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' CYCLES AND BIFURCATION THEORY

*
by S. Newhouse and J. Palis 4

Morse-Smale systems, vector fields or diffeomorphisms, play a
fundamental role in the qualitative theory of dynamical systems. A
special class of them was originally defined by Andronov and Pontrjagin
[2] in theilr characterization of structurally stable differential
equations on the two-dimensional disk. Later, Peixoto showed that this
class was open and dense in the space of vector flelds on any compact
surface {23]. Extending these results to higher dimensions, it has been
shown that Morse-Smale systems are structurally stable and that they
form a dense open set of gradient vector fields on any compact manifold
[20], [22], [30}. Thom has related them to models for phenomena in
nature in his extraordinary book, "Stabilité Structurelle et Morphogénese,"
[401].

A large class of Morse-Smale diffeomorphisms can be obtained as
elements of the flows generated by Morse-Smale vector fields without
closed orbits. From those, via isotopy, one may reach many other types
of structurally stable diffeomorphisms. Recently, Smale proved that any
diffeomorphism is isotopic to an {i-stable one with a zero-dimensional
non—-wandering set, and then Shub and Williams pointed out that these

fi-gtable diffeomorphisms may be made structurally stable [34]. Later,
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CYCLES AND BIFURCATION

Shub showed this could be done with C0 small approximations [26]. When
these structurally stable diffeomorphisms can be further isotoped to a
Morse-Smale diffeomorphism is one of the subjects in the paper (28] by
Shub and Suilivan.
It is known that the presence of cycles in Axiom A systems
preveats {-stability (21], [33]. Indeed, one may perturb in this case
to obtain {-explosions. Part of the motivation for [18) and the present
~ paper came from trying to control the f~explosions which arise in this
manner. However, the general analysis of {-explosions is very complicated,
and a complete description of the phenomenon still remains to be given.
Bifurcation theory is concerned with the changes in orbit structure
of systems depending on a set of parameters. We will mainly be concerned
with the generic point of view. A subset ﬂ! of the space ¢ of arcs £ of
dynamical systems is called residual 1f it contains a countable inter-
gsection of dense open sets. Properties true for such residual sets(B

are called generic properties, and one says they are true "for most &"

in . Our interest is in the generic way in which structural stability
breaks down in one parameter families of dynamical systems. This
problem was studied by Sotomayor in the case of vector fields on two
dimensional manifolds [35], and many authors have investigated related
phenomena [1}, [3], [6], [24), [25], [36), [39].

An understanding of the generic types of bifurcations (i.e.,
Placey where structural stability fails) in the Smale and Shub-Sullivan
frotoples 18 very important. The results in this paper as well as in
[18] provide, in our estimation, many of the basic ingredients necessary
to describe these bifurcations.

In [18], we studied bifurcations of Morse-Smale systems from the

following point of view. Take any compact C® manifold M without boundary,
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and denote by MS, the set of Morse-~Smale diffeomorphisms on M. Let

{Ct: 0<t<1} be an arc of diffeomorphisms of M with Eoc MS. As long

as Et remains in MS for increasing t, it will be topologically conjugate
to EO' Suppose for some t = bO’ Eb ceases to be Iin MS. The question is:
0

what can be saild about the orbit structure of Et for t near bO with t Zbo?

In particular, how often will those Et's be structurally stable and what
kinds of stable Et's appear? These questions were considered in [18]

under the assumption that either L—(Eb ) or L+(Eb } is finite. Here,
0 0

- +
L (£, ) is the closure of the set of a-limit points of £ , and L (§, )
b0 bO b0

is the closure of the set of w-limit points of Eb . A description of the
0

kinds of Eb which generally appear at the first bifurcation point b
0

was
0

given, and open conditions were presented which insure that there will

exist structurally stable Et near Eb for t > by. The kinds of stable
0

diffeomorphisms to be found were also described.

Let us be more precise. Recall that if L-(Eb ) 1s finite, a

0
cycle for Eb is a sequence of periodic orbits o(pl), v ooy 0(p)
0
with o(pl) = O(Pn) such that for each 1<i<n there is a point x € M

with p, in the O0-limit set of x, and p in the w-1limit set of x The
i i i+l

i

cycle is called equidimensional if all the stable manifolds of the pi's

have the same dimension. The simplest situation occurs when there are

no cycles for Eb . Then, one can find a sequence of submanifolds of M,
0
M = Mn > Mn—l e Ml such that Ebo takes each Mi into its interior
and the largest Eb -invariant subset of Mi - Mi—l consists of a single
0
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periodic orbit. In this case there is an interval U about b0 in [0,1]

1 of U. The set U--U1

may be finite, countable, or even contain perfect totally disconnected

such that Ets MS for t in an open dense subget U

{Cantor) sets [18].

However, when Eb has cycles, the analysis becomes delicate, and
0

a complete description of the Et for t near b0 18 not yet known. Under
rather stringent conditions we showed in [18] that structurally stable

Et with infinite zero-dimensional non-wandering sets appear for t near bo.

In the present paper we improve this result considerably. In fact, the

natural assumptions that L—(Eb ) (or L+(Eb )] be finite and hyperbolic
0 0

with an equidimensional cycle are sufficient,

Our results here involve delving more deeply into the structure of
cycles. They can be summarized as follows.

In section 2, after some preliminaries, we will obtain a filtration
theorem for applications to bifurcation theory, and we will show that the
diffeomorphisms satisfying Axiom A and the strong transversality condition
form an open set.

Section 3 concludes a proof that generically arcs § with EO in MS

and L_(gb ) finite form an open subset of the space of all one parameter
0

families. With the exception of some important l-cycle cases, this was

proved in |18]. Here we will treat these l-cycles to obtain the general

theorem. Of course, the result also holds if L+(Eb ) is assumed finite.
0
- +
Moreover, if cither L (Eb ) or L (Eb ) 18 finite, our analyais implies
0 0
that the limit set L(§, ) =L (£, ) u L+(E } has finitely many orbits.
bO bO bO

We will remove the asymmetry in these assumptions by proving the converse:
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for most &, if EOG:MS and L(Eb ) has a finite number of orbits, then
0

either L_(Eb ) or L+(£b ) is finite. A fundamental tool in the analysis
0 0

of theorem (3.1) of this section as well as theorem (4.2) of section 4
is the measure theoretic resolution of certain small denominator problems
analogous to those familiar in celestial mechanics [13, §32].

In sections 4 and 5 it will be shown that generically whenever

Eoe:MS and L-(Eb )} is finite, hyperbolic, and has an equidimensional cycle,
: 0

there always exist structurally stable Et with infinite zero-dimensional
non-wandering sets for t>'b0 near bo. As t approaches bo, the topological
types of these Et's change, so there are many bifurcation points near bO'
However, in this case, the set of t's in [bo,b0+€) for which Et is not
structurally stable has small measure compared to € for €> 0 small. 1In

fact, we conjecture that it has measure zero. Thus, in some sense it is

most likely that Et will be structurally stable for b0< t<1bo+-€ with €

small provided that L-(Ebo) is finite and hyperbolic with an equidimensional
cycle,

Finally, in section 6, we consider bifurcations of more general
Axiom A gystems. We will describe some examples and formulate several

problems.

Let us summarize briefly the results concerning generic arcs

with 50 in MS. 1If L—(Eb ) ig finite with no cycles, then for some € > 0,
0
Ct ¢ MS for t in a dense open set in [bo,boi-e). I1f L_(Eb ) is finite,

0
hyperbolic, and has an equidimensional cycle, then for € >0 small there

are infinitely many topologically distinct structurally stable Et's with
L(Et) infinite and by <t < boi-e. Borrowing Thom's terminology, one might

say that one has an infinite unfolding in this latter case. Finally, the
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set of arcs § with L_(Eb )} finite is open in the space of all arcs.
0

From.the perspective adopted here and in [18], it is apparent
that a fairly complete description of the bifurcation theory of Morse-

Smale systems reduces to the following two conjectures,

Conjecture 1. For most arcs § with EO in MS, the limit set L(Eb )
0

consists of finitely many orbits.

Conjecture 2. For most arcs & with &, in MS, there is an £€> 0 such
: 0

that Et is structurally stable for a dense open set of t in

[bo,b04-e).

Note that even if these conjectures have negative solutions, a general
description of bifurcations of Morse-Smale systems would necessarily
include our results, since they describe an open set of arcs of

diffeomorphisms.
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§2. Let us recall some notation and definitions. Given a compact
o - r r
connected C manifold M, denote by O M) the space of ¢ diffeomorphisms
r

of M with the uniform C* topology, r21l, For f 6,9 (M), peM, the orbit
of p, o(p), is the set {f"(p): n=0, *1, £2, . . . }. The positive
orbit 0+(p) is {fn(p): n 20} and the negative orbit o_(p) is

{f%(p): n<0}. A point yeM is an w-limit point of p if there is a

sequence of integers ny <n2< + + » with n1+°° as 1< guch that

n
f i(p) +y as 1+ y is an a~-1imit point of p if there is a sequence

n
n >n,>. . . withn >-® as 1>© and £ (p) >y. The set of w-Limit
points (0~limit points) of p is denoted w(p) = w{p,f) (a(p)=a(p,f)].

The w-1limit set of f isU w(p,f) and is denoted Lm(f)' Analogously,
peM

the 0-1imit set of £, La(f)’ is defined to be La(f) = U a(p,f). While
peM

each W(p,f) is a closed subset of M, this is not generally true of Lw(f)’
- +
s0 we define L+(f) = Cle(f). Also, set L (f) = C1 La(f)' L (f) and

L (f) are called, respectively, the positive and negative limit sets of f.

The set L(f) = L (f) v L+(f) is called the limit set of f. A point xeM
is non-wandering 1f for every neighborhood U of x in M, there is a positive
integer n (depending on U) such that fn(U) nU %2 @. The non-wandering set

of £ is denoted §1(f). A subset KcM is invariant or f-invariant if

f(K) = K. Thus, £2(f) 1s a closed invariant set, and L(f) is the smallest
closed invariant set in M containing all o and w limit points.
Let d be the distance function defined by some metric on M.

Given any subset K< M, define the stable set of K by
WOK) = WK, E) = {ycM: dist (£7(y),£°(K)) + 0 as n~+w},

and the unstable set of K by
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W) = WK = {yeM: dist (£7(3),£°(K) + 0 as n > -},

Set W (K) = W'(K) -K and W°(K) = W°(K) - K.
A closed f-invariant set AcM is called hyperbolic if there are

a continuous splitting TAM = ESQEU, a constant 0<A<1, and a Riemann

norm on TM such that

S, _ .8 uy _ pu
(1) Txf(Ex) = Efx’ Txf(Ex) Efx’ xelh
s -1 u
(2) ITxf(v)I < Alvl, ve Ex’ xe A and ITxf QIR v, ve Ex’ xel,

As usual, we will also write s = dim E® and u = dim E¥ so
u+s = dim M.

1f A 1s a hyperbolic set for f, then Wu(x) and Ws(x) are C*
injectively immersed copies of Euclidean spaces of dimension u and s,
respectively [8]. A periodic point p of £ 1s a point for which there is
an integer n> 0 such that fn(p) =p. The point p is called hyperbolic if
no eigenvalue of Tpfn has absolute value equal to one. The set of
periodic points of f is denoted P(f).

f is said to satisfy Axiom A if

(1) Q(f) 1is hyperbolic

(2) ClP(f) = Q(f).

In this case WU(Q(f)) = U Wu(x) = M and
xeQU(f)

Wo(s(f)) = U Wi(x) =M [9].

xc§2(f)

1f f satisfies Axiom A, we say that f satisfies the strong

5
transvergality condition if w“(x) is everywhere transverse to W (x)

for all x ¢ M.
Let AS = ASr(M) denote the set of diffeomorphisms satisfying

Axiom A and the strong transversality condition. f e AS is called
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Morse-Smale if Q(f) is finite. Denote the set of Morse-Smale
diffeomorphisms by MS. It can be shown that f e AS 1ff L (f) is hyperbolic
and Wu(x) is transverse to Ws(y) everywhere for x,y € L (f) [15]. Thus
£eMS if and only if L (f) is finite and hyperbolic and W’(L™(f)] 1s
transverse to W° (L™ ().

Our main goals in this section are to establish a sufficiently
general filtration theorem for applications to bifurcation theory and
to prove that AST (M) is open in ﬁr(n) for rz1.

Let us review some basic facts about filtrations. Recall that
given a diffeomorphism £: M-+M, a filtration for f is a decreasing
sequence of gubmanifelds with boundary M = Mk >. . .>M

1
of M (except and M, of course) such that f(M,) < int M
0 i

> MO = @
i,:l.="'1,...,k.
Filtrations were used iIn [20] as part of the proof that MS is
open and more generally by Smale in [32] to get control on the non-
wandering set. Since then they have been widely employed.
To construct a filtration for f we begin with a decomposition
L (f) = Ajuv...u AR, where each Ai is a closed invariant set and

Ay n Aj = @ for 1#j. Say that AiZAj if there is a sequence

.« s A, =A_ such that CLW(A, )} n A ¢ for 1<s<m
] ’ .
1 44 L, 3 1 i

This defines an equivalence relation ~ on {Ai} by Ai"'Aj if and only if
,I\izl\j and Aj >.!\i. Let Yl’ - e e, Yk be the distinct equivalence

classes. These in turn are naturally ordered by Y1 2y, if and only 1if

3

there are [\Q’C-Yi, l\meYJ such that A£>‘ l\m. We may extend this partial
ordering on {Yi} to a linear ordering which we also dencte by z.

Re-labeling the Yi's we may assume Y, 2y, 2. . . 2 ;- We call this a

filtration ordering of {Yi]’. Then we have
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(2.1) Proposition. Corresponding to every filtration ordering

ykz 'Yk_l? - Yl there is a filtration M = Mk:Mk_lb . . PMPM.=§

1 0
@ ), A, - ﬂ £ -, )

Aj €Yy n
(@) m £ ;) U o ) = U 1w’ (y

nz 0 X S P ]

for f such that

).

fl

U{Wu(ﬁg): AleYj}’ for 1j<k.

