao,ao,al,...) with inverse T((ao,al,...)) = (al,az,...). In a precise

g unfolds g into a homeomorphism.

it g Sl > S1

Ense, Now, one can prove that

is the map g(z) = 22, then g 1is topologically equiva-

lsnt to f[A where f 1is the solenoid map above. To see this, note

that 1f r : Sl X D2 > S1 is the projection, then rfr_l =g. If
g ¢ A= (ﬂ\ fn(Sl x DZ), set an(z) = rf "z for n > 0. Then, letting

n>0
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~

¢(z) = (aO(z),al(z),...), we get that ¢ : A - S1 is a continuous map.
Since f£|{z} x D2 is a contraction, we have that (ﬁ\ fn({an} X D2) is

~ n>0 !

a single point for any a = (ao,al,...) € Sl. Let ?ﬁ(a)} =

(”\ fn({an} X D2). Then h 1is also continuous, and heoo¢ = id

nz0 A

~

deh = id 1+ As ¢f = g¢, we see that ¢ is a topological conjugacy.
S

Williams has given general theorems of this type.
Theorem 5.1 (Williams [61)). Suppose that f 1is a Cl diffeomorphism
having a 1-dimensional hyperbolic attractor A with splitting
T,M = E° @ EY and dim E® = 1. Then there is an expanding map g of
a branched 1-manifold K such that £lA <{is topologically conjugate to

the inverse limit map g.

In [61], Williams assumed that the stable manifold foliation was
Cl. It is well-known now that this assumption can be removed as follows.
Let U be a small fundamental neighborhood of A. Then (*g £ = AL
n>

Approximate f by fl so that f£_ is Cz. By theorem (3.7),

1
fJ{’\f;(U) is topologically conjugate to f|A. By theorem (6.5) in
n
[17], the stable manifold foliation of f1 on U is Cl.

There is a converse to theorem (5.1).

Theorem (5.2) (Williams [61]). Let g : K~ K be an expanding map of a
branched 1-manifold K such that
(a) every point of K <is non-wandering

and

(b) each point in K has a neighborhood whose image by a power
gm of g 1is an arc.
Then there is a diffeomorphism f : S4 > S4 which has a hyperbolic

attractor on which it is topologically conjugate to g .
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8! s a continuous map.

The idea’of the .proof of theorem (5.2) is ‘as follows. First embed

hat m £2({a } x %) is 3
n>0 n th 7. via 4 1 K> IR and let -N bea "tubular neighborhood"
Let - {h(a)} =

This is a-2-disk bundle over $(K) where the corners at

s, and: hog = idA’
¢h points of ¢(K) " ‘have been rounded off to look like pants legs

L‘topological conjugacy. in figufe 5.4,

iis: type.

i8 @ Cl diffeomorphism

i with splitting

v an expanding map g .of
sopologieally conjugate to

le manifold foliation was Figure 5.4

1-¢can be removed as follows.

AL Then (A) = A,
n>

By theorem 3.7,

One may write N -as a union of 2-disks {DX}, x€¢(K),; in which

t most two 2-disks have a point in common.. If ‘one forms the quotient
a ce by identifying to a point any two 2-disks which intersect, one

{." By theorem (6.5) in
-5 a space Kl homeomorphic to K. Let m & N> Kl be the identi-

cation map.

The map ¢°g : K » N 'may be approximated by an embedding
be an expanding map of a ' + K =+ Ny and the map gl°¢-l : ¢(K) = N extends to'a diffeomorphism

and 8y

poged T (x)

from: N' into its interior so that gz(Dx) <D

antracts DX for each x ¢ ¢(X).

We picture part of the image of By in figure 5.5.

1 whose image by a. power

shich has a hyperbolic

e to g .
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Figure 5.5

Then (‘\ g;(N) = A(gz) is a hyperbolic

nz0

for x,y € N, then Tg,X = Mgy, SO g,

is easy to see that

g3

is an expanding

set for By-

Also, if mx = wy

induces a map 83

K+ K. It

1 1

map, and that the inverse limit

g, is topologically conjugate to gZIA(gZ). That 84 is also topo-

~

logically conjugate to g

We have Kl

)

>
K

requires more work.

and

R &> g

two expanding maps and we

wish to know when = and g are topologically conjugate. Williams

shows that a sufficient condition is that there exist continuous mappings

r

gr =

: K, > K and

1
T8q>858 =

s

: K=+ K

1

and an integer m > 1

sg, Sr = gz, and rs =

m
g .

pressed as the following commutative diagrams.

In the case of our maps

g
Kl 3 > K
v v
K —Fs ¥

)

253 g3, an

such that

The conditions can be ex-

m

g 24 m

3 3 g
Kl > 1 K1 > K K > K
A A
s s T
3
K >K K kl
m > 1 and maps r,s can be found,

ot

P

e

[T oy
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2y is conjugate to g. See [61] for more details.

fince gy * N +'IR3 is homotopic to the inclusion i : N ~>’IRB', if

hpose an embedding Y : IR3 4—84, then w°g2°w—1IW(N) extends to

- itfeomorphism of Sa by standard techniques in differential topology.

Let use give one more example of a l-dimensional attractor. This

# varlant of an example due to Plykin [43]. His was the first example

% l-dimensional hyperbolic attractor in the two dimensional disk.

Let D be a disk in IR2 with three holes foliated as in figure

5.5

olic set for gy- Also, if mx = my

gZ- induces a map 8y ¢ Kl > Kl. It
ling map, and that the inverse limit
!IA(gz). That 83 is also topo-

1ore work.

&> K two expanding maps and we

pologically conjugate. Williams

Figure 5.6
that there exist continuous mappings :

ateger m > 1 such that

¥e define a diffeomorphism £ from D into its interior to preserve the
m

8 . The conditions can be ex- foliation and have f£(D) as in figure 5.7.

liagrams.

m .
1 g 23 Sk g —E > K (@

v
—

and maps r,s can be found,

Figure 5.7
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The branched manifold is a union of 3 circles and the map (on homology)

is
Ab—> A+ C - A

Bb—> A

CkH> B

Remarks 1. One can use this example to show that non-trivial hyperbolic
attractors (for flows) appear in arbitrarily small perturbations of con-

stant vector fields on tori T  of dimension greater than 2 [36]. As

a consequence, hyperbolic attractors appear in perturbations of three or
more coupled harmonic oscillators, or three or more coupled relaxation
oscillators. To be more explicit, recall that a harmonic oscillator has

; .. .  BiEeua i
equation mx + kx = 0 or x =v where m and k are positive con-

mv = ~kx ; g@g EREEE

stants. If we have n such oscillators, we obtain the system

1) X, =V,

on IRzn. There is a stable equilibrium at the origin, and all other
orbits lie on n-dimensional invariant tori.

A relaxation oscillator is a differential equation of the form
¥ + f(x)x + x = 0 where, for some constant k > 0, f(x) < 0 for
[x| <k and f(x) >0 for x| > k. For example, if f£(x) =
U(X2 -~ 1), u > 0, one has Vander Pol's equation which comes up in
Vacuum tube circuits, (see e.g. [59]). Under certain conditions on f

X
(as in theorem 10.2 in [15}), the system X=v - J f(u)du has a

v = -x
single asymptotcially stable periodic solution. If one has n such

systems, one gets the system
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equation which comes up in
Under certain conditions on £

X
v - J f(u)du has a

= -x

=
e M
1

>lution. If one has n such

X
x, =V, - J fi(u)du

v, = ~X,
1

2 . . . . :
I’ " This system has a unique invariant attracting n-torus.

1f- n > 3, there are small perturbations of both systems (1) and

i which possess non-trivial hyperbolic attractors. As J. Ford
inted out to us, a recent paper in Science [12] gives related experi-

#tal results. In particular, the broad band noise spectrum in figure

ot [12] may be due to a non-trivial hyperbolic attractor.

2. Williams has extended theorems (5.1) and (5.2) to higher

tmensional "expanding” attractors [63], and has given general conditions

¢ topological equivalence of one dimensional attractors [62].



6. Attractors - ergodic theory

= A

We begin with some notions from ergodic theory. Let f : X+ X be : oomp

a homeomorphism of the compact metric space X. Let M(f) be the set of sre 1E

invariant Borel probability measures | on X. That is, u e M(f) is 1 ng

# e

a regular Borel non-negative measure on X such that u(X) = 1, and X

u(f‘lB) = u(B) for every Borel set B. Let B be the o~field of
Borel sets in X. The measure p 1is called ergodic if whenever B ¢ B
and £(B) = B, we have u(B) = 0 or 1. That is, any invariant
y~measurable set has measure zero or one. An equivalent condition can
be given ?n terms of real valued functions ¢ : X - R. Such a function
¢ : X+ R is {mvariant if ¢of = ¢. This means that ¢ is constant

on orbits of f£. Then U is ergodic if and only if any invariant func-

. . 1 . . .
tion ¢ in L7(y) dis constant almost everywhere. That is, if

¢ € Ll(u) satisfies ¢°f = ¢, then ¢(x) = J¢du for u-almost all x.

From the Riesz representation theorem, one may think of M(f) as a
subset of the dual space C(X)* where C(X) 1is the space of continuous
real-valued functions on X, and we set u(¢) = f¢du for ¢ e C(X).
This gives a topology on M(f) (called the weak or vague topology) so
that a sequence y € M(f) converges to U e M(f) if and only if
ui(¢) > u(¢9) for each ¢ ¢ C(X). With this topology, M(f) becomes a ined -
compact metrizable space. It is also a convex subset of C(X)*, and k;

[al & 1
the extreme points of M(f) are the ergodic invariant measures of f. e
Note that M(f) is nonempty because if dy is the point mass at vy,

then any weak limit of a subsequence of

n~1

1 2 .
= R .. ontalinis
n L fx is in M(f).

n>1
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Let £ ¢ X > X be

Let " M(£)  be the set of

Qt‘basié result of ergodic theory is the following theorem.

(6.1)  (Bivkhoff ergodic theorem). -Let f  be a homeomorphism of

; aQt metric space " X; and let W e -M(f). For any ¢ € Ll(u) A

of - u-measure . 1 such that for x ¢ A;

~ 1 n-1 K
exists. Moreover, if we set ¢(x)-= lim DR €
> k=0

$°f = ; 5 and Jgdu ={¢du .

1f the measure ) . in theorem (6.1) is ergodic, then the fupction

~

ﬁgst be .constant " u~almost everywhere, so . ¢(x) = j ¢du = f¢dp

st everywhere.

1

Thus, ‘for ' l-almost all:  x, the time-averages

¢(ka) along the orbit of " x  approach the space average J¢du.
0

f M s an orientable compact manifold, there is a natural Borel

aure which can be defined. Let w ' be a nowhere vanishing n-form, and

XE.w

where Xg is the characteristic function of a Borel set
M

0 if "x ¢ E

Xg x) =
1 if =x € E.

f M is not orientable, let T : M be an orientable 2~to-1 cover-—

ing.  Take the measure m on M and let m,m be the measure on M
dofined by T m(E) = m(w—lE). Any measure m on M induced by an
weformon M or M will be called Lebesgue measure on M.

Dividing

m{M), we will assume m(M) = 1.