Here, of course, we define Wu(Yj)

The proof of (2.1) is the same as that of theorem (3.6) of [15] and need
not be given here. With L (f) = A_ v . ., . v AR’ we define a cycle

1
(for L (f)) to be a sequence Ai s e e ey Ai with Ai = Ai and

1 A 1 v

rfa“(/\jL ) n ﬁrs(/\i ) = ¢ for L<3<v, Given a filtration M > . . > M,
j j+l

as above we will be interested in studying the structure of

m £ (Mi— M, 1). For this purpose it is convenient to know when
i-
—oo{n<w

mfn(Mi—Mi_l) either contalns a cycle or reduces to Ai' A condition
n

which guarantees this is that each Ai be an isolated invariant set; that

n
is, that there be a compact neighborhood U, of Ai with mf (Ui) = Ai'
n

In particular, m fn(Ui) C int Ui' We record this as
n ——

(2.2) Proposition. Suppose L (f) = Alu . « U Ay where each Ai is an

isolated invariant set. Let Yy be the equivalence class of {Ai} under ~.

1f Yy contains more than one element, then it contains a cycle.

Proof. Assume l\l,/\2 € y; and Al zAZ. We first assert that the next

gtatements are equivalent
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(a) C1 ﬁ“(/\l) nA, =@

() caf () 0 W) = 0
~u AS
(c) C1W (Al) nw (AZ) z @,
Clearly, (b) implies (a) and (c) implies (a). We show that (a) implies

(b), and then leave to the reader the anmalogous verification of (a)

implies (¢). Assume that Cl ﬁu(f\l) n A2 z @ and let U2 be a compact

neighborhood of hz with MEH(UZ)

n

A2 g_ int U2.

u L]
Set U; = m f“(Uz) and UZ’ m £(u,). Then U, n U, = A,.
nz0 n<0

Let F = U;—f(U;). By analogy with {9], {20] we call F a fundamental

domain for WS(AZ). We first claim that F#@¢. Indeed, if we assume that

8 8
U = £(U), then U° = £3(0°) for all 320, so mf“(u )y = U, =
2 2 2 2 Leo 2 2

mfj (UZ) = m fn(Uz) = A2. By Smale's lemma [15, Lemma (3.5)],
iz0 nezZ

there is a compact subneighborhood QCU2 with AZ c int Q and

f-l (Q) < int Q. Then any x€Q is such that a(x) CA2 in contradiction

to the fact that Cl1 ﬁu(Al) n Az # @§. Thus Fz@. Also, ClFr\/\2 = @,

so F is a proper fundamental domain for WS(AZ). Now we claim

(d) if V 1s any neighborhood of C1F, then Uf“(V) U U‘z‘ is a
nz20

nelghborhood of l\2 in M. Indeed, suppose there were a sequence

u

¢ £ V) u v,

n>0

X1 X595+« . in U, with xi-*l\2 as 1+ and x for

i

-n
all 1. For each 1, let n1>0 be the first integer such that f i(xi) ¢ U,.

Since x, { Uu, n, exists. Moreover, n, +® ag 1+ gince A C int U
i 2 i i 2 7 2
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-n, +1
and /\2 is invariant. Let y be a limit point of {f 1 (xi)}. Then

£2¢y) €U, for all n= 0, but f—l(y) ¢ int UZ' Thus, yeU;-—int (f(UZ)J.

i 5
For large j >0, £ (UZ) i3 near AZ’ so there is an integer j0> 0 such

J -1

S 0 jo
thatyeU2 (U)-U-f(U)Uf(UZ) f(Uz)U...Uf

3
w5 - £ °w))

= U f (F) ( U gl (V). But then for large 2,
1

OSiSjO-l 0<ic<j 0"

€ U fi(V) which is a contradiction. This proves (d). The

X
[ ; .
O_iSJO—l

completion of the proof of Proposition (2.2) now follows exactly as
the proof of Proposition (3.10) of [15].

We now prove that AS is open in £)r- The proof 1s analogous to
that for MS in [20]. We first need some definitions and facts.

Suppose A is a hyperbolic set for a ct diffeomorphism f: M-—+M,
For xe A, £> 0, let W (x) = {yeM: d[fn(x),fn(y)] < €, for n2 0} and
W (x) = {yeM: d(f (x),f (y)] < €, for n<0}. For € small, Wu(x) and

W (x) are ct disks tangent at x to E and E %’ respectively [8]. Further,

mmmc

A is said to have a local product structure if for x,ye A, € small,
W (x) n W (y) < A. A has a local product structure if and only if it

1s an isolated invariant set [9]. Set W ) = UW (x) and W ) =
xel

UW§(X). Then wz(/\) and wz(!\) are closed subsets of M for € small,
X A

and from theorem (1.1) of [9] we know that W (A) = Ufn(WZ(A)) and
nz0

Won) = U[n (Wf(l\)) when A has a local product structure.
n<( :

Civen two subspaces H,K of TyM, ye¢ M, define the angle between H

Gpvp

arccos -
[ vy |]vy]

- {0}, VZEK—{O}

and K to be-<)’.(ll,K) = inf
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where(i,:>is the Riemann metric and

is its norm. The angle between
two submanifolds at a point means the angle between their tangent spaces
there. Suppose Zl. and 22 are two smooth submanifolds in M which meet

at a point y, and let 1>c¢c>0. We say that Zl is c-transverse to ZZ at
v 1if Tyzl + TyZz = TyM and there is a subspace H of Tyzl such that

dim H = dim M- dim TyZz and *(H,Tyzl) > ¢. We say that El and 22 are
c—-transverse (or meet c-transversely) if they are c-transverse at every

point of their intersection. Similarly, if Zl = UDOL and 22 = UDé
a B

are unions of submanifolds, we say that El is c~transverse to 22 if
each D is c-transverse to each Dé. For a point ye¢ FcHM, let C(y,F)
denote the connected component of y in F. Also write BE (v) for the set

of z's in M with d(y,z) <E€.

The next proposition is a generalized version of the A-lemma [20].

(2.3) Proposition. Suppose A is a hyperbolic set for a ct diffeomorphism

£f: M->M. Choose € >0 so that each w‘é(x) and W:(x) are closed disks in M.
Let X € A and let I be a smooth disk such that dim £ = dim Wu(xo) and

I is c-transverse to Wi(xo) at a point y with ¢ > 0. Then given 6> 0,
there is an integer n0>0 (depending only on ¢, £, and §) such that for

nzno, C[fn(y), fn(Z) n Be(fn(xo))) ig a disk 5-Cr close to W:(fn(xo)).

The proof of (2.3) is obtained by noting that 1if z ¢ Ufn(Z)

nz0
and fj (z) remains near f:l (xo) for 0<j <N with N large, then T o L is
£7(2)
. uc N
pressed toward T We(f (xo)).
fn(xo)

Now let f ¢AS. Then, from Smale [32], we know that Q(f) =

/\l U, ..U Ak where each Ai is a closed isolated invariant set and
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f“\i has a dense orbit. The f\i's are called bagic sets for f. Moreover,

there are no cycles, so one has a filtration Mk o) M'k 1 >. , . D Ml > MO =@

with f(Mi) < 1int Mi and O fn(Mi-—Mi_l) = Ai for all i.

From the {i-stability theorem [33] (see [15] also), we know that

if g 1s near f, then {i(g) = gn(Hi-Mi-l) is hyperbolic with

I<i<k n
periodic points dense, s0 g satisfles Axiom A. Hence we need to show that
any g near f satisfies the strong transversality condition aiso. For this
purpose it is convenient to introduce some more terminology.

For the following, g is always assumed c’ close to £f. Set

A (g) = m gn(M -M, ) WU(A g) = {yeM: gn(y) +A,  as n+-%}, ete

i n i i-17? 1’ i ’ *
Fix € >0 so that for x,ye¢ Ai(g) with g near f, W:(x,g) and Wz(y,g)

meet in at most one point, and at such a point they make an angle greater
than cl> 0 independent of x, y, and g.

For 6> 0 we will say that x is d-g-related to Ai if x lies in a
¢’ disk in wu(x,g) which 1s 6-C* close to W:(y,f) for some yef\i.

We prove by downward induction on 1 <1<k the following assertion:

Hi: Given § >0, there are neighborhoods U, of Ai in M and ?11 of f in

i
QI(M) such that 1if ge 711 and eri, then x is 8-g-related to Ai(f)'

Once this is done the transversality condition is obtained as

o] G
follows. If g 1s near f, We(Ai(g),g] is near we[Ai(f)’f) for o=s,u [8].
The assertion Implies that 1f x 1s in W?(Ai(g),g) and 1s near Ai(g), then
wu(x,g) contalns a disk near some W:(g,f), for some ycAi(f), and hence

near sgome w:(z,g) with z ¢ /\i(g). Thus wu(x,g) will be transverse to
wﬂ(x,g) at x. Since the orbit of every point enters some Wz(l\i(g).g)

we conclude that g e AS.
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To begin the proof of the assertion, note that Ak must be a

u
source, that is, WE(/\k) is a neighborhood of Ak in M. Thus, Hk follows
from the smooth dependence on f of the stable manifolds W:(y,f), ye Ak

(Theorem (7.4) of [81]).

Now assume that Hj has been proved for i+l =j k. We prove Hi'
Let F = WZ(Ai) - f(wz(!\i)]. By the generalized A~lemma (2.3) and part (d)
in the proof of Proposition (2.2), it suffices to show that there are a
constant ¢ > 0 and neighborhoods V of C1F and 'ﬂ of f with the following
properties. If xeV and ge n, then x lies in a c’ disk in Wu(x,g) which
meets F and is c-transverse to weS:(Ai)‘

It will be convenient to define beh[l\j Ml)’ jz4%, to be the

maximal length of a sequence Aj =A ,A ,...,A =A, such that

1 9 3, *

WG, )y n W@, ) =9 for O<t<s,
3¢ Jen1

First, suppose that A, is a basic set for f with beh(f\jll\i) =1,

h|
Nj u

Then there is an integer Nj >0 such that Wu(!\j,f) nFcf (ws(Aj,f)].
N

The transversality of Wu(Aj,f) and Ws(ﬁi,f) implies that f j[wz(hj,f))

1s cz—transverse to Wz(!\i,f) for some c2> 0. Smooth dependence of the

N
stable manifolds gives that for g near f, g j[W:(Aj (g),g)) is c,-transverse

g
to we(Ai’f)' From Hi+1’ we know that for g near f and x near /\j, x 1is

(Sj—g-related to Aj with 5:] >0 small. This implies that if x is near

N

N
£ j(w;:‘(A ,£)) and g 1is near f, then x lies in a disk g 7 (%) ¢ W'(x,g)

h|
with £C" close to some W:(y,g) with ye¢ Aj {(g). Thus we have nelghborhoods

N
U of Aj’ V of F, and mof f such that 1f ge m..and xeVnf j(U), then
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: s U,
W (x,g) is cz—transverse to WE(Ai’f)' Let BQ-(A:L) = {Aj' beh(Alei) <2}

for 1. Proceeding as above we may choose an integer N, >0 such that

1

N
M 1.u
W [Bl(/\i),f] nFcf (we(Bl(Ai))) and neighborhoods U of B (A,) and V

N .
of F so that for g near f and xe¢V n £ l(U), Wu(x,g) is c,-transverse to

F with c¢3>0. Now if beh(/\j [Ai) = 2, there is an integer N, > 0 such that

2

N N
u“(f\j,f) aF ¢ f l(U) u f z(wg(Aj,f)]. Thus, we may repeat the above

argunents to get that for x near WU(A ,£) n F, g near £, Wu(x,g) is

3

¢,-transverse to F with c4> 0. Continuing this way for all Aj with

beh (/\j|f\i) >0 completes the proof.

59



S. NEWHOQUSE - J. PALIS

§3. We begin here our work on bifurcation theory. Let I = [0,1],
and for k21, r=1, let ¢’k’r = Ck(I,aBr(M)) denote the space of Ck
mappings of I into igr(M) with the uniform Ck topology. An element
Ee@k’r is a Ck curve of C* diffeomorphisms. For £e ¢k,r’ let B(E) =
{eel: & ¢ AS} and let by = by (§) = infB(E). B(E) is called the
bifurcation set of £ and bO(E) is the first bifurcation point of E.

We will assume throughout that bO(E) <1,

Our first goal in this section is to complete the proof of (2.6)

in [18]. We restate this as the following:

(3.1) Theorem, Fix k21, r>5., There is a residual set B « ¢k’r such

that the set of curves £ in Bsuch that EOGMS and L~ (Eb } is finite
0
is open in ¢k,r.

Recall that if L™ (f) is finite, f ¢ BI(M), a j-cycle is a

sequence o(p:L ) P o(pi ) with o(pi ) = o(pi ) and
0 | 0 h|

ﬁu(n(pi )] n W (o(pi )) # @. The proof of the theorem has been given
k kt+l

in [18] when L"(?;b ) is not hyperbolic or when there is a j-cycle, i >1.
0

It has also been completed when L~ (Eb ) is hyperbolic and there 18 a
0

l-cycle for which condition (4.7) of [18] holds. Any of these conditions

impliea that, generically, L(Eb } is finite. However, in section 7 of
0

[18] we gave an example of an open set of arcs £ in which condition (4.7)

+
failed and L (Cb ) was infinite.
4]

Here we will prove Theorem (3.1) in the remaining case~-when

L_(gb ) is finite hyperbolic with a l-cycle but condition (4.7) is
0

60



CYCLES AND BIFURCATION

violated. As a consequence we will see that the phenomena present in
the above mentioned example are essentlally the only ones which can
vecur generically if (4.7) fails. It should be pointed out that we will
obtain a fairly complete description of the orbit structures of many of
the diffeomorphisms Eb which occur. When convenient, we restrict to

0

residual sets in ‘?k’r without further mention. Since L_(E,b ) is

0
hyperbolic, we need only assume r > 2,

First, let us give the definition of a quasi-transversal inter-

section of two submanifolds. We thank H. Levine for a helpful conversation

n m-n
regarding the following. Let R 1, R 1 be the Euclidean spaces of

0, m-ny m-n
dimensions 0y m-n, , and let m: R X R +R be the natural

projection. Let ¢i: N,*M, 1i = 1,2, be two smooth embeddings into M

i

with dimNi = ng, dimM = m, and let ye cbl(Nl) n ¢2(N2). Say that y is

a quasi-transversal intersection of ¢ (N.) and ¢,(N,) if the following
1V1 2Y2

n m-n
statement is true, There is a diffeomorphism ¥ mapping R = X R 1

ontc a neighborhood U of y in M such that

n
M) YR x0) c b (), V0,0 =y

m-1
¢+ T , N, +R
;- 2

(2) the linear map A =T ; 7Y 1

A 9

has rank m- n1 -1

(3) 1f L = ker Ay # (0), then the intrinsic second derivative

m-n

map from L@L to R 1/ ~ R is non-degenerate.
Image Ay
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For the definitions in (3), see pages 151 -152 of the book 'Stable
Mappings and their Singularities," by M. Golubitsky and V. Guillemin.

Now we turn to the proof of Theorem (3.1). Assume L—(Eb ) 1is
0

finite, hyperbolic, has a l-cycle, and condition (4.7) of [18] does not

hold. We may suppose that L_(Eb ) = o(p) UT with {p}uT a finite set of
0

hyperbolic periodic points, and that ﬁu(o(p)) n ﬁs(o(p)] consists of
one orbit o(x) of quasi-transversal intersections. By Theorem (2.2)
of {18], we may assume that all other intersections of stable and

unstable manifolds are transverse. For simplicity, assume p is fixed

by Ebo, the arguments being similar in the general case. Let f = Eb
0

and {Al, R !

o Moo R us} be the eigenvalues of Tpf with

Ius|s|us_1ls o £|u1|<]_<|kl|s|lzls . e Sllu}. It will be

assumed that all eigenvalues have multiplicity one, and that

luy [ > fu,y | and Jag | <2, |

(3.2) Lemma. For a dense open set of £'s, the weakest expanding

eigenvalue Al of Tpf is real and positive.

Proof. Openness is obvious, so we need only prove density. Let D°
and D" denote the closed unit balls in R® and ZRu, respectively. We

may choose a neighborhood U of p in M and a ct diffeomorphism
¢: U > D°
=] (58

x D° such that the positive orbit o+(x) c U, ¢{p) = (0,0,

x {o1) « w?(p), and ¢_1({0} x by « w(p). Let D° = d)-l(ﬁﬁ x {0}

b
and DY = ¢—l({0} X Bu) and identify U with p® x p". Let 7°: U + D® and
o'y pY be the natural projections. We may suppose X ¢ D°. Since

x 18 a quasi-transversal intersection of Ws(p) and Wu(p),

dim(TXTﬁ’wa“(p)) = u-1. Assume Al 18 not real and positive. From
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this and the other properties of quasi-transversal intersections, it

follows that

(@) {0} x " ¢ alw“(p) where aqu(p) = (ﬁ\ {cLF: ¥ < Ww(p)

and W (p) -F is compact}

and (b) if ye Du, there are a subdisk DE of D% = {0} x D* containing
y and an infinite sequence Du, D;, . . of disks in Wu(p)
which accumulate on D; uniformly in the Cl sense.

Assume for the moment that (a) and (b) have been proved. Then,

1

since kg,)f“(Du) = w'(p), (b) implies that if Dy

n=z0

is small, then each

u

Di 1s also accumulated upon in the C1 sense by u-disks in Wu(p). The last

mentioned u-disks have the same property so that we may find a digjoint

family of u-disks {Dg} satisfying the following.
u u
() D, < W (p)
(d) there 1s a positive number § >0 such that diam D:3>6 for all a.
(e) each D: is a limit in the C1 sense of other u~disks in {Dg}

(f) y is a limit point of kb/)D:.
o

These properties imply that Cl(k\,/D:) will have uncountably many components
o
near y, and hence there are points in {Cl Wu(p) - Wu(p)] n U,

Let Fl be the set of periodic points q in I' such that
¢l w“(q) n w“(p) # ®. Standard filtration arguments give that Wu(Fl)

and w“(rl)ﬂu w”(p) are open sets in M. In fact, one may construct a
filtration ordering (see 52 for definition) of the orbits in L (f) such

that orbits in Vl precede {p}, and {p} precedes orbits in L (f) - Tl u ol(p).

Then Propesition (2.1.2) implies that M ~ w“(rl) and M - w“(rl) U Wu(p)
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are closed sets in M. If U is small enough, then U c Wu(l‘l) ] Wu(p).

But then (Cl Wu(p) - Wu(p)] n U would have to meet Wu(Fl) which is
impossible and Lemma (3.2) is proved.

Now we sketch the proofs of (a) and (b). Consider first (a) when
Al is real and negative. We know Al has multiplicity one and

. Let D' be a (u-1)-dimensional subdisk of ¥ c RY. The

<

gl <,

coordinates ¢: U - p° x DY may be chosen so that ™Y ;_f= ¢-1({0} X Euu)
e

is an f—l—invariant: manifold tangent at p to the sum of the eigenspaces

of {?\2, e e e )‘u} {101. D™ 45 called the (local) strong unstable

manifold of p in D" and it consists of the set of peints y in b’ such
that d(fn(y),p) k "+0 as n+= where l}\l‘ <k< |)\2|.
Let m': U-+D" be the projection. Residually, we may suppose that

u

Tn T Wu(x) > ’I‘p p*™ as n+® in the Grassmann sense. The following

£7(x)
figure illustrates the situation in dimension three.

DS

p f(x
| W(x) = w(p).

Figure 3.1.
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Now since Al 1s negative, and x 1s a quasi-transversal intersection,

{(a) 1is clear.

10

1f )\l is not real, (residually) we may assume that A, = |)\1| e

1

where 2 is irrational. Then TT T W'(x) rotates densely in T p"
2T £n (x) P

as n*+®, Here {(a) follows easily, as well.
For the proof of (b), observe the following. If yeDu and

eD® x D; is a small product disk about y in U, and I is a small

neighborhood of x in Wu(p), then for large n, f_n(Dl(; x £D%)n I

u

contains u-disks Zﬁ whose boundaries lie near int p° x bd f—n(DO).

For n large enough, fn(Zz) will be C1 near D The estimates

u
0
required to make this precise are analogous to those in the proofs of
(3.9) and Theorem (4.2), so they will be left to the reader. The

next figure illustrates this for the diffeomorphism described in

Figure (3.1).

Fiqure 3.2.

This completes the proof of lemma (3.2).
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Since Al is real and positive, we may construct the disk p"Y as

in the preceding proof. Moreover, residvally we may assume that

o(x) n pY = P. Let D_‘:_ be the closure of the component of Du - Duu

u

containing o(x), and define Df = Cl(Du - D+

).

If we only wish ¢ to be Cl, we may assume the eigenspaces Hl of

)\l and H2 of ul are invariant by f near p in the coordinates ¢.
(3.3) Lemma. Restricting £ to a dense open set, we have |u1|)\l< 1.

Proof. The property is clearly open. We will show that it is dense
among the £ for which |u1|)\1= 1. The proof consists of showing that

if |ul|)\1 >1, then £ = £ has infinitely many periodic point:s;l which

b,

contradicts the fact that L_(f) is finite. Choose C1 coordinates

-n
¢: U > D° x D' as above. Let yeo{x) n ¢-1({0} X 5“). Say y = f 0(x).

-1
Let €>0 be small, and let D1€ = ¢ [¢(y) + e(ﬁe x —5“] .
D, = ¢_1 $(x)+ e(D° x —I')'“)] Here, of course, $(y) +e(58 x DY) =

{o(y) + e(z,w), zefs, weD"} and ¢ (x) +€[58 X 5“) is gimilar. We may

asgume that o_{y) does not meet " g0 that o_{(y) approaches p near Hl.

Similarly, assume o+(x) approaches p near H,. Now if |u1|)\1 >1, € is
small, and n 1is large, then D = f_n(D f-j UunbD is

3nE 1e) " 0<% 2

diffeomorphic to p® x D" and is very near DZE n ¢>_1 (BS x {0}). Since
condition (4.7) of [18] 18 violated, we have elther My is not real and
positive, or, if it i3, x¢€ alws(p). In the first case we may assume

lAfter this was written, we became aware that the two-dimensional
version of this observation is related to results in the paper of
Gavrilov and Siinikov [5].
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1
lr£y is not a root of unity. Then in either case there is a sequence
i

-n-n

: ) . 0
14P}, n large, such that x, is near x, x e f (DBnE) n D3n€’ and

U;ﬁ} approaches p 1In a small sector about IH_ in Du. The last

E
statement means that 1f 7 x = (x ,,x ) € H X " , then n2 is

n nl’ n2 1 ‘ l

nl

srall.
no+n
It follows that, for n large, f (D3n€) n D3n€ has two
n_+n

components and f behaves like Smale's well-known horseshoe

D3n€
diffeomorphism [31], {32]. The following figures i1llustrate the

situation in dimension two.

7 73ne

Ll L
4 i

X \\\\\\

"Dy,
\
///D3ns
n +n
‘ ///_\3_\\{/‘ £° D3ne
//////"\\\ ai\éf//////
Pigure 3.3. \\
// \\\
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n.+n

Thus, £ D3n€ will have infinitely many periodic points. Actually,

n +n

for our purposes here, it suffices to find one fixed point of £ DBnE

= z
for each n large since D3n n D3m€ @ for n=m large. This may

€

be accomplished using Lemma (2.10) in {15]. Lemma (3.3) is proved.

(3.4) Lemma. Restricting to a dense open set of £'s, if y € Wu(p) -o(x),

then w(y) < I, where I‘2 = {q ¢ L-(Eb ): q#p and Wu(p) n ws(q) z @}.
0

Proof. As before let f = § We first show that the property of

b,
Lemma (3.4) is an open condition on & with & suitably restricted.

Generically, we may assume that i Tx Wu(p) approaches p*" in DY
as n+*+®, Then there is a small u-disk I about x in Wu(p) such that
o+(Z) nDUCDl_l. Indeed, if this were not true, then o+(Z) >p” for every
‘'such disk I and the arguments in the proof of Lemma (3.2) would yleld
a contradiction, Assume that Lw(wu(p) -'o_(m c 1’2. We may construct
a filtration ordering of L (f) in which {p} precedes the orbits in Fz.

Thus, there are compact submanifolds with boundary HICMZ of M such

n
that f(Mi) c intMi, PZ c intMl, and {p} v o(x) © O f (Mz—Ml).
Note that Lw(wu(p) -o(x)) < 1’2 implies that we actually have

{p} U o) = m fn(MZ—Ml). Now there 1s an integer n1>0 such that

n
-~
u

o - £1 @Y ¢ tntf

(Ml). Algo, 1if I 1is small, then any point y in

I - {x}. has the property that its positive orbit leaves U near
u -1, u -y 0 u
nD_ - f "(h), so it enters f (Ml)' Let n2>0 be such that f () <D,

~nN -1

Adjusting 2, we may asgsume f 2(Z) cpY - f (Du). Further, we may

"3, u -1,.u “f
choose ny >0 so that £7°D -f (D) ~f (@) < int M.
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Now for N near &, t near by, let p_ be the unique hyperbolic

fixed point of r]t near p. Similarly, denote its unstable manifold by

w“(pt). The structures Du, DE, L, etc. vary continucusly in the Cr

u

topology with f and those defined for Ny will be denoted by D:, D—t:’

Et, etc. Given 1, let to(n) denote the first time t for which Zt

meet s Ws(pt), say at Xy This will be a quasi-transversal intersection.

We will show that

(1) LW -x]) T, for tst (n)

t

(2) L { is finite and hyperbolic

nto(ﬂ))

(3) to(ﬂ) is the first bifurcation point bo(Tl).

"0 -lu ™2
First of all, it is clear that n .~ |D. - n_"D - n ()
t t t 't t t
n
v ntl(Dl_lt - n;lth) c intMl for n near £ and t near bo. Moreover,

Lw()jt) ¢ int M, for t<to(n) and Lw():t - {xt}) c 1ntM1 for t=t0(n)

1

gince the positive orbits involved go near th - n;ngt. This proves (1).

To prove (2) and (3), first note that the usual

proof that MS is open shows that L_[n ) n M, and L_(n ) n M-M
to (M 1 tq(n) 2

are finite and hyperbolic, and the transversality condition holds on

orbits which do not pass near {p} u o(x) = m fn(Mz—Ml). The
n

conclusion of Lemma (3.3) for f = ¢ implies that negative orbits which

bo

pusg near x always return farther and farther from x and then they

eventually get captured in M-M This also holds for it and X, with

.
t St,(n), thus proving (2). Since bo(E) was the first bifurcation point

of £, XE never has a non-transversal intersection with a stable manifold
t
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of gt for t <bO(E). Also, the unstable manifolds of periodic points

in M-M2 of «Et, tSbO, pass near X containing disks near EE .
' t

Since analogous results must hold for n, with n near §, t Sto(n),
this proves (3).
Now we prove the density of the condition in Lemma (3.4). That is,

(3.5) for a dense set of &'sg, Lw(Wu(p) -o(X) < PZ.

Before doing this, let us remark that (3.5) and the preceding
proof yield

(3.6) for a dense open set of £'s, Blwu(p) n D% < DE.

Indeed, we have shown that if Lm[w“(p) -oMX) < Fz, then any

J
point in alw“(p) n D" is a limit of the forward orbit of I. Also,
these limits lie in DS since Lw(Wu(p)] c Wu(p) U Fz.