Ruelle has proved the following theorem. The support of a measure

¢ M(f) 1is the set of points x ¢ M such that for every open set U

gontaining x, ’u(U) > 0.
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Theorem 6.2 ([48]1, [71). Let m be Lebesgue measure on M, and let
f be a C2 diffeomorphism having a hyperbolic attractor M. There is
an ergodic f-invariant probability measure W, supported on N with
the following property. There is a subset A c WO with m(A) = 0

such that if x e W () - A and b is any continuous function on M,

then

1otk j
lim = ] ¢(f%) = |¢du
T k=0 "

oo

Thus, for m-almost all x in WS(A), the time average of ¢ along
the orbit of x converges to a definite limit. This result is quite
remarkable. For, in a natural sense, Lebesgue measure zero agrees with
our intuitive feeling of what is exceptional (or avoidable) in smooth
systems. If we think of ¢ as an observable physical quantity evolving
along an orbit, then, with probability-one, we can compute its expected
value. Furthermore, except in the Anosov case, hyperbolic attractors
for C2 diffeomorphisms have Lebesgue measure zero. Therefore, it is
surprising that one can say anything about time averages of points in
sets of positive Lebesgue measure near these attractors.

If u, is the measure in theorem (6.2), and U is an open set in

WS(A) such that UA(CK U) = uA(U), then for m-almost all =x in WS(A),

n-1
lim 1 X X (ka) =y (U). Here X is the characteristic function
n k=0 i) A U

e
of U. Thus, for almost all x, the average number of points in
{x,fx,...,fn—lx} n U approaches UA(U). One can project u, onto the
unstable manifolds w“(x) for x € A to get conditional measures with
Cl densities. Thus, any open set U such that U n Wu(x) has
u-dimensional measure zero for all x has the property that

u,(Ce v = u, (0.
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n-1
The convergence of % Z XU(ka) to UA(U) for such sets U is
k=0

ved with familiar methods of measure theory.

JLet: A - be the above subset of WS(A) with m(A) = 0. Given

k 5, let F be a closed subset of U with uA(U) < uA(F) +¢, and

i V. .be an open set in Wo(A) with (2 U <V and UA(V) < uA(Cﬂ )]

Let ¢1 and ¢2 be continuous functions such that Xg E-¢l-i Xy

XCE U.f ¢2 < Xy For n>0 and X ¢ WS(A) - A, we have

n-1 n-1 n-1
Ly oy <L 7 o6 <2 ] xS .
n Xg = n 1 —n U

k=0 k=0 k=0

. 1%
8, lim inf = ) )(U(f x) > Jdvldqu BA(FY > 4,(0) - €
e k=0
‘ 1 ol K
tmilarly, lim sup = ) X., (F %) < |6.du, < uA(V) < u(ce V) + €.
" g M=o CEU — 2

#

%ince € is arbitrary, and uA(cz U) = u (0), we get

n-1
1 2 ] x (0 s u @ .
n* k=0

Before proceeding to the proof of theorem (6.2), let us note that

it implies a celebrated theorem of Anosov.

Let £ be a C2

Theorem (6.3). topologically transitive Anosov dif-

g%amorphism and suppose f preserves a measure V which is absolutely

aomtinuous with respect to Lebesgure measure m. Then V 18 ergodic.

Proof. Let ¢ ¢ C(M). Let A c M be such that m(A) = 0 and

1%k
lim — z (£ x) = J¢du for x ¢ M - A.
n A

o - k=0

dince Vv is absolutely continuous with respect to m, we have v(A) = 0



also. Thus,

~ n-1
40 = 1im = ] o(ef0
> 7 k=0

is constant v-a.e. Hence f¢dv = J¢duA-v(M). By the bounded conver-
gence theorem and the fact that v is f-invariant.
~ n-1
f¢dv = Jlim~l ) ¢ofkdv
noe U k=0
n-1
1 k
Lim = ) f¢of dv = f¢dv .

n*® = k=0

1 -
So, oD j¢dv = f¢duA. Hence,

1

;zﬁy Vo= and v is ergodic .

Remarks. 1. Theorem (6.2) and (6.3) hold under weaker assumptions
than f being Cz. The proof given here works just as well (with

straightforward changes) if f is Cl+u, 0 <ag < 1. That is, f
is C1 and its derivative is Holder continuous of order «. Anosov

points out in [2] that theorem (6.3) holds if the modulus of continuity

w(r) of Tf satisfies

b w(r)
f dr < « for some b > 0 ,
0 r

I have not checked the details, but I expect that the proof here gives
(6.2) (and hence (6.3) as well) under this assumption. Theorem (6.2)
does not hold for all Cl f. An example where it fails can be obtained
by embedding Bowen's example of a horseshoe with positive measure

[8] in a hyperbolic attractor. However, it is not known whether theorem
(6.3) is false for C1 f.

2. The Bernoulli shift B(pl,...,pN) is defined as follows. Let

theoret i

One
is Infin
represen
type ),

whic

3.
Axiom A
asymptot
Putting
hyperbol
describe

We
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Lth positive measure

 not known whether theorem

defined ag follows. ILet

N
sitive numbers such that .} p; = 1. Define the measure I on
. i1 o A
LN by u({ilh = p;- Let u  be the product measure on the

A N Z
N ZN"be the full N-shift with ZN = {l,...,N} - Let piy...,py

sets of ZN' Then ﬁ is invariant under the shift O, ‘and the

(G,ﬁ) is called the Bernoulli shift B(pl,...,pN). A méasure

erﬁing transformation ' T : X > X with probability measure m ‘is

ed Bernoulli if (T,m)-  is measure-theoretically conjugate to some

‘l""’pN)' This means there is a measurable transformation

X~ ZN’ and subsets . A c X, B c ZN ﬁith m(A) = 1, U(B) = 1

‘ﬁ~that S maps - A bijectively onto B, and  oS{x) = ST(x)  for

A theorem of Ornstein [38] says that B(pl,.Q.,pN) is measure

heoretically conjugate to B(ql,...,qr) if and only if

] i
p, log p, = q; logiq.; .
i=p 1 Togmp f i

One can actually show that the pair (ffA,uA) is Bernoulli 4if A

is infinite and f{A is topologically mixing. The proof: involves

"fepresenting f]A as a finite~to-one quotient of a subshift of finite

type ZA via theorem (3.8), and obtaining 15N from a measure on

ZA which can be shown to be Bernoulli. For details, see [7].

3. Bowen and Ruelle have proved [71, [70] that if £ satisfies

Axiom A and is C2, then m-almost all points % in M  are forward

asymptotic to attractors. This also holds if L(f)  is hyperbolic.

Putting this together with theorem (6.2), one sees that if L(f) - is

hyperbolic, there are finitely many ergodic invariant measures which

describe the forward asymptotic behavior of m-almost all points in M.

We now proceed towards the proof of Ruelle's theorem (6.2). We
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shall follow [7] except that our actual construction of M, comes from
[6] which in turn was motivated by [47].

Let f : M=» M be a C2 diffeomorphism and let A be
bolic attractor for f£. Let € > 0 be small, and let n >

positive integer. TFor x e A, let

Wxm) = {y e M : d(fly, £%) <€ for 0<3 <nl.

We might call Wz(x,n) the stable set of x of xize (g,n). If
A > 1 is as in the definition of hyperbolicity, then Wz(x,n) is
u

nearly the product of Wg(x) and wl-n (x). Let m be Lebesgue
X e

s
measure on the open set W (A).

Proposition (6.4). There is an ergodic f-invariant measure u, € M(f)
with the following property. For € > 0 small, there is a constant

c. > 0 such that for any x e A and un > 0,
m(W,_(x,m)) < C_u (W (x,n))

3g o)) = G W (x,

We defer the proof of proposition (6.4).

Proof of theorem (6.2). Let ¢ ¢ C(M). Let & > 0 be fixed and

choose € > 0 so that d(¢(x), ¢$(y)) < § whenever d(x,y) < €. For

n > 0, set

17k
C($,8) = {x e M : 1—5 kzoq;(f x) - J(deAI > 8},

and let E($,8) = {x e M : x ¢ Cn(¢,8) for infinitely many n}

fw\ c_(4,6)

N=1 n=N

We first claim

#we hay



uction of uA comes from : . m(Wz(A) n E(¢,36)) =0

sum 1) is pr d for ‘th toA E § is f-1i i
and Tet A be a hyper- sume (;)’ proved fo & momen s E($,;38) is nvariant,

rTeserves sets of m-measure zero, we have

and let ‘n'>1 be'a

Nt

) n’E(¢,35)) =0 for each n > 0. But W (A

nwz(A), so m(Wo(A) A E($,38)) = 0. Letting 38 = for "§ > 1,

e

-

Se for 0<j<n}. S \ACHORE- O
iy

=.0. But if. A(d) =

x cof xize (g;n). If A) n E(4, —i:)), then x ¢ W (A) - A(¢) implies
, th 8 ;
4 en We(x,n) is Ll
Lim = Yoo (E k) = jd)du,\ :
oo k=0

€t -m:-be Lebesgue

let ,¢1,¢2,... be a countable dense subset of C(M), énd let

riant measure uooe M(£)

: A(4.).  Then, m(AY = 0, and if % e Wo(A) = A -and ¢ e C(M),
s there is a eonstant i

n-1 :
oo i k.z.o 05 - Jcbdu,\ :

We now prove - (1).

Fix N> 0 and successively define subsets RN’ RN+1""
6 >0 be fixed and 0 Cn(¢,26) as follows:  For =n > N, let R, be a maximal subset of

ver d(x,y) <. ¥or A n € (¢,28) such that

(a) W (x,m) 0 Wl(y,k)
S
€

P for x € Rn’ ¥ e Rk and N<k<mn
f¢dUAI > 8}, (b) W

(x,n) n Wz(y,n) ¢ if x e R, Y e\Rn and x #.y .

: s : s .
vitely many n} f v e We(A) n Cn(¢,36) for n >N, and y ¢ Wg(z) with' z e A, then

zie Cn(¢,28) by the choice of €. By the maximality of Rn’

Wz(z,n) n Wz(x,k) #. ¢ for some N <k <n and x ¢ Rk' Then

s s s
yo€ We(z,n) c We(z,k) c w3€(x,k). Thus



W) n C (4,38) < WS (x,k)

oo

s s
we ol ) o 4,30 | ) &?zk WGk

n k=N
ool

So (2) m(WS(A) n C_(¢,38)) < §7 T aw (x,K
& =N TN xeR, 3e

=<3

sc. )7 u e,K)
€ w=n xeR "€

by Proposition (6.4). Now, Rk < Ck(¢,26), so if x e Rk’ by the choice

of €, one has wi(x,k) c Ck(¢,6). Also, by the choice of the Rk's

e
&E{ ‘>€ék W:(x,k) is a disjoint union. So

o

3 77 e = W (x,k)) < ¢, (6,8)
k=N xeRk e A(£§g XE € - A(¥;£ k

But, by the ergodic theorem (6.1), this last number approaches zero as
N =+ o gince u, is ergodic. Thus, putting (2) and (3) together, we

get that

0

m () U C_(4,38)) >0 as N~ e,

n=N
and this implies (1).