To prove (3.5) it suffices to show that Lw(Wu(p) - o(x))

n Wu(p) = ¢ with a dense set of restrictions on f = Eb .
]

Assume, by way of contradiction, that Lw(wu(p) - 3?;3] n W"(p) z @,
It will be shown that, restricting f suitably, this implies the existence
of a transversal intersection of ﬁu(p) and ﬁs(p). Since L (f) is finite,
this is ridiculous. |

The proof has two main parts.
Part 1. Assuming there 1s a point 1y ¢ Wu(p) - o(x) with

oly) n Wu(p) # @, one can find a point Y1 € W' (p) such that w(yl) = o(x).

Part 2. If ¥y, € w“(p) is such that w(yl) = 0(x), then there is a

point of transversal intersection of Qu(p) and ﬁ“(p).
Whenever necessary we will restrict to dense conditions on f

without further mention.
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Proof of Part 1. Let vy ¢ Wu(p) - o(x) = Wu(p) - Ws(p) be such that

w(y) n W (p) * @. The fact that L (W'(p)) < Ww'(p) v I, implies that

wiy) < Wu(p). Suppose, by way of contradiction, that
(3.7) there is no point ¥y € Wu(p) - o(x) with w(yl) = o(x).

Let H = {6 <« W(p): G is closed, f-invariant, and

L, (®) :::) o(x)}.
-_.1(—.

Since w(y) c w“(p), pew(y). But yéws(p), and hence w(y) contains
points 1n o(x), so w(y) 2 o(x). Since w«(y) # o(x), w(y) € gand

zj is non-empty. Define a relation > on g by G1>G if and only if

2

with w(z) > G,. This relation

Gle2 and there is a point z € G 2

1
is transitive and not reflexive, so it defines a strict partial ordering
on B.

We assert that (3.7) implies

(3.8) there is a totally ordered subset Zjl < ﬁ such that

(A\ G = o(x).

Ge Hl

If (3.8) were not true, then for any totally ordered subset H

of g, we would have m G e g Thus, by Zorn's lemma, we would be
Ge Y
1

able to find a minimal element G0 € g Then GOD o(x) and for any
_./_
P (}“ - :;(Fx_)_, we have w(z) = Co.

Thus GO has a point whose forward
orbit is dense. This implies Gy has a point zq whose backward orbit

Is dense, that ig, G = a(zl). To see this, observe that 1f z ¢ G

0 0

and wlz) = Gy» then for any relatively open set V c G U £ v) is
nz0
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Letting {Vi} be a countable basis for the topology of G the Baire

0’

Category theorem gives that ﬂ (U fn(Vi)) is dense in G If
' nz0

1 0

The last fact says G, has

zy is in this latter set, then a(zl) =G 0

0"
to be contained in L (f) n Wu(p) = {p} c o(x) which is a contradiction.
Thus (3.7) implies (3.8). However, (3.8) cannot hold for the

following reasons. Since |u1|>\1 <1, there is a neighborhood Ul of

o(x) such that for any z ¢ U, - o(x), a(z) n U, = @#. But if (3.8) were

1 1
true, then U1 would necessarily contain closed f-invariant subsets, and
hence their o~1imit sets. Thus assuming (3.7) leads to a contradiction
and Part 1 is proved.

Proof of Part 2, Let ¢: U=+ p°
-1

x D° be as in the proof of Lemma (3.2).
Let D° =¢ ~[D° x {o}), o" = ¢_1({0} x DY), We may assume that £ is
c”, and (using Sternberg [38]) that £{U and f—liu are Iinear via the

coordinates ¢. Assume alsec that xeD® and f-n(x)eDu for n2n_.

0
u s u u _s 8 u s _u u 8 8
Let Tr:D><D->D,7r:D>'<D-"D,1r1:D-rl:ll,ﬂl:D-*H2
be the natural projections and set xp“ = ‘rrll1 ‘nu, ws = TT; e, (Recall

that Hl is the eigenspace of Al and H2 1s the eigenspace of ul.)

We may arrange that llJu f—n(x) >0 in the real coordinates on Hl for

S u

8 u
nxn,. For z € U=D XD, let D:’:=TTB (‘nsz) and Dz=n

0 l(ﬂu z).

n
If U 1is small enough, and z eU, then lbu|f 0(D:) has a unique critical

point c(z) near x. Also, c(z) is a C° function of z. Given v € M,
let E; = {véTyM: |T fn(v)l + 0 as n+®}, Part two is a consequence

of the next assertion.

(3.9) Assume there are a constant k>0 and an integer N_>0 such that

0

[10g N’uf_n(x)l - log I cfm(x)H s _1_;_
n
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u m s .
= .
for nzNo, m NO, and ¢ c¢f (x) > 0 in Hl Then Ey is an

s-dimensional subspace of TyM, and 1f w(y) = o(x) and Zy is a

smooth u-disk through y which is transverse to E;, then Ufn(Zy)
nx 0

has non-empty transverse intersections with ﬁs(p).

Before proving (3.9), we show that it implies Part 2, We first
verify that the hypotheses of (3.9) are true for a dense set of f's,
I'then, for one of these f's, suppose that y € Wu(p) and w(y) = o (x).
It follows that there is a small neighborhood U of y such that
f"n(y) ¢ U for uzl, Thus, we may perturb f in f_l(U) to get a small

disk Zy < w“(p) n U transverse to E;. Hence, (3.9) implies Part 2.

Let us verify that the hypotheses of (3.9) are satisfied by a

dense set of f's., Since Alull <1, there is an integer N0> n, such that

1
Ng 3
(3.10) (a) e <3

(b) 1if either Iwu f—n(x)l < [wu cfm(x)l or

u.-n u m uf_'nx
[T £ @) - 1Y e )] < 5

, then n>mn.

Also, assuming o{x) does not meet any eigenspace of Tpf, we

-ng

™ u
Yo f (x) for n2n0. Fix 0<k<1 and

have that ll'u f_n(x) = A

consider the set of real numbers o, such that

(3:11) [(n-ng) log A1+ a = log (4" c£7)I| <% for some n>mzN,
n
and ¢ ¢ rm(X) > 0.
For fixed n —NO, cach such o 1is in an interval of length 213& about
n
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log Y e M (x) - (n—no) log )\—1. Since m< n, there are at most n-Ny

such intervals. Thus, this set of @'s has measure less than

2(n - NO) k 2%
—3 <5 Allowing m to vary gives a set of ¢'s of measure
n n
2k
less than z 5 - The set A of a's for which (3.11) holds for
nZNO n

all k, therefore, has measure zero. We claim that if the hypotheses

. -n
of (3.9) fail, then log |¢uf O(X)I € A. As A has measure zero,
this won't hold for a dense set of f's. To prove the claim it suffices

to show that if 0<k<1 1is such that there are integers n,m 2 NO

with ]log WY £ )| - log 1V c £° )] < % then n>m. But this
n

follows from (3.10) and the definition of NO.
Now we turn to the proof of (3.9). An embedded disk D ¢ U will

be called a product disk if there is a diffeomorphism &: u=p% x p" + D
8 8 u u
such that the maps T ¢|D° x {zz} and T ¢|{zl} x D are embeddings for

s u
each zleD s zzeD .

Given an embedding C: p° + U with n° { also an embedding,
8.y IT!TruOE)vl 8
define pu(C(D )J = gup S : |v[=1, v e TD ¢p. For an
|T(n" o g)v]
embedding I[: p » U with Ttul; also an embedding, define
8
g e}
pS[T,(Du)) = sup -ILQ‘—;——EEJ- T Vo€ TDu, |v| =1), pu(ps) is called
{T(n" 0 z)v|
the u-slopc (s8~slope) of Z;DB(I; Du). If ¢: U >+ D is a product disk,

8 u
define pu(l)) = gup {DU(ND X {22}): z, €D } and
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ps(D) = sup {DS(M{ZI}XDUJ: zleDs}. Also, set

mu(D) max {diam({zl} xDp" n D)} and w, (D) = max {diam p° x {zz} ] D)} .
s u

zleD zzeD

w, () (ws(D)) is the u-width (s-width) of D,

In what follows the quantities Cys Cos = o -« will denote
constants independent of n which are defined in the first equation in
which they appear.

There 1s a small neighborhood U1 of x imn M such that if

n-n

yeu, £7() €Uy, and £1(y) €U for 0<js<m-ny, n2N, then £ Oy)

1’
—_ -no —

is in a product disk Dny about f {x) such that pumny) <ty and

n-n n

diam D < ¢, |u, ] 0, Thus, if we set D__ = f
ny 2'1 ny

0 —
(Dny), then ye Dny’

ng-n n-n n,-n n-ng
pu(Dny) < CJAl |ul| , and wu(Dny) < c4A1 |u1[ . Also,

D may be chosen so that n® Dny = p°.

h
ny Similarly, if vye Ul’ f(y) e U

for -n=j <-n and f_n(y) € Ul’ then £ nO(y) is in a product disk
n-ng u u n,mn n-n,
Ench such that f (x) € Eny’ L Eny =D, ps(Eny) < Cg )\1 ]ull
n,-n n-n, -
and wS(Eny) < cg A ]ul] . Now let yeU, be such that w(y) = o(x).
Choose an increasing sequence of positive integers n1<n2< . « . 8such

n n

e i i - - - co
that f “(y)e U, and f (y) *x as n,+®  As n, >®, n,-n, ,*>®, s0

we may assume, starting far along the orbit of y, that ni-—ni_1>N0 for
122,
For ¢ >0, zc¢ U, define the e-sector SE(DZ) about D: by

u

SE(DZ) = {(vl,vz) € TZDS x D : Ivll <€ lvzl}.
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8 8 u
Also, define S_(D) = {vy,v,) e 1, 0% x D% |v2| <€ Ivll}. For 121,

ny . k/n] w  1~1/2
let yy = f “(y) and e = [e —l)NJ yiﬂ .

Since x is a quasi-transversal intersection of Wu(p) and Ws(p),

n
(3.12) there is a constant ¢y >0 such that if zleul nf O(D: )
2
-n n
0 0, u u
for zzef (Ul), then Tz (f (Dz )) c Sc h(l)z ) where
1 2 7 1
u u -1/2
h = (Iw zll - N’ Czll) .

We will show

(3.13) (a) given A>1, there is an integer N>0 such that for

n -n
g 41 “Jes b  and

izN, T 2c.e 2c.e
Yy 7%1 Y4 7%i+1 Y141

n -n
ofr £ i1 Syc.0 Dy ) > A
Yy 7%1 Y1

n —ni u
() diamTfd 1g DY >0 as j-1 > =
2c7ei yi

m(B|L) = inf |Bv| where B is a linear map of a vector
vi=1
vel

Here,

space containing the subset L.

n,-n
Similar arguments will show that diam T £ i j(Lj) + 0 as

ni-nj
1-41 + > and m(Tf ILj) > A for 1,j v N, some N where

u m nN-nj
Lj = C1L(TM - SZc o D ). Thus, Tf (Lj) 18 a single
%1 73 j2N
n
s—dimensional subspace E; . Also, ]Tf jIE; I + 0 exponentially as
N N
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n
j+%, Further, 1f v ¢ T M-E° , then for j large, Tf j(v) € 8 o
Yy N 2c7ej yj

which means that |T fn(v)| + © ag n+®, Thus

E5 = {v e Ty M: T fd(v)l + 0 as n+%}, One may take E; =Tf 1-IN(ES )

M N N
for (3.9). If L is a ¢t u-disk through y transverse to E;, then

nj u nj-no
Tf (Ty L) c SZc e D for large j. Increasing j will make f &)

%5 73
contaln disks Cr near subdisks of D. Moreover, these disks will

n ~
become large enough so that theilr images by £ 0 will meet Ws(p)

transversely. Thus, we only need to prove (3.13).

For 1 2N_, choose product disks D s E as above. Then
0 ny¥y' ByYy

the properties of D and E , the assumption of (3.9), and (3.12)
ByY4 ByYy

imply that for large 1,

3
n;-ng_ k/n , 1/2
AR G PRI

i S O UK
where p 1s defined in the obvious way. Thus T_ (f D )
! €1 Y1-1

3
_ k/n -1/2
¢S, D' where h, = ¢ l[(e i 1]|1Puy ]:l . Note that
hj yi i 8 i

n.—n -n n -n,.-n
ij > g J\lo 1-1 71 d ehat T£ 110 yicreases the u-slope

L8]

{w

n, .-n.-n n,.-n -n
+
of any vector (Vl'VZ) e Tp° x D" by a factor of c10A11+1 t 70 Iull 071 1.

Now the last expression dominates h:l exponentially., Thus, the sector

n,,,-n,-n

4

Sh (D; ) 1s exponentially decreased by f i+l 7170 as 1+w; {.e.
1 i
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1) B0 R

diam {{v e s D' : |v| 13

hy vy

with v<1 as 1+,

From this, (3.13) follows easily, so the proof of Part 2 is completed.

Remark: Under the assumptions of (3.9), it can be shown that Ws(o(x)]

1s a union of C° injectively immersed submanifolds each diffeomorphic

to R°. Moreover, wlom) = w(p) and W (o)) 1is locally the
product of an s-disk and a Cantor set. However, if vy ¢ Wsm -Ws(p),
then Ws(y) is not a manifold. It is also only locally the product of

a Cantor set and an s-disk. Nevertheless, we do have a clear picture

of the total orbit structure of f. When the assumptions of (3.9) no
longer hold, the structure of Ws(o_(x_)) is more complex, and it is not

yet well understood.

Completion of the proof of Theorem (3.1). 1f the arc £ satisfies the

residual set of conditions necessary for the conclusions of Lemmas (3.2),
(3.3), and (3.4) to hold, so does any nearby arec n. But, (2) and (3)

in the proof of Lemma (3.4) imply that L_(nb ) will be finite for any
0

such 1, thus completing the proof of Theorem (3.1).
Our second goal in this section 18 to remove the asymmetry of the

assumption that either L--(Eb )} or L+(E;b ) 1is finite. Notice that as a
0 0
consequence of [18] and the proof of Theorem (3.1) here, we have that,
generically, if either L—(Eb ) or L+(Eb ) is finite, then L(E;b )—-P(&b )
0 0 0 0

has at most one orbit. Thus L(Cb ) has a finite number of orbits. The
0

converse Is also true.