We are now ready to produce the measure H needed to prove

A
proposition (6.4). Our construction of M, is based on [6]. This has
the advantage that it avoids the use of Markov partitions, and, hence,
leads to a shorter proof of theorem (6.2) than one finds in [7] or [70].
However, one pays the price that it is not readily apparent from the

construction here that the measure H, is Bernoulli. Nevertheless, it

is of some value to give proofs of theorem (6.2) without Markov

{7.1) th
By

if neces

tion. F
Plykin e

Let
volume £
M. That
gach x
restrict

on W (x



U W§E (x,k)

Xe

S
Wi (xsk) o,
*F 3e )

) m(Wgs(x,k)
(%))

)s . s0 if X € Rk’ by -the choice

by’the choice of the Rk's

30

s oo
gtk o) <1 d ) 0.0

St number approaches zero as
ng (2) ‘and (3) together, we

>0 as N - e,

€. M, needed to prove

is based on [6]. This has
WV partitions, and, hence,
1an one finds in [71 or [70].
eadily apparent from the

rnoulli. Nevertheless, it

6'2) without Markov

71

s. This is because there are certain non-hyperbolic attractors

hose in [18]) for which Markov partitions do mot exist, but for

still has the possibility of having theorem (6.2).

_construct uA, we first observe that we may assume that. f. has

point. If not, we choose m > 0 so that %" has a fixed point

A (Proposition (4.1) gives that the periodic points of £ in-
ve dense in A).  If Al = CL Wu(p,fn) n A, then anl = Al, and

kal. It may be that Al is - a proper subéet of A (for in-

, when ‘Ais a single periodic non-fixed sink). If we find U
1%« ‘
as in Proposition (6.4), then set b= Z f*uA,., Here

% k=0 1

(E) = u, (f-kE n Al) for any Borel set E. ' Oneé may check that
T 1 : ;

M

L works for £ . on Al

_ Now, we assume that p ¢ A, and £(p) = p. We will see in lemma

1):that this- forces -f to have periodic points of ali high periods.
By passing to two 2-to-1 coverings of M, and replacing £ by fé,
1 necessary, we may assume that M~  is orientable, each: of the bundles
and EY is orientable, and Tf[Es and ,Tf]Eu preserve orienta-

jon.  For amusement the reader should examine this covering for the

Plykin example.

induces a

Let g be a smooth Riemann metric on M.

Then g

volume form w on M which we use to define Lebesgue measure m on

‘@. That is, 'dem = JW& for every continuous function' Y € C(M). For

each x e A, Wu(x) is a C2 submanifold of M, so the metric g

; 1 . u A 1
restricts to a '€ metric on W (x) and this induces a - C ~u-form

on Wu(x). Thus, for each vy ¢ Wu(x),'and x ¢ A, we have a u~-form
u,_u* u® u
my e A (Ey ) where Ey is the dual space of Ey' The forms wy vary

Cl with y in Wu(x), and continuously with y in A,




: *
For each x ¢ A, we have f = P(x)w_ where Y(x) 1is a
f(x) X
positive continuous function. The positivity comes from the fact that
the bundle EY ig oriented, and Tf[Eu pPreserves orientation.
* -
One can check that (fn) W= l{:(fn %ﬂ'dKfn’zx)... w(x)-mx, and
£ (%)
~1. % -

(f l) wx = P(x) lwfx. Following Bowen and Ruelle [71, we call
P(x) = Jac(TXflE:), the Jacobian of Txf!Ez. Set ¢u(x) = -log Y(x) =

-1
log ¥(x) ~.
Lemma (6.5). ¢u is Holder econtimuous.

Proof. The bundle x —> E: is HSlder continuous since f is
2
C by theorem (6.4) in [17], and the metric g is Coo on M. Hence,

the maps x “—~>(%, and x —> TXfIEi are Holder continuous. This

implies that ¢° is HSlder continuous.

n-1
Set Sn¢u(x) = z ¢u(ka) for n > Q. Note that,
k=0

$ ¢"(x) n-1 .u, .k n-1
e n - ‘IT ed) (f X) - TTw(ka)"l ,
k=0

k=0

56" (x) I
Thus, e measures how much Tfnxf IEan contracts the

w0 ~-volume.
fx
Now, we can construct UA' Let Per(n) be the set of periodic
points of f din A of period n. Let dx be the point pass at x.

Define
s 6" (p) s 6" (p)
n 1 n 8
e , and set Un = > e P
pePer(n) n pePer(n)

It is easy to check that U M(£); i.e., My is an f-invariant




: w(X)wX where U(x) ig a

ivity comes from the fact that

Preserves orientation.

-1
) e “w_, and

id- Ruelle {7}, we cal1

u
Ex' Set ¢u(x) = ~log Y(x) =

der continuous' girece fig

Y o
ic:"giis ¢ on:'M, Hence,

e Holder continuous. - Thig

IR Note that,

n-1 k
= T Twekn ™t |
k=0

Eun

£ - contracts the

be the set of periodic

‘e the point pass at x,

1 s ¢"(
Lo Py
n pePer(n)

. is an f-invariant

y measure on  A. It counts the elements of ' Per(n) with

&ights v

ose a subsequence un which converges, and set W= lim

] gc0 Y

&~'works. Observe that the pfoof we shall give applies to every

ent‘subéequence of {un}. Thus, we will incidentally: show ‘that -

} and {um } ' dre subsequences ‘of {un} such that
i

Hence, the sequence {un} actually converges to

We need to show

(6.6) . For any small £ > 0 there is a constant C€ >0 such that

€ A and 'n>1, then

m(wig(x,n)) < (:Eu,\(wS (x,1))

{6.7) UA is ‘ergodic.

These facts will be proved in the next section:




7. The measure u

.

A

In this section we shall prove (6.6) and (6.7) to complete
proofs of Proposition (6.4) and theorem (6.2). We will need several
technical lemmas. Our notation will be in the context of section 6.
Our first lemma is a strengthening of the shadowing lemma called the
specification lemma. Given € > 0, a positive integer P > 0, a set

of points xl,...,xr in A, and a finite set of positive integers

ny,0,,...,0 , We say that a point ¢q ¢-specifies (xl,nl),

(xz,nz),...,(xr, nr) with delay P if

(1) q € Per(zP n,)
. i
i=1

(2) for 0 =3 sm, d(fJxl,qu) <e, and
(3) for 1 <i r and 0 £ j < n., we have

, n+...4n, _+(i-1)P+j
d(fin,f 1 i-1 q) <€

The idea is that the first n, iterates of gq e-shadow the first

oy iterates of X5 then after a delay of P, the next n, iterates

of q €-shadow the first n, iterates of Xye Again after a delay of

P, the next n3 iterates of q e€-shadow the first n3 iterates of X3,

etc. Finally, after €-shadowing the first o iterates of x,

a delay of P again, the orbit of q closes up.

Lemma (7.1). (Specification lemma). Let A be a hyperbolic set for f
containing a fized point of f. Then for any ¢ > 0, there is a P(g) > 0
such that any sequence (xl’nl)""’(xr’nr) may be e-specified with

delay P(€).

Proof. For xe¢ A and e > 0, write Wg(x) = wg(x) n A

ﬁz(x) = Wi(x) n A, We first prove

{(a) For

when

once  (a)
j~pseudo-oT

= H(O6(E)).

=P(E) 8
Wd(xi+

i#t Y be the

ght gives ar
t~ghadowing

3t is small,
We now p3

Let p 1

4= 8(e) be
unique point.
integer N(S(
dist (x,f“x}‘g/
H(8(e)) be s
definition of

ite n, = n
Wr 1

*s
z € W5/3(P),

u

we/z(x) o Wz/
of 8. If we
Tu m
ht/z(f Zm)’

Hence,




(6.7) “to complete
We will need several
:ontext of section 6.‘
ring lemma called the
integer ‘P > 0, -a set
£ positive integers

es  (x;,m,),

ave

q €-shadow the first
the next nz iteratesb
Again after a delay of
rst ng iterates of Xy»

iterates of x and
T

a hyperbolic set for f
), there is a P(e) > 0

be e-specified with

D = W) n A

‘fa) For any € >0, . there is an integer N(g) >0 such that

whenever . n 2 N(€) 'and X,y ¢ A . we have fnwt:(x) f WZ(Y) z¢.

’ﬁnce (a) is proved and € >0, let § = &8(e)  be such that any

yseudo-orbit in A can be g-shadowed by an orbit.  Let P(g) =
n

, Sun i
N(8(e)). Then, given (Xl’nl)""’(xr’nr)’ nchoose vy € Wa(f xi)
(e) 5 . U, T ~P(€),,8
W%(xi+1) for 1 'siv<r and v, € W6(f xg)—2 £ Wé(xl)'
. , o 1
¢ Y be the finite- §~-pseudo-orbit xl,fxl,...,f xl,yl,fyl,...

n -1
-1 p-1
; yl,xz,...,f r xr,yr,fyr,...,f Yt

T
Let T =} n; + rP. ‘be the
i=1

ngth of  y. Since d(nyr’xl) < §,  repeating y. to:the left and

ght gives an infinite §-pseudo~orbit '§. Let: o(q) ~be an orbit in

f€~shaaowing Y. “Then,  for any integer -J, d(ft+jq,f3q)s 2. If
is small, expansiveness gives qu ='q " and ‘q € Per T.

We now prove. (a).

Let 'p  be the fixed point of £ 1in A, For g > 0. -small,  let

: u s
: W r]

§(€) be such that whenever d(x,y) < &, ngz(x) i E/z(y) is a
unique point. ' Since Wu(p) and Ws(p) are dense in A;  there is an
integer . N(8(g)) > 0 .so that for n 2 N(&(e)), and x ¢ A, we have
dist (x,fnwu () <§ and dist (x,f~nW§/3(p)) < 8. Let L(e) >

§8/3
N(8(€)) be such that' EAQL(E) <-§£%l where X > 1 is as in the

definition of hyperbolicity. Set N(e) = 2L(e). Then, if n, 2 N(e),

write n, = n+m with n and m 2 L(g). Pick 2 2y € A such that

s “u -1 m
z € W6/3(p), z € Wa/g(p), d(x,f zn) <8 and d(y,f Zm) < &§.  Then,

W;/Z(x) n Wi/z(fanzn) z ¢ and Wilz(y) n Wzlz(fmzm) # ¢ by the choice

u s -1 s
of 6. 1If we let W€ We/Z(x) n w€/2(f Zn)’ and W€ w€/2<y) n
-n £ ~m £

u m n -m
We/z(f zm), then d(f wn,zn) <A 7 and d(f w o zm) <A 5 -

Hence,




n -m n -m
a(f Wn’f wm) < d(f wn,zn) + d(zn,p) + d(p,zm) + d(zm,d wm)

< 2 LE 2§§§l < &(e).

u
e/2

-m s -m S s -m
and f mWe(y) s f mwelz(wm> =) we/Z(f wm), and we get that

So, W (f“wn) n wz/z(f"mwm) # ¢. But then, f“w‘;(x) - f“v‘élz(wn):w‘g‘lz (fnwn)

n
£ 0w = I A W) = ¢

This proves (a) and lemma (7.1). We now n

in view
Lemma (7.2). Let € > 0 be an expansive constant for £|A. Given any
(a) fo
§ >0, there is an NW(8)> 0 so that if d(fjx,ij) < e for

3] = ¥(8), them d(x,y) = &.

Proof. If not, there is some 60 > 0 and there are sequences
(xn),(yn) in A such that d(fan,nyn) <e for |j] £n and

d(xn,yn) z 6 Choose points x,y € A and subsequences (x ),(yn ) heve 1s an
k impli
but

0

ao that x > x and y >y as k> Then d(x,y) = 60,
k

d(sz,ny) < ¢ for all j. This contradicts the choice of g.