(3.14) Theorem. There 18 a residual set 0)) c "Pk’r, k21, r25, such

that 1if £ ¢ @), F,OeMS, and L(E;b ) consists of only finitely many orbits,
0

then either L_(l;b ) or L+(£b ) is finite.
0 0
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Proof. As above, let Eb = f, By (2.2) and (2.4) in [18], we may
0

assume that P(f) 1is finite and that one of the following situations
arises.

{1 P(f) has one quasi-hyperbolic orbit, and all stable and
unstable manifolds of periodic orbits meet transversely.

(2) P(f) 1is hyperbolic, and there is exactly one orbit of
gqu:si-transversal intersections of stable and unstable manifolds of
P(f), the other intersections being transverse.

Consider the case when L (f) ¢ P(f), and let ¥ € La(f) -P(£).
Suppose ¥y ¢ afy). Then vy ¢ wu[P(f)) since ¥y ¢ P(f). Define the
relation < on M by x<z if and only if x ¢ ¢(z). This is clearly
transitive. Also, x<z and 2z<x imply that o(x) = o(z) < P(f), for
otherwise a(z) would be uncountable. Similarly, all minimal sets of £
are orbits in P(f) since minimal sets are either finite or uncountable.
We claim

{3) there are a hyperbolic periedic point %, € a(y) and an

1
orbit o(x) < {-\!U(o(xl)) n ﬁs[o(xl)) n a(y).

W h) = pen.

Assume L(f) has N orbits. Then any sequence {xl, . e e xk}

with x1<x2< . e . <xk and o(xi) z o(x.) for 1#3j necessarily has

3

at most N+ 1 elements. Choose a sequence x1< .« e <xk of maximal

length with X, € ca{y). Taking a minimal subset of Ot(yl) we may find
a polnt x ¢ P(f) which is also in OL(yl). Then x<y1<y, go the

length k of the maximal sequence above is greater than 2, and X € P(f).
From the local structure of quasi-hyperbolic and hyperbolic periodic

pointg, we have x_ e "f}u (o (xl)) , for otherwise we could find another

2
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point xi with xi S ﬁu(o(xl)] and x1<xi<x2. Suppose that o(xl) is

quasi-hyperbolic. Then there is a point xé<x3 in the strong stable

manifold (i.e. Bws[o(xl)]) of o(xl) with xéeo(xl). Now xé ¢ Wu(o(xl))

because this would contradict the fact that W' (o (xl)) meets Ws[o(xl))

transversely. Choose xi € P(f) with x]'_<xé. Since the sequence

]

"<x!<x! < < x!'
X <%, Xy . e X also has maximal length we have X,

e W (o (xi)] .

Using this new sequence of maximal length we may assume

x1<x2< .« .o <xk chosen such that x, is a hyperbolic periodic point and

1

Au
X, € W (o(xl)}. Choose a point X,

N8 "
< .
e W (o(xl)] such that X, < %4 If

x; € ﬁu(o (xl)), (3) is established. If not, reasoning as above, we may

" with x, <xo.. Continuing in

find another hyperbolic periodic point X, 1%

this manner, and using the fact that La(f) has finitely many orbits, we

either establish (3) or we obtain sequences {pl, « +« « s P} © P(f) and

3

{zl, s . } ¢ M such that

2 zj_l
) o)) = o), 2y € Wotp,)) n #(olpyyd),
O(Pi) "O(Pk) for lsi<2<j.

(6) {pl, e e ey pj} u {zl, C e ey zj-l} c aly).

We first note that no Py can be quasi-hyperbolic for 1if p; were,

the above construction would give Ziq € 8ws(o(pi)). Also, in this case,
all the manifolds would meet, so one would get transversal homoclinic
points for f which 1s impossible. Thus all the pi's are hyperbolic, and

80 some z  must be a quasi-transversal intersection of Wu(o(pi)) and

~B
W [o(pi+1)). Moreover, all other zi's are points of transversal inter-
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sections. Assume zq is the quasi-transversal intersection. If all the
o(pi)'s are the same (i.e. (o(pl), e e, o(pj)] is a 1-cyc1e), then
(3) is established. So, we may assume we have a j-cycle, j > 1. The
proof of (4.7) in (18] applies here, so we conclude that the weakest

expanding eigenvalue )'1 of Tp f 1is real and positive and so is the
2
weakest contracting eigenvalue ul of Tp f. Also, one may find a
1

neighborhood U2 of o(pz) so that aqu(o(pl)) n Wu[o(pz)) n U2 is in

a finite union of half spaces away from WS(U o(pi)). A similar fact
i=2
holds for 31 w® (o (pz)) n we (o(pl)]. But then there is a small neighbor-
n n

hood V of z, such that 1if £ l(y) and f 2(y) are in V with n

1 <o

1 2

then fnl(y) is near Ws(u O(Pi)) and fnz(y) i8 near Wu(u o(pi)).
172 1<1<§

That is, the analog of (4.7) in [18] holds here aiso. From the geometry

of this situation it follows that z, caonot be in La(f) which 18 a

contradiction. Thus (3) 1s established.

Let x,x, be as 1in (3). Since P(f) is finite, the orbit o(x

1
must consist of quasi-transversal intersections.

Agsume now that (4) is false so that Lw(f) )P(f). Repeating

the above argument with f ' 1in place of f would give a hyperbolic
~

periodic point q and an orbit o(z) < ﬁu(o(q)] n WG(O(q)) n Lw(f)'

Since [ has nt most one orbit of quasi-transversal intersections, it

follows that o{x;) = o(q) and o(x) = o(z) < L () n L (£). Assume

fn(xl) = xy. Let )\l(ul) be the weakest expanding (contracting)

eigenvalue of Tx . We may assume )\1 and Hy have multiplicity one
1
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and |ul||ll| # 1. If |u1HAll < 1, there is a neighborhood V of =z

such that 1f w e V -~ o(z), them o(w) n V =@, But this fact and the
assumption that L(f) has finitely many orbits lead to a contradiction

as in the proof of Part 1 of Lemma (3.4), Similarly, |U1| l)\1| >1 is

impossible by repeating the argument for f-l. This proves (4) and

Theorem {(3.14).
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54, In this and the next section we will study the structure of Et

for t>bO and near b0 where

(4.1) L (Eb } is finite, hyperbolic, and has an equidimen~
0

sional cycle.
k,r k,r
Let a, denote the set of arcs £ ¢ ¢ such that EO € MS

and ¢ satisfies (4.1). Our main goal is to prove the following. For

§>0, let Ué = [bo,b0+6).

(4.2) Theorem. There 1s a residual subset B c &k,r’ k21, r=2, such

that if £ ¢ B , the following facts are true. Given € >0, there are

6§ >0 and an open subset B5 < Ud such that
(a) the Lebesgue measure of 36 is less than €.

(b) 1if t e U _BS’ then Et € AS and Q(Et) is infinite

$

and zero~dimensional.
It turns out also that for t € UG_BG’ the attractors of Et

are all near those of EO' Moreover, b0 is a limit point of Ua-B‘S,

and as t approaches b0 in U.-B

s 5° the diffeomorphisms assume

infinftely many different topological conjugacy types.

To begin the proof of the theorem, let us first observe that we

may asgsume k

p

r = ©,  Indeed, let Q:': be the set of £ in &k,r such
b4

that for ¢ = % there are a § < -:‘; and a set BG c U(5 satisfying (a) and
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k k,r
(b). Then, since AS is open, Qm’:; is open in a_ for all
?

k,T
m,n,k,r = 1, and the theorem for k=r=% would imply that @m’n is
b

dense in &k,r for myn,k 21, r 2 2. Thus, the theorem would follow

with 3 = m&:”r,

m>1
n=1

[+ + 2~ 4]
Now let £ ¢ & > and let f = Eb . We first consider the case

0
in which there is a j-cycle, j >1., Then there are periodic points Pys

Py in a cycle such that o(pl) # o(pz) and Wu(pz) n Ws(pl) is a single

orbit o(x) of quasi-~transversal intersections. Because all other
intersections of stable and unstable manifolds are transverse, we
conclude that all cycles are equidimensional.

Let o(pl) = o(ql), o(qz), e e e o(q\)) = o(pz) be the distinct
periodic orbits in the cycles containing o(pl) and o(pz). For

simplicity of notation, we assume all the qi's are fixed points of f.
The proof without this assumption is similar.

v-1 v
u ]
Let A) = o(p,) v U Wi(q ) n U W(q,)|, and let

i=1 i=1
A, = {ql’ e, qv}. Since points of Al are transverse intersections
of stable and unstable manifolds of elements in f\z, and dim Wu(qi) =
dim Wu(qj) for 1<1, j<v, 1t 1s easy to show that 1\1 is a hyperbolic
set for f'}. Moreover, by [18, p. 335], we may assume, restricting to a

residual met In @, * , that SI(f) = 1\2 uo(x) v P1 wvhere P1 is a finite

set of hyperbolic periodic points not meeting Al'
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Now let Vl be a compact neighborhood of 1\1 u o(x) - {x} not

meeting {x} v P, so that L(f) n V. = A,. If ye m £y ), then
1 1- M Laol 1

wly) ¢ V., 80 ¥ ¢ WS(A ). Similarly, if y e m fn(V }, then
1 1 520 1

o e (V-
w(y) < Vl, s0 y e W (Al). Thus, f (Vl) = A

nes 1

Let V2 be a compact neighborhood of =x such that ‘V2 n (VIU Pl) = @,

Using filtrations as in 82, we may conmstruct two compact neighbor-

hoods M,,M_ < M such that f(Mi) < int M

u
1M M, € int M., V v

it 2 171 2

< int (Ml—Mz), and an(vl U V2) = Al U o(x).

For t near bo, there is a set Plt of hyperbolic periodic

points for Et near P and Q(Et) will be contained in

l’
n
Qét(vl UV,) U

The proof of Theorem (4.2) will be obtained by

showing that for t in an appropriate set BG’
(4.3) m E:(Vl UV,) is a zero-dimensional hyperbolic
n

topologically transitive set for Et

and

(4.4) C’t satisfies the transversality condition; i.e., for

s
each yeM, w“(y,Et) is transverse to W (y,«‘,’t) at y.

Before proceeding to the proof of 4.3), we pause to establish a

lemma which will be considered with more generality.
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If F = E1 ® E2 is a direct sum decomposition of a vector space

F with norm |° "and €>0 is a positive number, let Se(El) = Se(El’EZ)

denote the E~sector of E1 by E2 which is defined by SE(EI’EZ) =

IA

{(vl,vz): |v2l £ lvll where v, € E,, 1 = 1,2}, If A: F+F is a

i i’

linear map, |A| sup |Av| 1s its norm and m(A) = inf IAv| is its

Iv =1 Iv =1
minimum norm. We define |AlS| and m(A|S) for subsets S<V in the
_1|-1

obvious way. If A is an isomorphism, m(A) = |A . Let Al M be

a compact f-invariant hyperbolic set with continuous splitting

TxM = E: 8 E:, x €M, and adapted riemannian norm

A compact neighborhood V1 of Al -will be called an adapted
neighborhood of Al if

(4.5) mf“(vl) = A

n \
(4.6) there are a continuous splitting Tv M= El @ E2, a
' 1
constant A>1, and a continuous real function €: vl + R
such that
@ T, 86 Er) < Sefx) For (w)
and
-1
m(TxflSExEZx) 2 A, x¢€ vyt o)
-1
() T £ (I M-S E, )cT . M-8 . E _
X X €x 2x £ l(x) ef 1(x) 2f 1(x)

and

-1
m(T,_ £ T, M- s E, ) 2X for x e V; n £(V,).
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It is clear that the splitting El @ E2 for an adapted

neighborhood Vl of Al is an almost hyperbolic splitting for V

188

defined in [18]. The only known practical way of showing a set 1s

hyperbolic is to find an almost hyperbolic gplitting on a neighborhood

of it.

Now suppose V. 18 an adapted neighborhood of Al and V, is a

1 2

compact subset of M with V, nV, = $, but £V, n v, = ¢ and

f_1 V2 n V1 z §. Assuming m fn(V1 U V?_) z ¢, we want to know when

n

this set 1is hyperbolic. With the present applications in mind, we assume

2
v nf(VZ)—V nf(Vz)-V

-1
2 n f (VZ) v

n f-z(VZ) = ¢ although this

2 2 2

18 not actually necessary.

(4.7) Lemma. Suppese there is a compact subset VZ'Z < V2 such that

n ]
Vz n O f (Vl v Vz) c V2, and the splitting El @ E2 and function €

may be extended to V2

so that there are constants )\1>1, and an
integer N> 0 satisfying the following. For each x ¢ V:.)_ there are

integers -N < £(x) <0<k(x) <N such that

kx
(@) T_£7(s._E, ) ( S E .
x €x 2x e %) 26 (x)
—

kx ~1 kx
£0(x) « Voo £(V) o £ (V) end m(T_£ !SEXsz] 2 A

1

Lx

() T £7°(T M-8 _E,) T M - 5 E s
* X Ex 2% C ff,x(x) Efzx(x) 2f£x(x)
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%) € v. n £(V)) 0 f‘l(vl) and

1

RXIT > A

ln(Txf £X EZx) B

M-5
X

Then m fn(V1 U V2) is a hyperbolic set.
n

Remark: Without further hypotheses, the proper containment in (4.7a)

and (4.7b) is necessary for the lemma to be true. The essential fact

which is needed is that for large n, if y ¢ Vé ngd (Vé) n £ (Vé),

for jzn and fk(y) ¢ V2

for 0< |k| <j, then m(TyfjlseyE ) > }‘2 >1

2y
and m('I‘y f-j]TyM - SEy E2y) > A, > 1 where ?\2 is independent of y and n.
The proper containment assures this.

We defer the proof of Lemma (4.7) to the next section.