We need three more lemmas. We will defer their proofs to the end
delay P = F
(N (©

of this section.

q(z))

Lemma (7.3). There is a conmstant K > 0 such that if € > 0 18 small
the orbits ¢

. S u u
and =x,yelh with y e wg(x,n) and n =z 1, then ]Sn¢ (x) - Sn¢ (y)Li K arblts of ¢

Lemma (7.4) (Volume Lemma). For any € > 0 there is a constant i(z) = q(w).

c. >0 such that Let ||

u
IR €Y
€ e

54" (x)

s
[ < m(WE(x,n)) < CEe

forall xep and n>1.




-~
sz.) + d(z ,d L)

%) o fnyzlz(wn) > W:/Z (fnwn)

ve get that

"W (y) = ¢

i for flA  Given any

»ny) <€ for

ere-are’ sequences
r !.‘H <'mn -and

quences : (x. ), (y. )
oo My

d(xuy) 2 50, but
choice of ¢.

#ir proofs to the end

o if £ >0 4is small

s 8" - s ¢« x

e 18 a constant

u
Sat'

§) There is a constant ¢, >0 such that

sleor'aZZ n 21

. for any integers LT 0,

é now move to the proofs of - (6.6) and (6.7).
n view of the volume lemma (7.4), (6.6) ~follows from
a) for any €' >0, there is a constant be: > 0.. such that

: S ¢
for any x ¢ A and any n 21, uA(Wf:(x,n)) > bee n (x).

% ¢ Ny let € > 0 be arbitrary and let n 2 1.

Let  €.>0 be an expansive constant for flA. By lemma (7.2),

1
re 1s an N(g) > 0.  such that d(fjx,ij) < € for |3 < N(e) .and

'kﬁ implies:. that d(x,y) <'g. Let m > 1 ‘be an integer. For any

Per(m) n A, use specification to give a  q(z) € Per(2N(g) +n+m+ 2P(9)

€

-Ejl—specifies (f_N(E)x,ZN(e)-i-n) and: (z,m) with

——1-). Let T = T(m) = 2N(€¢) + n + m + 2P. Then,

q(z)) € Ws(x,n). Also, by expansiveness for z #w . in Per(m) n A,
€

the orbits of z and w get at least €; apart somewhere, so the
€

_orbits of q(z) and gq(w) get at least —3:-"- apart somewhere. That is,

qlz) =q(0).

Let l]q;“[[ = sup{[d)u(i) |}. By lemmas (7.3) and (7.5), we have
gel

1 s.0%(a(2)

s

U_W_ {x,n) 2 e
Z

TE T q(2)



N(g) 2N (€)4n+P

L-ane)-2p) [ %] 5 0"(E " a(z)+s ¢ (f q(2))

e
6.2 2
clzN(e) 2.2z q(z)

L (-2N(e)-2P) | [¢%] |-2x s 9" s 0"(2)

6.2 2 & €
ClzN(E)ZPZan zePer (m)

LCME-20) [[¢7] -2k 5 6" (x)
e
C11
1

I1f we set be ='C—i1exp((—2N(€)-2P)![¢u]I—ZK), we have uTWi(x,n)
50" @)
bee . Now letting mi

and letting 1 - « gives

be such that T(mi)=ni= 2NE) + 2P+ n+ n,

s 50" ()
uAWE(x,n) 2 bee which is (a).

To prove (6.7), i.e. that v is ergodic, we first prove
(b) there is a constant C > 0 such that for any Borel sets A
and B,

lim inf u (A n £7B) 2 Cu (A)-u (B).
n-}oo A A

Once (b) is established, (6.7) follows easily. For suppose A is
invariant and 0 < uA(A) <1. Then, M - A 1is also invariant and
0 < uA(M - A) <1. But from (b), we get 0 = uA(A n (M- A))
2 CuA(A) . uA(M - A) > 0 a contradiction.

To prove (b), it suffices to show that if A and B are compact

subsets of A, and & > 0, then

(c) 1lim inf 1, (Bg(B) n £ "(B,(B)) = Cu, (A)*u, (B)

o

where C 1is independent of A, B, and 6.
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3n¢>“(fN(E)q(z)+sm¢“(f2N(€)*'n+P B(8) = {y : d(y,A) < 6} and By (B) = {y : d(y,B) < &} as

q(z))
|~
vor suppose (¢) holds., Then (b) is obvious if uA(A) or
Sn¢u(x) sm¢“(z) # i#3 - 0. If both uA(A) >0 and UA(B) >0, let 0 < 61 <1l be
e e
r(m) zinit1ary, and choose 62 >0 so small that
9" (x) Clu, () = 6, (B) - 8,) = 26, > (1 - 6,)Cu, (A)+u,(B).
¥ plck compact sets A1 c A, Bl < B and open sets U1 oA, Vls B
w 4.1 that uA(U1 - Al) < 62 and uA(V1 - Bl) < 62. Next take & > 0
- S
f 2K), we have png(x,n) s that BG(Al) < U1 and Bﬁ(Bl) S Vl' Then,

. that T@m)=n =2NE) +2P+n+ - - )
i i M (A f B = UA(Ul n f nvl) - u/\(Ul nf nVl ~An )

Seor 2 1, BA) 0 £ UBGB)) = (1, (U - A) + (£, - £7B)
X

which is  (a). = 1B Ay 0 B (B)) - U, (U - A) - W, - B)
‘godic, we first prove 2 UA(BG(Al) n f—nBﬁ(Bl)) - 252 .

th that for any Borel set
sets A v+ (c¢) and the choice of 52, Al’ Bl’ we have
lim inf ¥ (A n £ °B) 2 Cu, (A1, (B)) - 28,
Cu, (A)u, (B). o> e

v

Cu, (4 - 52)(UA(B) - 52) - 252

ws easily. For suppose A ig

v

(1 - 8)Cu,(A)u,(B).

- A is also invariant and
As S, was arbitrary, we get (b).
t 0=y (An M- a)) 1 Vs &
To prove (c), we again use specification. Let & > 0, and let A
hat 1f A and B and B be compact sets in A. Given any large integers n,r,s > 0,

are compact

let z) € A n Per(n), z, € Per(xr) n A, zg € B n Per(n), and

%z, € Per(s) n A. Then, let Pc—l), let z'= (z,,z,,2,,2,), and let
4 3 1°72°73°%4
CuA (A)-UA(B) €

T=2n+r+s+ 4P, We ‘l--specify the pairs (f-[n/Z]

3 zsn), (25,1),

B, and §.
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~[n/2]

(f ZS’n)’ and (24’8) with delay P by a periodic point

q(;) € Per(T) n A, Note that q(;) = q(;) implies z = w since if

zZ, 2w for some 1 i <4, then the orbits of z, and W, get

i i
apart somwhere. Also, if [E] 2 N(8), then d(f[n/z]

2
n+r+[n/2]+2Pq(;)’Z3) < 8. Thus f[n/zlq(;) € BG(A) and

/2103y . Bs(4) n gnmT-2P

qa(z),2;) <8,

a(f

n+r+[n/2]+2P

f q(z) « Bs(B), so B4 (B).

~n-r-2P

M (Bg(A) B5(8))

[n/2]

1 s 0%t g (2))

2 e

Z

. -
5.4"(a(2)

u u u u
Saf (298,07 (245 ¢ (2045 47 (2

Sr¢u(zz) sn¢“(;9 ss¢WyQ
e Z e

z 4

3 4

u
c Sn (23)

-3 . =Cu (W) W (B
n

with C depending only on El and ¢u. Letting s » = (so that 7T runs

through ni) gives

-n-r-2P

uA(Bé(A) nf Bg(B)) > Cun(A)'Un(B)-

Then, letting r - «, we get

Lim inf 1 (B (&) n f“jgd(B)) > i (A)n (B).

j-)oo

ally, le

We wil

Proof

licity of

fhen there

i a point
itmplies th

that {y} =

< 2c%1—n€
o
Now,

for x,y €



iy P’ by a periodic point
q(w) implies z =y since if

e orbits of zi and w.oget g

1
then d(f[“/zlq@),zl) <6, and
n/2} - .
q(z) enBé(A) and
q(;) € Bé(A) n f“n_r_ZPBé(B). Now,
{(B))
2 o))
q(z))
J(z )+S (bll(z )+ u u
1 r 2 an) (23)+Ss¢ (24)
s u u ‘
S0 (zp) RO zessqa“@
23 %
s %(z,)
Je™ 37, Cu_(4) u_(B)
2 n
3
J
Letting s + o (so that T runs

Bs(®)) > cu_(4)-u_(3).

-]
y f B.(B)) 2 cun(A)-un<B).
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().
will now give the proofs of lemmas (7.3), (7.4), 'and (7.5).

y letting n = n, and ' i '~ ‘gives us

< Let ~X > 1 be as in the definition of hyper-

Let Eo be small enough so that for each X,y e A, W;e (x) n W;E (/]
. (<]

&t most one point. Then choose € € (0,80) small enough so. that for

x e h, 13E (x) n A is contained in an so-product neighborhood.

EI X
is, if 'y ¢ Be (x) n A, there are points  z

€ W: (x) and
[:]
There is a constant

1

1
S8 u
W’;o(x) such that {y} = Wso(zl) n 'W€ (zz).
independent of x ‘and-.y  such that d(x,y) < c(d(x,zl) + d(x,zz))

~ u - u
ever z, ¢ Wso(x), z, € Wzo(x), and {y} Wzso(zly) nW, (z,).

Now suppose X,y € A - satisfy d(fjx,ij) < € for 0 < j<n.

en there is a Wy € WZ (fn—lx) such that fn_l

y € W: (wl). Now
o °

~J,k*j 5 fn-‘lwj e W

=] . = l-n
x)s)\efor 0<j <n, so z2f “w 280

1
o

(x).  Similarly, if d(fjs,ij) S‘El for- -n < j <0, there

; . s " . .
i4 a point Z, € W 1_ne(x) n WZE(Sy). Thus, d(fJx,ny) < eI' for ]3] <n
o

implies there are points z. ¢ W© (x) dnd z. e W (x) such
1 1-n 2 1-n
AT Ve AT e
- o O «
_ s u
that {y} = WZeo(zl) n w2£0<22)' Hence d(x,y) = c(d(x,zl) + d(x,zz))

e ZC)\l_nso .

Now, let L >0 and 0 <o <1 be such that d(¢ux,¢uy) < Ld(x,y)a

for 'x,y € A, and suppose y ¢ Wz (x,n). Then
1

n-1
[5,8°G) - 5 6| = | [ @™ 0 - "ty |
k=0
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< 7 na(Ex, 5
k=0

n

2L[{sup da(x,y™ + (2c€o)a + (ZCEO)\ -])OL+ .. .+(2c€o)\—[n/2] )u]
x,yeh

o
2L(2c€o)

A

2L(sup d(x,y}a) + -
X,yell 1=

1
fal

Proof of (7.4). Consider Wi(x,n) with ¢ small, x ¢ A, and

n 21, Let (U,$) be a C2 coordinate chart about x which contains

Wi(x,n) and flattens W'(x). That is if 87 = {z e RV 3 lz] < 1},

O=s,u, then ¢ : U - B" x B°

is a C2 diffeomorphism such that en, we le

90 = (0,0), W) < ¢ @ x {o}) < Wy (x) and WS G < U

Let (E,n) be coordinates on B" x B®

¢(z) = (&(2),n(2)).