Now beginning the proof of (4.3), let us consider some more
detailed structure of £. All additional assumptions may require the
restriction to residual sets in &m’w, and we assume this without further
mention. From {18], we may assume the weakest expanding eigenvalue A c;f
Tplf and the weakest contracting eigenvalue u of T 2f are each real and
positive with multiplicity one. Also, using Sternberg [37], we may

assume that f 1s linear on its stable and unstable manifolds for Py and

o0
P,y via C coordinates near Py and Py Thus there are neighborhoods
o m
UJ. of P> U2 of Py in M and C diffeomorphisms ¢l. U1 + R and
«I)Z: UZ » R" satiafying the following. Let w = (ul, e e e ua),

v = (vl, e e e s vu) be coordinates Rs and Ru with u+s = m = dim M.

Let Ds c R® and p" < rY be the closed unit balls. Let
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_ — -1
w = (uz, e e, us), v = (VZ’ . e ey Vu)' Then ¢1f¢)1 Q,v) =

(0,)v,,B,%), ven®, and ¢lf¢)11(w,0) = (A, w,0), weD®, vhere A  and

1’ 1

-1,-1
Bl are linear lsomorphisms with |Al| <1 and IBll‘ = m(Bl) > A > 1.

Also, q>2f¢>;1(0,v) = (O,Bzv), veDu, and ¢2f¢;l(ul,z,0) = (Uul,A u,0),

2

weDS, where A2 and B2 are linear isomorphisms with |A21 <p<1l and

m(Bz) >1.

Remark: We actually could assume that f{Ul and fle are linearizable,

but this isn't necessary. On the other hand, we could continue with the
-1y .u W
proof if we were to assume only that £ |W (pl) and f| (pz) are

linearizable near Py and Pys respectively, and we only need C2

linearizations. These assumptions would guarantee that we may find 62

invariant curves tangent to the eigenspaces of A at Py and |y at p2.

Our present proofs require this fact very strongly.

We may choose U, and U, as above so that U) n U, = @,

2 2

x £ U1 U UZ’ £7(x) € Ul for n=21, and £7(x) € U2 for n = -1. For
1=1,2, let D‘i’ = ¢11(o x D%, and let n: = ¢;1(DB x 0). We identify
8 u s u el o=

D1 x Dl with Ul and D2 x 02 with UZ' Let Hl = ¢ l(w 0,v=0),

-1 -1 -1
HZ = ¢>2 (w=0,v=0), Jl = ¢l {(w=0,v, =0), and J2 = 4)2 (u1=0,v=0).

1

" u
I'hen Hi’ J1 are f-ipvariant for 1=1,2. Let Dl+ =

-1
¢, (v, 20,w=10),
-1

8
L (Vl C,w=10), D2

—1 z - 8 = ..l =
" ¢)2 (ul. O,v=0), DZ-— ¢2 (ulso,v 0).

) u u s 8
In view of [18], we may assume that Al n Dl < D1+ and Al nD,cD,,.

We have the following figure.
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Figure 4.1. / 3 p2 £ l / \/1
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s
1

in the second picture f_l of a part of it is a two-dimensional surface,

In the first picture we represent the s-disk D] as a line and

8

Also, the )-:Li1 are points in Al n DY, and the xs are points in Al n D2+.

1+ 1

is in a very small sector about H., in D,

u
We may assume that Al nD 4 1

1+

and A2 n D; is in a small sector about H2 in D;. Also, the A-lemma

{20} implies that i1if Ul and U2 are chosen narrow enough, each component

of WS(Al) n Ul is an s-disk C?‘ near Di and each component of

u 2 u
1Y (Al) n U2 is a u-disk C~ near DZ‘

For n large, m fj (v, v V,) nV, 1is near Wu(A ) nV,, and
1 2 2 1 2
0<j<n

_j s
m f (V1 u V2) n V2 is near W (Al) n Vz. For t near b

b
0sj<n 4]

m&:(vl) = Alt: is a hyperbolic set near Al' Part of the proof of
n

(4.3) 1s involved with showing that, for appropriate t near bo, the

angles between Ws(Alt) n VvV, and wu(Alt) n V., are bounded away from

2 2

zero. This is not enough, however, because these sets will intersect

in a countable set, and m E;:(Vl U V2) n Vz will contain points off
n

this set. We will show that for n large one may enlarge WS(Al) n V2

to a set Vi and w“(i\l) n vV, to a set V: for which the corresponding

2

tets Vit and VEC are also defined for t near b0 and satisfy

(a) \!8t ia a union of s-disks near Ws(l\l) nv

and Vu
n nt

2’

is a union of u-disks near Wu(Al) n Vz
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- 3 s u
(b) (j ‘Et(vl uv,) nv, < Ve " Ve
(¢) for certain numbers uy, if t-—bo = ur‘ul, then the

angles between the s-disks in Vit and the u~disks in

Vzt are bounded away from zero by a number which depends

on n.

The bounds on the angles mentioned in (c) will determine the

sectors which will enable us to apply Lemma (4.7) to prove (4.3).
Now we proceed to describe the sets V: and V::.

Let ¢, >0 be a constant. For each integer n>0, let A[; be a

1
n/2 n
disk about x in Ul of the form x + clu Ul' and let AZ be a disk
-1 -1 n/2
about £ "(x) in U2 of the form £ " (x) + ¢ H U2. Here, the addition

means vector addition in the appropriate coordinate systems. These

sets look something like those in Figure (4.2).

/ | A

N
/\

N
4\

N

Fiqure 4.2.
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u s u u _s s u 8 _u u
: X H X H
Let Myt Dy XDy > Dy, Myt Dy XDy > Dyy Myt Dy > HL

% . DS > H, be the natural projections, and let Y _ = ™ 1Y and

21 2 2 ? 11 11 1
le = “31 TT;. Let d be one plus the maximal length of a sequence
p,. =4, 949, , +» - . q, = p, with Wu(q ) having a non-empty transverse

1 il 1’.2 ik 2 ij

intersection with W° (qi ) for 1=j<k. For a positive integer k>0,
i+l

denote the set of points y in An n m fpj (V1 U V2) such

let Arl1 1
0<j<k

Jk
'3
that for some £<k, f (y) ¢ Vl’ and if f£(y) 1is the least such £, then

n n
(y) r?AZ. Similarly, let AZ,k

A% o mfj(v

ghy-1 be the set of points y in

u VZ) such that for some £ <k, f—-g(y) ¢ Vl, and 1f 2(y)

2 0<j<k 1
is the least such £, then E—'Q'(y)ﬂ'(y) € Ati
(4.8) Lemma. Let K. >0 be a positive number. There are a real

1
number O0<T <1, an Iinteger N>0, and integral polynomials

f,l(z) = Zai zi, cz(z) = Zbi zi of degree d satisfying the following.

For each integer n N and each integer 8 >0, there are Cl(sn)

intervals X < H, centered at xn
n

’ 1 1sis Cl (sn), and ':2 (sn) dintervals

il

Y H, centered at Y g0 ISiSCZ(Bn), such that

(1) A" o ﬂf'%vl)c U VIR )

"1, sn 0~ §<en 1<i<g, (sn)
-1
2,31'1 OSJ <8n 1 151542 (Bn) 21 ni
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._._N
2 -sn
< >
(c) diam X 57 Ixnil’ for lxnil Kll and
' %—N -sn -sn
< <q<
diam Xni <71 Klk for Ixni‘ < Kll , 1<1 Cl(sn)
n_
2 2n
d di Y < T £ >
(d) am ¥ . 'ynil or ]ynil Klll and
%"-N 2n 2n
diam Yni < T KILJ for ]ynii < KlLi s l.si.gcz(sn).

Let s>0 be such that A ° <} where we assume L1<A"l. If

uzzk—l the proof is similar.

The sets VS, v" above will be v = V2 A Ly) w;i(x i),
n’ n n 1£iSCl(sn) n

u -1
V =V, nf L\,J Yo (X ).
2 lsiscz(sn) 21" ni

We will also defer the proofs of Lemmas (4.8) and (4.9) below

to the next section. Of course, ]xni| (lynil) refers to the norm in
the ¢1 (¢2) coordinates. This may be identified with x4 (yni) {tself.

It will follow from the proof of Lemma (4.8) and the previous

definitions that all of the structures xni’ Yni’ A, U, etc., may be

defined for &t for t near b,. Denote these by Xn

0 Y A

10’ ‘nie’ et Mo
etc. Moreover, all of these structures vary differentiably or

continuously with t 1in naturally associated topologlies. We record an

egpeclally Important case of this as

(4.9) Lemma. There is a constant K, >0 such that for 0 = t-b_  small

2 0

and n large,
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(a) lxnit - xnil Kzlx il(t—bo) for
-jr u -1 u
X, € £-(p; - £ o))
nd 0<j<sen 1 1
® Dypge ™ Yngl # Bplyggle-vg) for

Yoq € U fj (D; - f(D;)).

0<j<sn

Now given € >0, we will define the sets B(S required in the

proof of (4.3).

Fix coordinates (ul, R , vu) on p® x p% ¢ I{B+u.

1

Let '71(U1» e U Vi e e vu) B! and Tr2(ul’ LIS L )=

u ~1 u s
. F 5 - = X
U or each y « Ui’ let D ¢i (0 D) and Diy

_ -1 s
iy =9, @ x0).

Since x 1is a quasi-transversal intersection of Wu(pz) and Ws(pl),

it 1s a non-degenerate critical point of wlllf(D‘;p ). Thus, for U

) 1

and U, small, and y ¢ U

5 X the u-disk f(Dl2l y) contains a unique critical

point cl(y) of the mapping wlllf(Dlzly). Similarly, for y € U the

l’

1

s-disk (D?y) contains a unique critical point cz(y) of the map

1 'f_ 5
2 (Dl y)‘

(2]
Moreover, the maps y -+ cl(y) and z ~+ cz(z) are both C ,
(Avtually, we only need that they are Cl.), and they are defined for

t near b . Denote these by c¢ and ¢ respectively.
0 Y 1 2t P Y

Conslder the mappilngs Yl(t,u ) = _ﬁl ¢lt e d);i(ul,0,0) and

_ - -1
YZ(L’Vl) 712¢2t oy (tslt(o, .., 0, Vis 0, . ., 0) defined for t near

v. near 0 in R.

IJ(J in [ and up, vy

95



S. NEWHOUSE - J. PALIS

3y
We may assume, by small perturbation, that _B% (bO,O),
Byl BYZ BYZ
a—u-l- (bO,O), T (bO’O)’ and Wl (bO,O) are all non-zero.

From the choice of the coordinates d)l, ¢>2, it follows that

BYl ayz 'ayl

3,1 = TE-(bO,O) > 0, az = a—t-(bO,O) > 0, b]. = a—ul'(bO,O) < 0, and
'ayz

b2 = _Bvl (bo,o) < Q. (al, 32 not being zero 1s just the statement

that £ is transverse to the set Q in Theorem (2.2) of [18]

at bo.)

Thus, for t near b we have

O’

(4.10) Yl(t’ul) = al(t—bo) + b1 vy +

Yz(t,vl) = az(t—bo) +b,yv, +

where the dots refer to higher order terms.

Recall we are assuming O0<pu< )\-1 <1 and s8>0 1s such that

(4.11) 2 ° <y

Let £€>0 be given. Let d1>0 be half the length of HZ'

Choose 61 = (1-u) Edl. Given K, as in Lemma (4.8), and K, as

in Lemma (4.9), choose K3 >0 small enough so that

(z, (sm) Cz(sm)] bR, Kydy 8

; 1
4.12) &) ) ST <5
m-‘,l m
N )\_sm (Sl
CYI) {Cl (sm) Cz(sm)) 2K K, <7
mzl a, u

1
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2K K3um<i
a0

() 7 (cl(sm)'éz(sm))
m2l 2

Note that (a) and (c) are possible since Cl and C2 are

polynomials of degree d, and (b) is possible since P M.

Let & = u Odl. For any t € UcS’ we may write t-bo = unul

where up € ¢>2 (Hz - f(Hz)) and n2n0.

Define Bd to be the set of points t in UcS such that for some
n 2,n0 and some 1<1ic< Ql(sn), 1s3x< Qz(sn), we have
(6.13) t-b, =W u,  with u e ¢ (B, - £(H,))
: o] 1 1 282 2

and, at least one of the following four conditions holds.

G10) @ la (b by - x| < Kz:gd(;nil
i kA< x| < 2a e
() fa;{t-by) + b, Yoy T x| <K K, 8D
if Ixnil < Kl)\_sn
K%

() lag(e-bg) +byx -y, < w7 V5]

2n n
< <
It Ky 1ynj] 2a,u dy

() Zn

ap(t=bg) +byx y =y, < K Kyu

if lynjl < Klu?‘n.
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We will prove that for n, large

0

n
(4.15) 1f n_ZnO and t € UG—BG’ then At = O Et(Vl U VZ)
is hyperbolic for Et.

First, we show the measure of BS is less than € 6.

It t satisfies (4.13) and (4.14a), then

K K [x [
n 2 3 '"'ni
-— C —
lagwhuy + by - x 2dF)
or
. coavng K | Ky Ky I%y 21(21(3‘11.
1 a pn a Un Un 2d+2 2d+2
1 1 ron n
4K, K,d x boy .
So u, dis in an interval of length —2 31 around ni _ _1°nj
1 24+2 n n’
n al H al H

and there are at most Cl(sn) . EZ (sn) such points. The set of all

such Uy has measure less than

) (El(sn) . Cz(sn)) 4K, K, d; ) E_l.
1 n2d+2 4

by (4.12a).

Similarly, all uy for which t satisfies (4.13) and (4.14b) have

S

measure less than -Tl by (4.12b), and all such uy for which t satisfies

(4.13) and (4.14c) or (4.14d), have measure less than 6_1 Thus, the set of

2
uy € rbz(Hz— f(Hz)] for which t satisfies (4.13) and (4.14) for some n’.no
has measure less than 61. Hence the measure of B(S 1s less than
n
0
§ )' l—dlu =1n0d=L<S
1 - ! 1 - ! 1
n - nO
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Now we proceed to show that At is hyperbolic if t ¢ Bg with

T . _ = P _
¢ small—that 1s, 1f t bO u Uy where u € ¢2(H2 f(Hz)), n is

large, and t does not satisfy (4.14). This will prove (4.15).

We wish to apply Lemma (4.7). First note that the neighborhoods

Ul’ U, may be chosen so that they are contained in the adapted neighbor-
hood V, of A and the splitting E, © Ez! equals TDi ® TD‘l1 while
U1
E 9 E,| = TD§ ® TD;. Let £=c(y), yeV,, be as in Lemma (4.7).
U
2

Recall ¥ =W, n U U1 eEngedr Ve = V2 7 & Yoy (Upge

We begin by obtaining lower bounds on the angles between s-disks

S

u s u
, _ T
in Vnt and u-disks in Et (Vnt) at points in vnt n Vnt he bounds at

-1
21t(Ynjt)) will depend on n, 1, and j.

-1
points in wllt(xnit) and Et(w
They will be used to define sectors on V;t n Vzt so that Lemma (4.7)

, v .u s
may be applied with V2 = Vnt n vnt’

We first claim

(4.16) there is a constant K4>0 such that if n 1is large and

t —bO = un Uy does not satisfy (4.14), then for all

141 s(,l(an) and 1 <] scz(sn) we have

|xnitI

-1 -1 L
(a) dise b, (X ), e (¥ (Ynjt)) > Ky a2
21t n
-=8n
for lxnitl > 2K1 At
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-1 -1 -sn
(b)  dist [wllt(xnit)’ Clt(‘let(Ynjt)]] KA

<2k A"

for i"mLcl RO T

o 1 1y gl
(c) dist [let(Ynjt)’ CZC(‘I’l X )]] %, s

lt( nit 2d+2
T
2n
>
for lynjtl 2% uy

-1 -1 N 2n
(d) dist [wZIt(Ynjt)’ c2t(wllt(xnit))} 7 KMy

| < 2k, p°",

for iy 1 Me

njt

Let us assume for the moment that (4,16) has been proved. Then /
since at the tangencies of Et(D;ty) and Ditw » yeU,, wel,, there are
curves Yy in gt(DLZIty) for which wlltYy has a non-zero second

derivative at clt(y), we conclude

(4.17) there is a constant K_ >0 such that for

5
y € w”l X . )ng w‘l x ), vy, = E—l(y) the éng]e
11t “nit t 721t njt’’ 1 t ’
bet p°  and £ D, 1 ter th
ween lty Tl t Ztyl B greater an
x5 12 -
—— >
(@) Ky 2d+2 o for ey f > 2Ky
and greater than
(b) K ()\—Sn)llz for |x | 2k, A S0
54Yt ° nit 1t
Also, the angle between £ YD  and D is greater th
1so0, e angle between £ 1ty Ztyl g r an
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ly I 1/2
nit 2n
KS n2d+2 for 'ynt' Zi(lut
and greater than
1/2
n 2n
G o gl 2
s 1] u s
Now we will define the sectors on V., =V nv =
i 2 nt nt
‘k\,) ’;ﬁt(xnit) o Et[ U w;it(Yn.t) for Lemma (4.7).
1‘i'F1(sn) lSjSCZ(sn) J
Define the sector § @) on WIx.,)nE VL)
e(n,i,j) "1t 11t “nit t 21t njt
-sn
e > >
as tollows. For |xnit| 2 Iynjtl’ lxnit| 2Kl)\t , set
}X l -1/2
-1( nit —sn
) 113 = 7 —_— > >
e(n,i,i) LKS |n2d+2 . For ZKl)\t lxnitl |ynjt" set
-1 (.-sn -1/2
¢ i3 = 7 ')\ < o
(m,i,j) ZKS e } If ’xnitl |ynjtl’ define e(n,i,j) so
that T ol S D' =TM-§ D°  where r{n,i,3j) =
t “eln,i,j) 1t r(n,1,j) "2t ?
-1/2
-1/2
-1 ’ynjti 2n _ -1 2n
2}(5 n2d+2 for 'ynjt‘ > 2Klut and r(n,i,3) = 21(5 ut
. 2n
bi .
or ‘ynjt‘ 2K W

Lot us proceed to verify the hypotheses of Lemma (4.7).

For x , let B = B(x ) be the least integer greater than
nit nit

Y € U - C— U, . Then, for n large,

§
zero sucl at
cro such that f, (Xnit 1t t 1t

» 3 o u u B u
L’L(‘)e(n,i,j)(Dlt)) ( SC(Dlt) and Etlse(n,i,j)(Dlt) is an expansion.
..__/_
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9

That is, m(t:t

u
> A >
Se(n,i,j)(Dlt)) 1 1 for some )\l independent of

n, 1, and j. Actually, 7\1 may be made arbitrarily large for large n.

u

This holds because a vector in Se(n,i,j)(Dlt) will have its slope
\B
t

increased by approximately c, -7 where o<1 (A-lemma} and Ix

Iis
1,8

nit
approximately K;Bcz where cy and c, are constants. Similarly, if

-0
g = O(ynj-t) is the least positive integer such that Et (ynjt) € UZt- Et UZt'
then £° (TM - s o)) ( TM - S (0 ) and £.° is an
t e(n,i,j) 1t 7 e 2t t

expansion there.

For the final hypothesis of Lemma (4.7), we show

~1 - '
(4.18) Yy n A< U Vi X0 0k Vv, LRI

v
1Siscl(sn) nit t lstCz(sn) 21t ' 'njt

After this, (4.15) follows from Lemma (4.7).
Since x is a quasi-transversal intersection of Wu(pz) and

Ws(pl), there are 81 >0, a constant ¢y >0, and an integer ng >0 such

that if nzn, and t~-b, = unul, then

0 0
e w7t u n/2 o
Et (WZt) D2+t A (ﬂlt) [Sel(ﬂlt"]lt) " D1+t) “ % * 1Mt Ult B A1t'
-- N n
I'hus, letting Vnt . F,t(V1 U VZ)' we have Vnt n V2 c Alt for
-nsj=n

-1 n
. A
large n Similarly, Vnt n &t V2 c 2¢ for some (possibly larger)

c nv , elther fj (y) e v, for

and n large. Now, if y ¢ V2 sn,t 1

1

1€j<sn, or y ¢ Arll , 80 Lemma (4.8) gives that

, 80N, t
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ooy
y € N wllt(xnit)' Analogous reasoning shows that
]_siscl(sn)

U
S (Vz) n Vsn,t c . wZIE(Ynit) for large n. This proves (4.18).
l.:iSCz(sn)

It remains tc prove (4.16).

Note that 1if t —bO =t uy does not satisfy (4.14), then for any

] 54¢< i;l (sn) and 1s<js CZ (sn), we have the following inequalities.

(4.19) (a) lal(t-bo) - bl ynj - x, > &?L__%ﬁl
16k AT < x| < 2a 1)
(b) [al(t—bo) + by Yoy - xnil > K, K, !
if Ixnil < Kl y~sn
Ky Ky lygy!

© lay(e-bp) +byx -y |2 23

2n n
1f K U < Iynjl <2a, M4y

Zn
(d) laz(t—bo) + bz xni - yﬂjl z Kl KBU

2n

TR

if ]ynj] <K

Now (4.16) 1s a consequence of (4.19) and Lemmas (4.8) and
(4.9). We will indicate the proofs of (4.16a) and (4.16b), leaving
the analogous proofs of (4.16c) and (4.16d) to the reader.

First we have the geometrically evident fact that there is a

congtant K » 0 such that
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i -1
(4.20) (a) dist (wlit(xnit)’ c1¢Unge)) ¥ Kdist (V210 Oy Soe Fage))

_— - -1
() dtst (U7, O 0 g Gy )) 2 Kdtst (017 G0 eq ()

for n large and all 1, j.
This is proved via the facts that

(c) if then T

u s
m > >
1t “1t Ynje ~ Fnie’ 2t “2¢ *nit 7 Ynje

and the distance on the left of (4.20a) may be expressed

in terms of the smallest angle between Dix and
nit
Et D;y while the distance on the right may be
njt

expressed in terms of the smallest angle between

-1_s u
ETD and D .
t 1 xnit 2 ynj t
and
(@ 1if m° then

s

T < T <

1t °1t Ynjt ~ *nie’ 2t “2¢t *nit  nijt

and the respective distances may be obtained as the

infimum of the lengths of pilecewlse differentiable

curves joining appropriate points.

For convenience, set e = Ial (t—bo) - b - x and

1,n 1 ynj ni|

€20 |a2(t—b0) - bz X4~ Ynjl- From Lemma (4.9a) and the

differentiable dependence of )\t on t, we see that to establish (4.16a)

and (4.16b), Lt suffices to show

1,n

(4.21) dist (wﬁt(xnu), . ("p;}_t(Ynjt)] 3

for large n and all 31, j.

104



CYCLES AND BIFURCATION

Also, since

-1
Ware

1

-1 -1
dist (W, (K ) e, (Ynjt)) dist [y 7 & ), clt(Y“jt))

N —1 i Hl
- dist (lpllt(xnit)’ clt(Ynjt)) - diam [wllt(xnit)]

NS : 1_1 - — _l
¢ dist [\Ullt(xnit)’ Clt(ynjt)) diam (clt(Ynjt)) ddan (¥ lt(xnit))’
(4.21) will follow from
e
-1 1,n
(4.22) (a) diam (V] (X)) =
®1,n
(by diam (Clt(Ynjt)) s =%
-1 2
(c) dist wllt(xnit)’ clt(ynjt)) > 3%,n
provided n 1is large.
Now, Lemmas (4.8c), (4.9a), and (4.19) imply that
. -1 L1
diam (LLllt(xnit)) el,n + 0 as n*+%, which gives (4.22a). Analogously,

. <
diam (Clt(Ynjt)) €0 + 0 as n*%®, so (4.22b) follows since e2,n‘Ke1,n

by (4.20).

-1
For (4.22c), observe that dist (wllt(xnit)’ Clt(ynjt)) =

dist (x ) 1s well approximated by |ex1 (t—bo) + bly

u
m -
nit’ 1t 1t ynjt njt xnitl

since thig i3 the absolute value of the first terms of Yl(t, ynjt) - X

nit’
further, fay (Cobg) = by vy = xpged ey oo I b lygye vyl - by - xgy s
50 1t suffices to show lynjt—ynj * e-l-,n and lxnit_xni : e;fn * 0
as n*e. But, (4.19) and Lemmas (4.8) and (4.10) give that Iynjt:"ynjr =

K by le=byl s kA (e=-by) and |x_,, -x

ol * ie " Xaq) £ Ky Ix g lie-bol < K, B (t-bg)

nj

105



S. NEWHQUSE - J. PALIS

2442 2d+2
where A = max —1—e s 3 e and B = max —l-e ;n e .
K3 2,n’ KZ K3 2,n K3 1,n K2 K3 1,n
Since t—b0 = un uy is exponentially small for large n, and
€ 5 < i(el o Ve obtain the required facts. This completes the proof
» 3

of (4.16a) and (4.16b).

We have now completed the proof that At is hyperbolic.

ﬁsing the methods in [31], one shows that At is zero-dimensional.

Moreover, Wu(pZt) n Ws(pzt) will be dense in At’ SO At is transitive,

and (4.3) has been proved.

Observe that as t approaches b0 in UG—BG’ the minimum period
of periodic points of Et in V2 goes to ®, Thus, there are many

different topological conjugacy types among these Et's. Moreover,
using the methods in [42], one can describe explicitly the orbit structure

of Et A in terms of non-negative integer matrices.
t

At this point, we indicate how to enlarge B(5 to obtain (4.4),.

As it stands, for t ¢ UG_Bé’ y € Vz, Wu(y,Et) containg a u-disk C2

near f (Du

1 ), and Ws(y,ﬁ) contains an s-disk C2 near D>
- t
2f "(y) t

lyt’
First, consider the set Qlt of periodic points q of Et such

h we r 8 8 5

that (Pyprbp) MW HQE) * 8, dim W (q,E) = dim W (p, ,E ), and

q ¢V, vV, Enlarging {xni} we may assume D‘i‘t m U ws(q,gt)
9cQy

-1
U wllt(xnit)' Similarly, enlarging the collection {Ynj}’ assume
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Lo U gy oo
[)2t n <3 W (q,Et) c U’Jllt(Ynjt) where Q2t is the set of periodic
2t

points q of £ with W(p,,E) n W (g,5) = 8, dim Wi(p,,,5,) =

dim ws(q,E;t), and q ¢ Vl uv This can be done with at most El(sn)

2
1 - ' > -

xni s and gz(sn) Ynj s where 4‘;1 and Cz are polynomials of degree

bounded by the number of periodic points of f£.

Let Q, be the set of periodic points q of Et with
Wa,E) ¢ W (py,E) = @ and dim W(q,E.) > dim W (p;,E).
If y ¢ v, n ws(q,Et) for q ¢ Q3t and Ws(y,Et) is not transverse

to W (y,Et), there is a one-dimensional direction near Hly which is not

in Ty w® (y,Et) + Ty w“(y,gt). This means that the angle between

s u u u
W (q,ﬁt) n Dlt and Hlt near ﬂlt (y) is very large. Thus Trlt(y) i8 nearly

a critical point of 7 Make all the critical points

u
u .
11clws(q,€t) n D,

Mt

°f 11w8(q,f) n D

u non-degenerate for p € Q3 = Q3b . Enlarge the

1 0

-1
collection {xni} 80 that these critical points are in U wll(xni)'
Analogously, define Q&t to be thosge periodic points q of Et such that
WH(P Ly 0 owWig,f ) = @ and dim Wu( £) > dim w“(p £) Increase

260t EENT 9455 2t° 7t

5
ti 5. : )
he set of i{ntervals {Ynj} so that all critical points of 21 W (g, £) n Dg

for q ¢ Q are in U)—l(Y ). Again, the cardinality of the sets
4b0 21" 'nj

of [ntervals {X .} and {Y .} can be bounded by Z,(sn), L.(sn) where
ni nj 1 2
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El and -52 are polynomials with degree less than the number of periodic

points of £, Now one may enlarge BG so that for t ¢ UG—BG’ and

-1 -1 s u
D
y ¢ lelt(xnit)n Et UwZ}.t(Ynit)’ Dlyt is transverse to Et 26_1(y)t,
t

This will guarantee transversality of Ws(y) and Wu(y) at y in Vz.