-n*
en (f )
» and for z ¢ U, write

If z ¢ Wg(x) let Dg(z,n) be the connected

Now we
-1, .u s i . and € oV
component of ¢ “(B" x {n(z)}) n WE(x,n) containing =z. We depict and ¥y €
this in figure 7.1.
WS (x,m) (a) |
€
u
D¢ (z,m) ®) ¢
Suppos

for € sm

(c)

Let
volume. C

Figure 7.1

(d)

By Fu

be proved




ijz(z,n) 0 < i <n, isa 02 u=disk in M, ‘and the

ric induces a C1 u-dimensional volume form ' wi(j,z)=w(j;z,n

o - o u K i 0
3) +(2c€0)\ 1)Ot+ "‘-“'(ZCEO)\“[I’,/ZJ)“ ;y € ijE(x,n), then w(;;,x)y coincides with the form w

1 . . ‘
ine 4)1%, but if y ¢ fJDZ(x,n), this will not generally be

(2ce )®
o

~fad“*iantage of using the forms w(j,z,n) will be that they ‘come
5 =

mooth coordinate system, ans later we will be able to use Fubini's

Proceeding as in the definition of ¢%, if y ¢ £30%z,n)
Wit ‘ » 3 3
h ¢ small, Xoe A, and . ;1;() ! . ; : , €
. y y.‘the equation
chart aboutr 'y which contains -
o
Lf BU={p rO:

Plzf <13,

diffeomorphism such’ that

f*W(j+l,Z)f(y) = E(Y)W(jaz)ya

... e | :
e(x) and W;s(x,n) S g }.et o (y) log Y(y). As before, if vy e De(z,n), z € Wz(x),

S 9%

s :
BT n ¥)
s.vand feor ,n) 'w(O,z)y =l

u
)
e (2

Z e U, write win,z) .

fy
b{v we claim there is a constant K > 0 such that if .z € Wz(x)

s1) be the connected

COntaining z We depq :
FE g epi : 334
¥ Ct y € D_(z,n), then

Ws(x,n) o
/ . @ [s8%@) -5 ¢"®)| <K and
n n
D (z,n) ‘
L e —a
®) [s ¢ - s ¢ (2] sk
Suppose (a) ‘and (b) hold for the moment. It is evident that,
e , for € small,

(c) U Dglz(z,n) c Wz(x,n) = U D;E(Z,n)-
zewzlz (%) éewze (%)

Let m, be a v-dimenstional volume, and m, be 8~dimensional

volume.  Clearly, there is a constant Cl e 0 so that
t

@ ¢t

1, < ‘“s“’z(x” = cl .

yE

By Fubini's theorem and (c) and (d), the volume lemma (7.4) will

be proved if ‘we can find a constant 02 e > 0 such that for z € Wg(x),
s
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-5 ¢"(x)
< C2,€

(e) C;:,tﬁ <m (OF(z,m) e

To prove (3), we first use the change of variables formula for
multiple integrals to get
u SnEU(Y) n
(£) mu(DE(z,n)) = w(o¢)ydy = e ‘w(n,z)fnyd(f V)

p¥(z,n) % (z,0)
£ I

By an estimate similar to the )\-lemma (2.5), the disks fJDZ(z,n)
converge to qug(x,n) in the C1 topology as j 1increases. Further~

more, anz(x,n) = W;(fnx). Thus, there is a constant C3 e > 0 such
¥

that

¢l cm (£"%(z,n)) < ¢
u 3

3se 3,e

By (a), (b), and (£),

~2K+5 9 Yex)

o a u 2848 ¢ (x)
e mu(f De(z,n)) < m(Dg(z,n)) < e n

em (£°0%(z,n)).
u €

. 2K Again, as
So, (e) follows taking Cz;€~ C3’Ee .

Now the proofs of estimates (a) and (b) are very similar to that of
lemma (7.3) except that we replace M by the Grassmann bundle GU(M) of

u-dimensional planes over M. Since f is Cz, if we identify points

4¢ » 0 be

Y e fJDg(z,n) with their wu-dimensional tangent planes, Tyijg(z,n),

We fi
then ¢° becomes a C1 function & on Gu(M). Thus, there is a

such that
constant K1 > 0 such that
m(M) 2
&) - )] < Klx-5] for %5 €cn. ; P

other han
u
Let du be the metric on G (M). If 2z € Wi(x), then there is

Jnu u -3
d (T ., £°D _(z,n),E ", ) £ CA
u sz £ fJx




€C>0 and X >1 by a A-lemma type estimate. Setting

f variables formula for

.u(a,n) and x = E; gives

n-1
_ u uy uon ke o u ke
s 90 Is t%(@ - s " @] lkzo th etz ) - e |
e 'W(n’z)fnyd(fnﬁ
RACRY < nil kX < 4 .
k=0 ! 17t

2.5), the disks fJDZ(z,n)

u —u
18 j increases, Further. implies (a) for r , so (a) follows for ¢ .

fn the other hand, for 0 < j <n, each disk ijg(z,n) is the

constant c3 > 0 such
3 s Iy
hoof a C1 function nj from WZ(fJx) to Wi(fjx). Moreover,
Cl sizes the nj's are all uniformly bounded. This implies that
: C
3, ¥ € Dz(z,n), then
4, £90%(z,n),T ; ORIV Cld(ij,sz)
K+S ¢U(X) £y 2z
n —(n-
°mu(anZ(z,n))_ < CZX (=9 for some constants Cl’ C2 > 0.

ain, as above this gives (b) for cu, and, hence, it gives (b) for

' very similar to that of

assmann bundle GY(M) of 5n¢u(P)
Proof of lemma (7.5). Recall that 2 = J e . Let

pePer(n)

if we identify points

planes, Tyijg(z,n), 2e > 0 be an expansive constant for fIA.

Thus, there is a We first prove part (a). If Py #p, in Per(n), there 0 < j <n

such that d(fjpl,fjpz) > 2e. Thus, Wi(pl,n) n Wi(pz,n) = ¢. So,

n(M) = Z m(Wi(p,n)) 2 ce’lzn by the volume lemma (7.4). On the

r %,y € g4
Y€ G, p Per(n)

other hand, by specification (lemma (7.1)), for each x e A, and n 2 1,

;(X), then

there is a p ¢ Per(n + P(g)) such that x ¢ Wi(p,n). Thus

Wz(A) = \,}wi(x) c L.} wgép’n)

xeh pePer (ntP(e))




s _¢"(p)
0 <m@WS(A)) < Cpe ) e af @
€ pePer (ntP(e))

-1 -p[lo"] .8
This gives Csm(M) > Zn > Czee m(wﬁ(A)) for n > P(e) and (a)

clearly follows.
To prove (b), we first prove
(¢) there is a constant DE > 0 so that for n, > P(%) =P, we

have

T
~-r / is «
D z <z <D aid (c)

€ i=1 ni—P nl+...+nr

‘ Now, wi

L weh that
For p € Per( ) ni) and 1 <1i <71, let zi(p) € Per(ni + P)
i=1
n +n_+.4n

%-—specify (g° 1 i-1

p,ni). For convenience, we let o= 0. Then let

z(p) = (Zl(P),---,Zr(P))- If p; = p,, thensome j >0,

J . £ . i E
d(prl’fJPZ) >g, so for some i and k,d(f zk(pl),flzk(pz)) > % ,

_ _ T
and z(pl) z z(pz). Thus, if T = Z ., and K is as in lemma (7.3),
i=1

u
ST¢ (® #y (a), the

e
pePer T gontradicti

T r
u u u
PePgr RGP 1218“1+P¢ e 1218“1+P¢ @4

{bh) follows

T
<exp (R+2[[6%[Dr) ] TTexp(s 6%,
1 i

Zages.Z_ 1=
1’ T

r
T T—T

- Da : Zn.+P
i=1

with D_ = exp(K pll¢"]]). Similarly, if z; € Per(n, - P), and




‘;..,zr), there is a p(;) ¢ Per T suchi that

S u
, n¢ ) n0+ +ni
. ‘ £

_lp(z) e/3~épe¢ifies (zi,ni - P);

= im?lies p(z) = plw).
n > P(e) -and . (a) -

. T

TTez

g z exp( z Sn - ¢u(zi))
i=1 Py Zyseeeaz, dsl 37P

T
= De zn +.00kn
1 T

P , ¢) is established.

If -not, let n be

Now, we claim Z <D Z - for'all m 2 1.
o ntP en

ah‘that Zn+P >+ a)D;Zn ‘w1th suitable small o,

-kzk

€ Per(ni + P)
Z 2D
k{n+2P) € ntP

 Then, for k = 1,

e let no= 0. Then let

p ¥ + o) oKk |
€ £:n

j >0,

21
Pa ) > £,

‘as in lemma (7.3), 1

k(n+2P) 7 nH2P

log Z [log (14a) + log Zn].

L
k (n+2P)

1g§ (a), the term on the left approaches zero as k - = which gives a

contradiction.  Similarly, we get Zn—P 2 D;lzn for-all n > P. ~Then
(b) follows setting C1 = Di .

r
u
L) * izlsni.ﬂ?q) (Zi))

u
.(sn1_+P¢ (z,))




8. Diffeomorphisms with infinitely many attractors.

We have seen that hyperbolic attractors have a rich structure.
Given a diffeomorphism £, one would like to know what kinds of attrac-
tors f possesses. In particular, are there finitely many? Do almost
all points, say in the sense of Lebesgue measure, approach attractors?
For even simple diffeomorphisms which arise in practice, these questions
are very difficult.

On the other hand, if p is a hyperbolic periodic point of f, and
cL Hp(f) is hyperbolic, then (£ Hp(f) has a dense orbit and a local
product structure. By theorem (3.8), f|C£ Hp(f) is a finite-to-one
quotient of a subshift of finité type. Also, by theorem (3.7) there are

neighborhoods U of (£ Hp(f) in M and N of f in DifflM such

that for g e N, g!(ﬁ\gn(U) is topologically conjugate to £]CL Hp(f).
n

Thus, we understand the structure of f[CZ Hp(f) very well and this
structure persists when f is perturbed.

Now there are many diffeomorphisms f for which cL Hp(f) is not
hyperbolic for some hyperbolic periodic point p, and we would like to
understand these. At present our knowledge of these diffeomorphisms is
quite incomplete, and here we shall merely focus on a few typical ex-
amples and some of their properties.

It follows from proposition (4,.2) that a diffeomorphism with a
hyperbolic limit set has only finitely many attractors. We will see
below that on surfaces (f Hp(f) not being hyperbolic frequently leads
to the existence of infinitely many periodic attractors.

To begin with, let us try to imagine the simplest way we might have
ce Hp not hyperbolic. Clearly, we should try to find a non-transverse

homoelinic point q of o(p). However, the Kupka-~Smale theorem (1.3)

we found
t lack of
&ite hyper
H-transver
mension la
For ins
feomorphi
f'p = A

fixed poix

the mapping

saddle poin
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mplest way we might have

> find a non~transverse

<a-Smale theorem (1.3)

, us that generically all homoclinic points are transverse, SO .even

found such - a q we could perturb it away. If we want a persis-
lack of ‘transversality, it 'is natural to replace o(p) by an in-
hyperbolic set A and try to arrange for Wu(A) and WS(A) to be

transverse in a persistent way. This turns out to be easy to do in

neion larger than 2.
__ For instance, return to Plykin's example in section 5. This is a

2 . :
of a subset D ¢ IR into its interior such that

£ = Al(f) is a one~dimensional hyperbolic- attractor, Let p be

xed point . of  f  in Al’ and. consider Wg(p) for some: small €.

r each x € Wi(p), Wo(x) is an interval, and (W(x)} glves

€ er‘:: (p)
. {~dimensional foliatiom of a neighborhood of p in D. Let: x>1,
od let g(x) = Ax be a linear expansion on the line M. Consider

e ﬁapping fxgi:DXx®R>D xIR. Clearly, (p,0) is a hyperbolic

saddle point for £ X g and dim W'(p,0), f X g) = 2. Let y bea

curve joining two points z; € Wg((P,O),f x g) - {(p,0)} and

%, € Wo((p,0),f x8) ~{(p,0)} as in figure 8.1,

Y

Figure 8.1
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Let N be a small tubular neighborhood of Y, and let ¢ be a

diffeomorphism such that o(z) = z for z ¢ N and ¢ maps a disk A

in N n Wg((p,o),f X g) to a curved disk A’ which meets

N n Wz((p,o),f X g) in a circle as in figure 8.2

ﬁg(y) al

We will

A perdio

tled dissi;

Figure 8.2

Let f = o(f x g). If N is small, one may check that

A' = Al x {0} is hyperbolic for f, and for any fl Cl near E,
WU(A'(fl),fl) has tangencies with WS(A'(fl),fl) near A'. That is,

' Thus un
there are points X,¥ € A'(fl) such that Wu(x) is tangent to Ws(y) ]

~closure C
near A', Moreover, in this case, if fl is C1 near f and p1 is h-clo

the hyperbolic fixed point of fl near

A hype
(p,0) then (2 Hp (fl) is 4 1is a hyp

1 hen A < CE
not hyperbolic. then A

ipative
This shows that the Kupka-Smale theorem fails if we try to replace d1ssipa

periodic points by hyperbolic sets.

P 3 8 £
It also shows that Axiom A dif- This give

feomorphisns,

: A, and i
Or more generally diffeomorphisms with hyperbolic limit on

, el ) . . The fia
sets, are not dense in Diff M for any M with dim M > 2. It is

less obvious that byperbolic sets with persistently tangent stable and

Lemma 8. 2.
unstable manifolds exist in dimension two. We will see that they do in wu(o(p)) Te
the ¢° topology with r > 2, but it is still not known if r =1,

neighborhooc



Y, and let ¢ be a

ind" ¢ maps a disk A

1ich meets

r check that
fl Cl'near ?,
near A'. That is,
is tangent to Ws(y)
near f and Py is
en (£ HPl(fl) is
if we try to replace
that Axiom A dif-
\ hyperbolic limit
mM> 2., It is
tangent stable and
see that they do in

known if r = 1.

How let us -assume that M is a compact two-dimensional manifold
fc Difer with r 2 2. A hyperbolic basic set A for f is

wild 1f there is a neighborhood N of £ in Diff'M 'such that

ny g € N, there are points. x and v € A(g) such that Wi(x)
Qs(y) are tangent somewhere.

We will omit the word basic and call such sets A, wild hyperbolic

A periodic point p of period n of a diffeomorphism will be

léd dissipative if det Tpfn < 1. Let. S(f) denote the set of

{odic sinks of f£. That is, if p ¢ S(f) and fn(p) = p, then all

‘gtnvalues of Tpfn have norm less than one.

eorem (8.1). Suppose f e Diferz, r 2 2, has a wild hyperbolic set

and N contains a dissipative periodic point p. There are a neigh-

rhood N of £ 1in Difer2 and a residual subset B c N - such that

# ge B, then CL Hp(g) c CL s(g).

Thus under the conditions of theorem (8.1) each point of the

h=elosure CL Hp(g) is a limit of infinitely many periodic sinks. If

is a hyperbolic basic set for f and »p is a periodic point in A,

then A c CL Hp(f), so generically, each wild hyperbolic set with a
dissipative periodic point is in the closure of the periodic sinks.

This gives an infinite number of invariant open sets which accumulate

on L, and is the reason why we call such A's wild.

The first part of the proof of theorem (8.1) is the next lemma.

Lemma 8.2. Suppose p is a dissipative periodic point for £ and

wio(p)) is tangent to W(ia(p)) at apoint x. If U is awy

neighborhood of x in M and N is any neighborhood of £ 1in
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Diff'M, then there i a g e N which has a periodic sink in U.

Proof. Let PysPy € o(p) be such that Ws(pl) is tangent to
Wu(pz) at x. Let Ys and Yu be small curves in Ws(pl) and
Wu(pz) respectively such that Ys and Yu are tangent at s, and
X 1is not in the boundary of ys or Yu' Since x cannot be a fixed
point of f, choose a small neighborhood U of x such that

1

fUaAU=¢ and YUY, < U. Our perturbations of f will be of the

form g = ¢of where ¢ is ct near the identity and ¢(z) = z for

z ¢ U. For U small enough, fnys nU=¢ and f‘nyu nuU=#¢ for

n > 0. Thus, p is periodic for any such g and Ys c Ws(pl,g) while

oly) < wu(pz,g). Let us write Y, (8 = oly,)-

1

nondegenerate second order contact at x.

We first choose ¢ so that the curves Ys and Yu(gl) have

This gives us figure 8.3.

fee figure

Figure 8.3

Assume we have x and U in a coordinate system (u,v) so that

X corresponds to (0,0), YS < (v =0), and yu(gl) corresponds to




reriodic sink i
odic sink in v, canlw r(u)} where a >0 and ‘lim lI&.ll.= 0. We may

u>0 ‘u!z
s .
W (Pl) is- tangent to v, mear 0, a suitable small disk D(vo) = {(u,v) : |u] < Eqps
‘ €
curves in Ws(pl) and fﬁsz} where = is small and an integer n > 0 so that
, , 1
are tangent at s, and ' and g?D(vo) look as in Figure 8.4.

nce x -cannot be a fixed D(VO)

of x such that

tions of 'f will be of the

ity and: ¢(z) =z for
. g-D(v )
d l 0
d f yu nNuU=¢ for

s .
ind Ys < W (pl,g) while

Figure 8.4

YS ind Y u (g} ) have
ourse D(V ) may be below Y s and g];D(V ) may intersect D(V ).

ﬁ\important thing is that by translating g?D(vo) up or down via a
‘ily {¢t} with ' t in some interval (-§,8), § > 0, we can find

t ¢ (=8,8) with s # t .such that

gD(v) n D(v,)

gD(v) n D(v )

8, Ai is +1 for 1= 1,2.

(3) gz has no fixed points on BD(VO) and the index of gz

on D(vo) is 0 for v e (-6,6).

See figure 8.5

A Az
o / \
system (u,v) so that
SzD(vo) gtnAl gtnAZ

31) corresponds to

Figure 8.5
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Now for some o between s and t, it follows that g; has a
fixed point =z in D(vo) with eigenvalue 1. 1If iD(VO) is very near

x, then det ngg <1 for we D(vo) since most of the iterates

gJD(VO), 0 £ j € n, are near the dissipative orbit o(p). Thus, the

eigenvalues of ngn must be 1 and | where [u] < 1.
Now there is a Cr g2~invariant curve § through z (r < ®) tan-
gent to the eigenspace of ngg corresponding to 1. This uses the
so-called center manifold theorem (see [18]). Then, gzlc is a dif-
feomorphism of a real interval with a fixed point of derivative 1, so
we clearly can perturb gglc to obtain a fixed point zq in ¢ with

derivative less than 1. If we realize this perturbation as gnfc

where g = ¢of, then zy is a periodic sink for g.

Lemma (8.3). Let p and q be h-related hyperbolic periodic points
of a cF diffeomorphism £ with q ¢ o(p). Suppose W (o(p))  and
Ws(o(p)) are tangent at some point. Then f may be C° perturbed to
g such that o(p) and o(g) are hyperbolic periodic orbits of &g,

and wu(o(q),g) and Ws(o(q),g) have a tangency arbitrarily near p.

Proof. Let x be the point at which Wu(o(p)) and Ws(o(p))
are tangent. Let C(z,f) denote the connected component of a point
z in aset F. For € > 0 small, set Y: = C(x,Wu(x) n BE(x)) and
Ys = C(x,WS(x) n BE(X)) where Bg(x) = {y € M: d(x,y) E_E}. Here,
as usual, d is the distance function omn M. If € is small enough,

then YZ is an interval about x in Wu(x), YS

e is an interval abogt

. s iu _ i,s -
x in W (x), and, for 1 # 0, f Ye O BZe(x) =f and f Yo 0 Bze(x)
0.

We will produce sequences of intervals I I and

10 Ipseee
Jl,JZ,... such that




it follows that gn has a
o
1. 1f D(vo) is very near
ce most of the iteraies
ve orbit o(p). Thus, the
ere |u} < 1.
2 through z (r < =) tap-
ling to 1. This uses the
n
). Then, g |z is a dif-
point of derivative 1, so
ixed point z; in T with
s perturbation as gnlc

« for g.

wperbolic periodic points
Suppose W'(o(p))  and

f may be C* perturbed to

¢ periodic orbits of g,

gency arbitrarily near op.

u
W (o(p)) and W(o(p))
:ed component of a point
. u
P C(x,W (x) n Be(x)) and
M : d(x,y) <€}, Here,
If € is small enough,
s .
YE 1s an interval abopt

=@ and fiY: n Bzg(x) -

< W(o(@) and I < W (0(q))

u s . r
;i +.Yé and Ji *’YS in the ' C~ . topologies

. for n >:1" and large i, f-nIi n Be(x) = { and"

.n =
£3,0 Be(x) B,

ppose these sequences have been found.  Then for large ‘i, (b)

tees we may find a diffeomorphism ¢ ¢’ near the identity such

~§(Ii) is tangent to J, near .x and ¢{n) =n for " n¢ BE(x).

i
‘ﬁen set ‘g .= ¢of, then (a) and (c) guarantee that

~§‘Wu(o(q),g) “and Ji c Ws(o(q),g). Since the tangenéy of ¢(Ii)
i is ‘near. x, its orbit under . g ‘will pass near p. Thus, to

¢ the lemma we only need to produce .the sequences (Ii) and (Ji)'
:il produce - the Ii's and leave the analogéus construétiou of the

. to the reader.

Let T be.a common period of p and q. Let Py € o(p) and

o(p) be such that Wu(pl) and Ws(pz) are tangent at x. Let

be an interval in Wu(pl) such that {pl,x} < D - 3D and

f_JD, and let D' be an interval in Ws(pz) such that
1s¥%r
D' - 30" and x £ D'.

Since p and g are h-related, we may choose a point z of

vansverse intersection of Wu(o(q)) and Ws(pz) so that z ¢ D' - 3D".

§§ause o(q) n o(p) = @, we have Wu(o(q)) n Wu(o(p)) = @, so we may

hoose a small & > 0 and a small tubular neighborhood N of D

such that £ AN = § for n>0 and k?) f_JN n Be(x) = @§. Also,
1<isT
¢ may take a small tubular neighborhood N' of D' such that

\3} 5" Be(x) = @. TFigure (8.6) gives a typical situation when
neyst

%= 1, Observe that D may meet D' in several places
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Figure 8.6

If I is a small interval about =z in Wu(o(q)) and ¢ homocl:

then
{ =+ oo

(d) £ 0 n BE(x) =@ for n>0

jntervals

() If k>0 is the smallest non-negative integer such that - {actually

ka n Be(x) # @, then 11 ¢ f—JN U ij‘

for n >
1=3y=<t 0<3<T

for 0 £ i < k.

such that
T
Now, for large 1, a C' version of (2.5) insures that C(f iI,N) nen g .
T, i
is an interval C° near D, so C(f 1I,N) n B (x) is an interval c¥
€ an approj

T
near Yz. If we let Ii = C(f iI,N) n BE(X)’ then (d), (e), and the

and we S
construction of N and N' guarantee that f—nIi n Be(x) =@ for

(a)
(B)

n > 1, as required.

Lemma (8.4). Let N be a hyperbolic basic set for £ such that W (M) )
and W (L) are tangent at a point =x. Let p be a periodic point in A.




B (%)

(o(q)) and ¢ ig small,

3

: integer such that
NUEs
0sj<T

Ty
sures that C(f I,N)

Y is an interval ¢t
1 (d), (e), and the

0B = for

£ such that w'(p)

1 periodic point in A.

may be c’ perturbed to g -so that p . is periodic for g

Hop),g) and W (o(p),g) have a tangency arbitrarily near x.

Proof. ' Using corollary (3.6), let € > 0 be small enough so that

{y e M1 d(y,N) <e}, then (;\fnv = A’ and Un BZ€(x) =@,

1’22 ¢\ be such that w“(zl) is tangent to Ws(zz) at - x.

~-n u, -1
> > {
n, 0 . so that n 2n, implies f "x e We(f zl) c U and

Wz(fnzz) < U. Then choose § ¢ (0,€) so that ijG(X) n Bs(x)

for 3] Smo lety . be a small interval in
.

a(f ozl) n Bg(x) containing .x. Then, f-nYu n Bé(x) = @ = for

1. 'Similarly, there is an interval Ys c Ws(zz) about . x . such

fnys n Bé(x) =f for n > 1. Since the orbits of the homoclinic

ints of p ‘are demse in A, there are sequences (ri)iZl’ (Si)iil
-n n

_homoclinic points of = o(p) . such that T - f 0z1 and s; 7~ £

2

H " u . U - [s]
i=w.; For large i, WZe(ri) is near W2€(f zl), so ‘there are

n

u u o . 1
Ii [ WZs(ri) < W (o(p)) such that f Ii - Yu in the C

~n+n
actually ¢’) topology. For large i, one has f 0Ii n BS(X) =0

for n > 1. Similarly, there are intervals Ji < W;E(si) [ Ws(o(p))

-1
juch that " £ OJ:.L > Ys as i+ «, and, for large i and all mn > 1,

fi-n
OJi n Bé(x) = . As in the proof of lemma (8.3), if we let ¢ be

an appropriate function Cr near id with ¢(w) = w, for w ¢ Bé(x),

and we set g = ¢of, then we have, for some large i,

n -n
(a) o¢(f OIi) is tangent to f OJi near X.
(b) p is a hyperbolic periodic point for g.

n -
(c) o(f 0Ii) < W (o(p),g) and £ °J, < W (o (p),g).

This proves lemma (8.4).
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Now we can prove theorem (8.1).

Let A be a wild hyperbolic set for f containing the dissipative
periodic point p. Let N be a neighborhood of f so that if g is
in N, then wu(A(g)) is tangent somewhere to WS(A(g)), and p(g)
is dissipative. For =n > 1, let Per(n,g) be the set of hyperbolic
periodic points of g of period less than or equal to n, and let
Per(g) be the set of all hyperbolic periodic orbits of g. Finally,
let Hn be the set of diffeomorphisms g in N such that for each

q € Per(n,g) n Hp(g)’ there is a periodic sink s(q) of g such that

d(s(q),q) < %. Clearly, Hn is an open subset of N. Using lemmas

(8.2), (8.3), and (8.4), we can prove Hn is dense in N . To see
this let g e N, and let q ¢ Per(n,g) n Hp(g)' Let p = p(g). By
lemma (8.4) we may perturb to gy SO that p e Per(gl) and
Wu(o(p),gl) is tangent somewhere to Ws(o(p),gl). From the proof of
lemma (8.4), one sees that we may choose this g, SO that q ¢ Per(gl)
and p ~ q. Now, lemma (8.3) says we may perturb to g, leaving »p
and q unaffected and introduce a tangency of Wn(o(q),gz) and
ws(o(q),gz) somewhere. Applying (8.3) again enables us to perturb
gy SO that p ¢ Per(g3), q € Per(gB), and Wu(o(p),g3) has a tangency
with Ws(o(p),g3) at some x with d(x,q) <~§; . Now, lemma (8.2)
gives us a g, near g which has a sink s(q) within % of q.
Thus, Hn is dense and open in N. So B ={/:; Hn is residual
in N. To complete the proof of theorem (8.1), we E;ed only remarkthat
if g ¢ B, and q ¢ Hp(g), then q 1is a limit of a sequence
q:.L € Per(ni,g) n Hp(g) with n, * e, As we have already noted in
section 3, this follows from the homoclinic theorem (2.3).

As an indication of the fact the wild hyperbolic sets occur fre-

quently, we have

the Ui

gntainia

apecifyi
Eac

divides




containing the dissipative

of f gg that if g is

s
° W (A(g)), and p(g)
2 the set of hyperbolic

equal to n, and let

orbits of 8. Finally,

N such that for each
s(q)’ of g~ such that

E'of 'N.. Using lemmas

lense in N . To see

Let p =p(g). By
Per(gl) and
1). From the proof of
3180 that q ¢ Per(gl)
b to 8, leaving

U
) (O(q),gz) and
ables us to perturb
(P),g3) has. a tangency
.. Now, lemma (8.2)

1

within = of q.
=ff\ H is

ws N residual
e need only remark that
a sequence
already noted in

m (2.3),

lic sets occur fre-
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15). Let p  be a dissipative hyperbolic saddle point.of a

eomorphism £ on Mz, .2 2.  Suppose Wé(p) and W (p)

ent at some point x. Then arbitrarily C° near f there is

eomorphism g having a wild hyperbolic set near the orbit of  x.

a proof of this theorem, see [32].

condition: that Wu(p) and ws(p) be tangent somewhere ‘occurs

naturally in one~parameter families of diffeomorphisms. For in-

, it frequently occurs in arcé between two structurally stable

omorphisms of different types. ' The study of such arcs, or more

1ly, parametrized systems of diffeomorphisms and flows; is called

éaticn theory. : This is a subject of wide scope with many inierest—

pplications,

We refer the reader:to [24], [14], [13], [34], [35]
pore ‘information.

 We now describe some specific diffeomorphisms of the two-disk

with wild hyperbolic sets. Thinking of D2 ‘as a subset of any two

ifold MZ, these diffeomorphisms provide examples on MZ. First,

need some preliminaries on Cantor sets.

A Cantor set F -is a compact subset of the real line - IR - such

at each point of F is a limit point of F and the interior of F
o«
Given such a set we may write IR - F = Ui
3
are unbounded.

is ‘empty. where each

is an open interval and U_, and U_ We call

2 1
_the Ui's the gaps of F. Let FO be the smallest closed interval

containing ‘F, and define, for i > 1, Fi = Fo - \v) Uj. Then

N =
FO o Fl > ... and F = Fi.

i20
We call {Fi} a defining sequence for ¥. It is obtained by

specifying an ordering of the bounded gaps of F.

Each Ui’ i > 0, lies in a single component Fi of Fi’ and

divides ﬂfz into two components. Let cip be the component of
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F, - U to the left of U,, and let ¢
i i i

to the right of U

be the component of F, - U
ir i

i

; as in figure 8.7.

Figure 8.7

Let £J be the length of an interval J and set

Kc,z a 5
Tdr}) = ;:f{minczﬁf ’zu.r”
>0 i i

Finally, set T (f) = sup{T({Fi}) : {Fi} ?s a defining sequence for F}.
We call t(F) the thickness of F. It measures the size of F 4in a
certain sense.

Let us consider some examples. Let 0 < B <1. The middle B-set
F(B) is defined as follows.

Let Fo be a closed interval. Let U0 be the open interval of

length BK(FO) centered at the midpoint of Fo. Then Fl = Fo - Uo

has two components Fll and F12' Form Fz by removing open inter-

vals Ull’UIZ from Fll and FlZ S0 that Uli is centered in Fli

and Z(Uli) = BZ(Fli). Continue in this manner defining Fi by re~

moving from each component ¢ of Fi a centrally placed open in-

-1
terval of length BL(c). Thus, if l§§~= o, then Fi is a union of

2* components of length at. Finally, set F(R) = (N\Fi. The Fi's
i>0
in the example are not a defining sequence for F(B), because we have

taken out several gaps of F at each stage. It is easy to check that

a_ 1-B

T(F(B)) = 828 - So T(F(B)) = as B~ 0. Observe that the




e 'the component of ¥ - U
i

e —

c, ]
ir

set

5} .

i

defining sequence for ~F},

s the size of F in a
“8 <1. The middle B~set

‘e the open interval of
.- Then- F. = -

1 Fo Uo
¥y removing open inter-
is centered in F

1i
defining F
g 1 by re-
ally placed open in-

n :
Fi is a union of

) = (A\F,. The F,'s
>0 * +
F(8), because we have

is easy to check that

Observe that the

sﬁte‘of each " F(R) ~is .0 since the measure' of Fi = Z;Qi.

or thickness is the following.

kIf F.and G- are Cantor sets with T(F)+1(G) >'1 and

& contained in a gap of the other, then. F n G # 0.

0of. Let {Fi} and {Gi} be defining sequences of F . and G

ﬁivély such that T({Fi})~({Gi}) > 1. ‘Since neither F nor G

‘gép of the other, Fo n G0 # @. 'We prove the following state-

1f ¢ is a component. of Fi which meets G,.then ¢

contains a component. of Fi+1 which meets:  G.

#*) has been proved, we have that' each Fi meets . G, so F. meets
t us prove (*).

uppose ¢ -is a component of F, such that ¢ n G # @, If ¢

180 a component of Fi+1’ there is nothing to prove, so assume that

by removing the F-gap Uﬁ c c.  Let ps c

i

is obtained from F r

the components of ¢ - U, as in figure 8.8.

Figure 8.8

Assume by way of contradiction that cp and c. do not meet

G, Thus, both cp and ¢, are in G-gaps. If both cp and c, were

in unbounded G-gaps, then we would have one of the following situations.

(a) Go lies to the left of cp



(b) Go lies to the right of c,

F
(c) G0 F Ui'

Now (a) and (b) contradict the assumption that c n G # #, and (c)
would put G in the F-gap Uz.

Hence, at least one of CZ and cr is in a bounded G-gap.

Suppose c£ is in the bounded G-gap Ug. The argument is similar if

. is in a bounded G-gap.

G
1 1 Y
Let cp and e, be the components of Gj+l adjacent to U, as

in figure 8.9.

Figure 8.9

Now . cannot be in U? for this would give ¢ ¢ Ug contrary to
hypothesis.
Then we have,
Case 1: c; IS Uz
Case 2: c_n cé #0 .

In case 1, we have figure 8.10.

Figure 8.10

in cas

with
Firsi
This

square

nyperbold

tn W)




£c£ ﬂ(c;)

¥ G
Z(Ui) !L(Uj)

ves < 1, a contradiction.

u case 2, we have c. is contained in another G-gap UG which is

that ¢ n G # ¢, and (c) k

So'we have figure 8.11.

¢
£ Cr

/5

4

et
VAR

G
i Uk
Figure 8.11

$ in a bounded G-gap.

The argument ig similar if

¢ }

oy djacent to 1 s

Lid

“5] ¢ is the component of G adjacent to UG and to its left,
c’ qu £c ktl k
v .
cz c Ui, s0 i -—% < 1, a contradiction. This proves (*).
Lu Ly
k i
Now we describe our examples. All of our diffeomorphisms will be
with r 2 2 fixed.
e ¢ c UG . First return to the horseshoe diffeomorphism as defined in section
2 'y contrary to

, This is a diffeomorphism f of IR2 to IR2 for which there is

L}

square Q such that £Q n Q A1 u A, with A, and A disjoint

2 1 2
a O -1 -0 0
1 -1 and TE|f "A, =

0 a 2 0 —a_l

sctangles such that Tflf-lA

with 0<a<*

5 This time we adjust Q so that the left sides of Q

and A1 coincide and the right sides of Q and A2 coincide, and we

take O ¢ (%

hyperbolic fixed point p for f such that the boundary of Q is

,%ﬁ. We also want the left lower corner of Q to be a

in w“(p) u Ws(p). See figure (8.12).
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Figure 8.

We can modif
(z) = f(z) off

5 tangent to W
) Figure 8.12

’ This is mosi
1

The shaded area is f-lAl v £ AZ' Let x be the midpoint of the

base of Q, and let Y be a vertical line segment through x dividing

Let [ be :

#,13a. let ¢ b
f—lA1 in half. Recall that (’3 an has the form (interval) x
n<

small neighborho
(Cantor set). If we let FS(Y) =Y n (R\ an, then Fs(y) is a middle

n<0 tangent at x t
u
B-set with o = ;‘2"6' Since %‘ < g < —;—, we have R < —!‘—, and Let F be
T(FE(y)) = % > 1. of Q, and let

From the way we have defined £, there is an interval I in of Q.

u
Wu(p) below Q such that I < A2, £(3I) < Al’ and f£(I) n int Q = ¢ Then le

as in figure 8.13a. is a foliation ¢
1
¢ so that le

tains Y, and a

the correspondi



W (p)

be the midpoint of the

at through x dividing

rm (interval) x

S
en F(Y)"is' a middle

1
B < 3> and

interval I ip

and f(I) n int Q = ¢

£(T)

Figure 8.13a Figure 8.13b

We can modify £ through a curwe of diffeomorphisms to: £ so that

1
z) = £(z) off a neighborhood of Al U A2’ Ic Wu(p,fl), and fl(I)

tangent to Ws(p,fl) at. x as in figure 8.13b.

This is most easily accomplished as follows.

Let:  be.a curve joining a point - f£(I) - Q and. x as in figure

13a,  Let ¢  be a o diffeomorphism such that ¢(z) = z outside a

mall neighborhood of : L ~and ¢ maps a piece of £(I). to a curve
angent. at . x to Ws(p). Then take fl = ¢of,

Let F? be the vertical coordinate curves near the right boundary

of Q, and let Fs be the horizontal coordinate curves near the bottom

ot Q.

Then leu is a foliation of a neighborhood of fl(I)’ and F°

is..a foliation of a neighborhood of Wz(x) for small €. Let us choose
4 so that leu and F° are tangent along a vertical curve which con-

tains' 7y, and all of these tangencies are only first order contacts of

the corresponding curves. This gives us Figure 8.14.



£,(D) < W)

//
777 TN\

Thus, if U is a small neighborhood of x din M, and 7: U - Y
is the projection onto vy, then T restricted to any curve in leu ’ We assut
has a unique non-degenerate maximum which lies on Y. Let 6 be a : the comn:
small rectangular neighborhood of Q. y contail
If we push fl(I) up slightly to give a new f2, then we claim
ME,) = Qf’z‘(ﬁ) = Qf“(a) is a wild hyperbolic set for f

The proof of this fact is as follows.

2t

For g near f2 and 0 < n < =, let ﬁi(A(g)) = (‘\ gja nu,
~n<j<0

and let ﬁE(A(g)) = gz( {A\ gja) n U. It is evident that ﬁz(A(fz))

0<j<n

and ﬁz(A(fz)) are two families of curves in WS(A(fz)) and WU(A(fz)),

=S -u
tivel d W_(A(£ n d W_(A(f Cant ts.
respectively, an (A 2)) Y an LA 2)) n Yy are Cantor sets 4re Cantor
s =5 u =u
Set F (f = W _(A(f d F (f = W _(A(f . Note that
e (£,) () ny an (£, A 0y ote tha their thick
Fs(fz) = FS(Y) since f2 = f off a small neighborhood of f-lc.

" (g) n F
Fi 8.15 shows Wo(A(£,)) and Wo(A(£.)).
igure shows W, 9 2 2 W) n
hyperbolic

Let w

gimilar.

For




% in M, and e U - \%
ad to any curve in leu

son Y. Let Q ‘bea

new f2’ then we claim

'1lic set for fz.

(hg)) = m gdn vy,

~n<j<o
N =5
evident that Wm(A(fz))
s
VINEY) and W(A(E,)),
'} n Yy are Cantor sets,

‘(fz)) N Y. Note that

;hborhood of f°lc_
N.

=8
WZ(A(fz))

Figure 8.15

u
WHACE,))

s sol u
5 is chosen so that . T(F (fz)) =3 T(F (fz)) > 1.

» the comstruction, it is clear that the smallest closed intervals

We assume  f

containing Fs(fz) and Fu(fz) intersect. By lemma (8.6),

fz) and Fu(fz) themselves intersect.

For - g ¢"* near fz, there are foliations Fs(g) and gFu(g)

ch contain the sets ﬁi(A(g)) and ﬁ:(A(g)), respectively. These
1iations are C1 near Fs(fz) and fZFu(fz), respectively, and have
tangent line fields which are tangent along a C1 curve Y(g)

yich in turn is C1 near vy. See lemma (9) in [32] for a proof of

i

this. Now, F°(g) = Wo(A(@) ny(e), and F(g) = Wo(A) n v(8)

are Cantor sets, and neither is in a gap of the other, If we show
their thicknesses are near %, then lemma (8.6) will show that

%(g) n¥'(g) # #. Any point in this last set will be a tangency of

Vu(A(g)) fn WS(A(g)), and we will have shown that A(fz) is a wild

hyperbolic set.

is near & fThe proof for Fu(g) is

Let us prove that T(F¥ (@) g

similar.

For n large, let I be a component of ﬁi(A(g)) n y(g), and let



J be the component of [Wﬁ_l(A(g)) - ﬁi(A(g))] n v(g) which is adja-
cent to TI. It is sufficient to prove that %% is near %. Let
W;(p(g)) be the component of p(g) in wu(p(g)) n Q, and let

m™ooy(g) W;(p(g)) be the mapping induced by projecting along the

curves of FS(g). Since Fs(g) is Cl near Fs(fz), Y(g) 1is Cl

r

near Y(fz), and W;(p(g)) is C  near W§(p(f2)), one has the norm

of the derivative ITW¥ is near 1 on Y(g). Thus, if Il = 7l
21
_ . . 1. a
and Jl = mJ, it suffices to prove 73, 1s near B -
Now
K(Il) ) o
Z(Jl)

L
B

1
where o, = |T (g)-1
i z,
i :
. . . i v .
v, 1is a unit vector in Tz g Il’ and v, is a unit vector in
i

— —l‘ i 1] i
Vil’ Bi = !Tzi(g) Vi" Zi € g Il’ zi €egJ

1’

i
Tzfg J
i

1

For g near f there is a homeomorphism h : A(g) = A(fz) near

2)
iA(g) : Ag) » Biz such that fzh = hg. Also,

h(BIl) = B(Il(fz)) and h(BJl) = a(Jl(fZ)) where Il(fZ) and Jl(fz)

the inclusion

are intervals in Wu(p(fz)), and

n-1
!l(f2 11(f2))

o
n-1 = é
Z(f2 Jl(fz)) -

L(g” 1)

K(gn'lJl)

i . :
B is near 1. Since
i

Since h is near 3 it follows that

iA(g

it suffices to show that

n-1 B, - o {Bi - uiI
(1 - -————*2), it suffices to show that is small. For
i=1 B By

i

g mnear f2’ one has [Bi] > % for all i, so we only need to show that

Z[B. - a.[ is small. Let K,(g) = sup ]T g_l{, let K,(g) be the
i i 1 256 z 2

ym of the cu
#) be the mal
;gﬂla. Obser
sar on Q n f
K () + gy

aoithat Kl(
5%9 diam Q

le, - oyl

and, 80, 2[61 -

Notes: Tt
gection is a wve
remaining parts
129), and [32]
with non-hyper]
variations of

#iirsch, Pugh,




0 y(g) which is adja-

: o

is near 7 Let
)on a,kand let
ojecting along the
S

(£, v(& is ¢

2)), one has the norm

Thus, if I. = 71

1
o
g
i ' i
€ g Il’ zi € g Jl,

nit vector in

h : Alg) » A(fz) near
= hg. Also,

I,(f,) and J (£

)
1 . o
~— 18 near ‘é . Thus
1D
1 n~-1 o,
ice ] E‘l =
i=1 "i
- OL,;

?g*r£~ is amall. For
i

only need to show that

et Kz(g) be the

um of the curvatures of giIl U gil’.2 for “1<£i<n~1,and let

be the maximum norm of the second derivatives of g—l on.

. Observe that. Kz(fz) = K3(f2) = ( . since fz is. piecewise

r on a n;f’;a. Given £ > 0, choose 81 > 0. so that

Kl(fz) + el) diam Q < €, and then suppose .g . is close enough - to

' i i
{Qithat K, (g) < 2K (f)), max{Kz(g),K3(g)} <g, and £(gTug T
) diam Q for 1<i<m- 1.

Then,

: -1 -1
A= re vl - T, g eyl
i i
A -1 -1 -1
< Hr e il = 11,8 vy + e vl - 0T, g7
i - i i i

A

-1 ~ -1
|1l - vl Lyt -1, g vy |
i i i

K, @)%, (8) + Ky@)LE'T, v g7

I A

i
(2K (£ e, +€)) (%) diam Q

A

, 80, [|B, - o] < 4(2K (£,)e; +€))diam Q < €.

Notes: ~The modification Plykin's example at the beginning of this

ection is a variation of examples first studied by Simon [52]. The
emaining parts of this section are variations of results in-[26],
29}, and [32]. The first examples of open sets of diffeomorphisms

th non-hyperbolic h~closures were given by Abraham and Smale [1], and

sriations of these were described by Shub [54], and studied in

irsch, Pugh, and Shub [18].



Concluding Remarks.

We have tried in these lectures to present some of the methods and
results which have been developed in recent years to describe non-
trivial recurrence in ordinary differential equations. We understand
hyperbolic systems quite well, and they provide a wide range of examples.
On the other hand, it is clear that there are many examples of non~-
hyperbolic recurrence which have to be faced.

For future development, we wish to single out several problems.

1. Find examples of hyperbolic sets in models of specific

physical systems. In particular, find non-trivial hyper-
bolic attractors.

Develop a structure theory for non-hyperbolic recurrence.
For instance, is it true generically in Diffr(Sz) that
L(f) has Lebesgue measure zero?

If Nc Diffr(Mz) is an open set of non~-Q-stable diffeo~
morphisms, is there an f ¢ N which has a wild hyperbolic
set?

If (G,ZA) is a subshift of finite type, and F c ZA is

closed with o(F) = F, we call (0,F) a subshift on finitely

many symbols. Is there a residual set B c Diff M such

that for f ¢ B, each Cf Hp(f) is a finite-to-one quotient

of a subshift on finitely many symbols?

{(Thom) Is there a residual set B ¢ Difer such that for

f € B the union of the basins of the attractors of f is

dense in M?
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