Further, the methods which prove that MS 1is open (see §2 or [20])
will insure transversality at points whose orbits don't meet V2 for
t—b0 small. This proves (4.4).

The proof of Theorem (4.2) for the case in which there is a

l-cycle is similar. In this case, the weakest contracting eigenvalue

H of Tp f may be complex, but generically we will have lul < A_l.
2

The constructions in Lemmas (4.8) and (4.9) may be imitated, and the
same general methods may be used. The essential fact is that the norm
of an element in H2 (which may be two-dimensional) 1s contracted by

the constant ]u| in coordinates for which f|H is linear.
2
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§5, Here we give the proofs of Lemmas (4.7), (4.8), and (4.9).

This will complete the proof of Theorem (4.2).

Proof of Lemma (4.7). The proof consists of ghowing that one may

redefine E,2 & E

1 , to give an almost hyperbolic splitting [18, &3] on a

¥ m n
subset V3 c Vl u V2 such that . £ (Vl U V2) = V3.

L]
H

For 05k, <N, let V 5

= {y eV k(y) = k, 2(y) = L}.

k%

Given yeM and j an integer, write yj = fj(y). For y ¢ ng and

RERE: -1 ¢
j<k, let F Tyf (Ely)’ and let F

- j
lyj 2y Tyf (EZY)'

3

~

i, - U e -
Take vkﬂ. _1<j<kf (sz) and define the function «: sz + R

so that 1f y ¢ V we have

ke’

- h|
F ~Tyf (SEy)E for 0<j<k,

2y

-
=
!
w
&)
I

h|
T £°(T M-S_ E for -4<4<0,
y (y Ey ?-Y) i

and a=€ on Vkl’

Note that G

kln“;mn= ¢ 1if k#zm or £ =zn.

Proceeding similarly on U Gkﬂ. and taking the function €
O<k, £<N

V] - U v , we obtain a (possibly discontinuous) splitting and
o<k, pen KX

sectors on a subset v, of M contalning m fn(Vl u VZ)' Relabeling,
n
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we call this new splitting El & E2 and the function alez we call €.
Set Ez(y) = e(y) ‘and E:l(y) = e(y)—l. Then the invariance properties

of (1) and (2) of section 3 in [18] hold. To conclude that

(\fn(v:L U Vz) is hyperbolic, we have to prove

n

1
(5.1) (a) m[Tyf IsEzy Ezy) > M\
and
-n
(b) m[Tyf IsEly Ely) 2 A with A >1.

if n is large and y € Vn.

We will show there is an integer n >N sguch that if

y € m fj (VlUVZ), then (5.1a) holds. Similarly, (5.1b) is
--nSan

obtained and Lemma (4,7) will be proved.

For n>3, set Vn = f:I (V1 u VZ)'
-n<j<n

Our first goal is to prove

(5.2) there is an integer n0>N such that if y ¢ Vn , there is
0

an integer k(y) with 0<k(y) <n. such that

0

k(y)
m[Tyf s, yEzy] = A, > 1.

2

Indeed, once (5.2) is established, let K, = inf {m(T fj): 0< ’no}.

1

n
and let n, > n, be such that )\11 l(l > )\1. Then for any integer } >0,

h|

n
0 3
h £ 2
we have m(Ty |S€2y E2y) X K2 provided that y e ano. Thus (5.1a)

follows with n = jno and j 2 ny no_l. From now on always agsume n 2N.
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Note that (4.7b) gives that for z = £ 0 (y), T_£ O (s_E, )

2z

( 5 (E, ). Thus, we may change the Riemann metric on a neighborhood
; €y ~ 2y

vy, of V. so that for ysV4

4 2
(5.3) (a) m(T _l(y)fsz f‘p”(Y)'l(sEz RS
and
® =t f'l]Tw f'k(y)ﬂ(rwu -5 E ) >
where w = £ (5).

Actually, only (5.3a) is needed for (5.1a), but (5.3b) is needed
for (5.1b). 1In this new metric (extended to M) we will show that (5.2)

holds to obtain (5.la).

Remark: Our definition of hyperbolicity appears to depend on the
Riemann metric, but as is well known one can give a definition

equivalent to ours which 18 independent of the Riemann metric [8, (3.1)].

Now, 1f y ¢ V_n v!

2 then (4.7a) guarantees that

m[Ty fk(Y)|S > A, >1 for some 0<k(y)<N. Also, if in addition

ey Eay) 2 N

'}
y ¢ 2

nfd (Vé) for some j >N with fi(y) ¢ V;_, for 0<i<j, then

(5.3a) gives m(T fj|S E, ) > Ak 2 Furthermore,
y €2y 2y 1 1

Vo - uV 2 Al
yev - ngl implies that m(Tyf[SCZY E2y) 2 }‘1

To prove (5.la), we need only worry about y ¢ qul - Vz' 1f we

choose n>N. Let K, = inf {m(Ty fj): y eV, uV -N <3 <N}. Choose

2 1 2!

nz-N 2 nz—N
hy > ny large enough so that )\1 K- 2 A, and ?\1 K. 2 A

1 1 1 7 My Set
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n, = n2. We claim that if y ¢ V n (kail - Vz'), then
2 n3

k ,
£ s E > A, for some O0<k=n,.
n(T, €] €,y 2y TN 3
~ ]
To prove this, let y € Vn3 n (Vkl - V2) for some 05k, £<N.
i )
First suppose f (y) ¢ Vz' for 0<is<n,. Then n(T £ ,SEZyEZy} >

n,~-N
2 i '
A Kl > )\l. Now suppose f (y) € V2 for some 0<1 <n,. Let

0= j0<j1<jz< . . <jr5n3 be the distinct integers such that

j
i ' = - <
f " (y) € V2 . Set jr+1 n,. If j:l. ji-l <, for all i, then

n n-§ 3_-3 J,-3; 3
3 37r r Jr-1 2 71 .71
= I 1 f
r_>.n2, and m(Tyf ISEZY EZy) m(Tyf £ )
>K A 2 AzAjlnN > Azr_2+ll(2 2 A On the other hand if
=K : KM 1 %M

N r-.-J, )11

there is a least integer 1>1 such that ji - ji—l > O, then
3 ;-3 34N
i S i~“i-1 1
n(T £ lsezyEZy) 2 K M .. A K
n,~N+1  §, -3, j,-N
21(2)\2 Ail 12.‘)‘1
171 1
n,-N

2 2
>)\1 K.I. 2)\1.

This completes the proof of (5.la).

Proof of Lemma (4.8). Let Py =945 - - 5 4, =P, be the distinct
periodic points in Al and assume, to simplify notation, that f(qi) = q,

for all i. There is no difficulty in extending to the general case.

Let Di8 x Diu 3:? Wi be a neighborhood of 9y in which
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[e¢]
£ is linear 1in some C coordinates d)i on W Take

pSxopuo0xp" 1
i i

o wi +Db,, TTi: Wi -+ Diu to be the usual projections, and for y ¢ Wi,
-1 u -1

let DSy =7 (ﬂiuy) and Diy =TYiS (ﬂisy). Pick 0<T<1 such that

ra =

< £1D S ’ " = . ..
u T, max{]Ty | iyl ]Tyf i 1i=1, , V} < T, and

—l] 5

u
Diy)’ m(Tyleiy). yewW

1

min{m(ryf s i=1, . .., v}>T1 ",

i

For 1<1i<v, define beh (qi,q\)) to be the largest length of a

sequence q = g = q, such that Ila\lu(q:£ ) n ﬁs(qi ) 2 @
k

ktl

s v v s Q
1 i

for 17k -j.
Relabeling, assume i <3 implies beh (qi,qv) > beh (qj,qv).

For a subset D of Wi, recall from section 3 that its u-width,

wu(D), is sup (diam (Diuy n D)). Also, 1if r® is an s-disk in Wi, its
yeW
i

| my v s s _s
:yeE,veTyZ,ﬂivto.

u-slope, pu(is), is sup a
|1Tiv

Given an integer k>0, we say a set D is k~disconnected if D

has at most k connected components.

Let ¢

1’ > 0 be constants. A subgset DcW, will be called

€2 i
(Cl,cz,k)—controlled (in wi) if

(a) w (D) < ¢ Tk
u 1

(b D i1s a union of s-disks whose u-glopes are less than ¢,

and whose boundaries lie in nis [B(Dis x 0)).
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We will first prove by downward induction on i that for 134 <v,

u
there are a neighborhood Vir of {q\)} v U Ws(qj) n U wiq,),

1<j<v 1j<v 3

constants c > 0, an integer Ni>0’ and a polynomial Ci(z) of

117 €12

degree less than or equal to beh (qi,q\)) such that

, m 2@y 0w, on f‘k(A?_“) is

(5.4) for k,n2N
0sL<k 1 1

i
Ci(k)—disconnected, each of 1ts components 1s contained

k) controlled set in W,, and

in a (cil’CiZ’ 1

-L 1 8 l k
dist(mf(v),w(l\)nv]<cr.
0<0<k i 1 1 11

First, by several applications of the A-lemma [20], we may assume

each Wi is chosen so that if y ¢ Wi n Ws(Al), the connected

component of W (y) n Wi containing y 18 an s-disk whose boundary is 1in

-1
B(Tris (Dis x 0)) and whose u-slope 1s less than c, for some constant

9 independent of y and {.

N
<

1
Let V\) _W\) and choose N0>0 so that for nzNo, A c W,

From the definition of Azn, we have that wu(Azn) < cq Tn, n ZNO, for

1/2

some constant c, >0 since y <1T<]1l. By the A—iemma, there are a

consgtant c4>0 and an integer N(;' >NO' such that for kzNOH,

L - -
y € (W f"(W ), the connected component of f k(y) in f k(D Sy) is
0<h<k v L

an s—disk whose u-alope 18 less than <, TZk. Observe that lefy and
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f“]ms expand by at least T while f|p° and f_lIDu contract by at
87 iy 1y

least T on each wi. Thus there are an integer NO >N(;' and a constant

¢_>0 such that for kzNO, each set m f_'Q'(V\;) n f—k(Azn) is an

> 0<l<k

(s +u)~disk whose u-width is less than ¢ Tk and which is a union of

5
s—-disks whose u-slopes are less than cg TZk. Thus, m f—'Q'(V\)') n f—k(lﬁzr"l
Q<<k
2k
is in a connected (CS’ CST , k)-controlled set in Wv for n,kzNo. So
ZNO
we take o1 = CS’ COZ = cST , and the polynomial Qo(z) to be the

constant 1.

Assume now, inductively, that there are a neighborhood V‘i’ ap

polynomial l;i(z) of degree < beh (qi,q\)), an integer N1>0 and constants

N, 2z N, for

> >
c as in (5.4). We assume that €41 2 S10 G40 Z S0 Ny T N

“i1, “12
i- k.

Consider 9 The u-slope of each component of ws(!\1 n Vi') n

W - f-l(wi_l) is bounded by ¢, >0. Choose N>0 such that

2

fN(w - f_l(wi—l) n WS(Al)) cv'. Choose ¢

> f v
ic1 1 3 0 such that if y €

1
i »

dist (_y,WS(/\l)) “~ ¢., and f_j (y) ¢ W for some 0< 3 <N, then the

3 i-1
s=disk through y In Vi' gilven by (5.4) pulls back by f_j to an s-disk

In whose u-slope is less than c,. Choose N' >0 such that

W
i~1

dist (m , f~Q(Vi'), Ws(Al) n Vi'] < cqe Choose N'>0 such that
O<L=sN

N s -1 m ~R
! -
W)y v - ) e £,
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0<2<N'

ﬂ f_p“(vi')] U W_ . Set

N, =N+N +N'+N. Then for n,k > N, _,, consider

-2 ' -k n t
v' —_
1-1,nk def m f (vi—l) n wi—l n £t (Az). For y ¢ Vi—l,nk’ let
Q<f<k

k k
k1 be the least integer such that £ 1(y) € Vi" Then f 1(y) €

m ) ktk,
£ (Vi') nf (A2 }. Notice that by increasing N' (and

Os%sk-kl

hence Ni-—l)’ we may insure that k—kl 2 N Therefore, by induction,

L
kl
f "(y) is in a (cil’ci?.’k_kl) controlled set which 1s at most C(k—kl)

disconnected where £ 1s a polynomial with deg L < beh (qi-l’q\)) -1,

1

k,-N
'

Thus £ 1 (y) is in a (c1 ,cz,k-kl) controlled set in W which 1s

i-1
at most N ;(k-ki) disconnected where cl' is some consgtant depending on

(g3, 0<j<N"'}. Thus, y is in a (CRAP

k- kl + kl -N") controlled set
which is at most (k, -N") K" I(k-k,) disconnected. Let L (z) be
1 1 i-1

defined so that Ci__l(z) 2 zN"¢(2). Then (5.4) is proved for 1i-1.

A similar proof works for m f-n(Vi') n Wi, 1<icv, Thus,
0sizk

there are a neighborhood V1 of I\1 U o(x)~-x with x ¢ Vl, constants

€12¢, > 0 an integer N>0 and a polynomial {(z) of degree < beh (pl,pz)

such that for k,n>N, m f"g(vl) nW N f"k(A“) u m f'x(vl) nw

07 %<k 27 o<n<k 1
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is z(k)-disconnected and each of its components is in a (cl,cz,k)—

controlled disk in Wl. From the definitions of Aln and T, we have

that, for n large, fj (Af) c Vl provided 0 <] 5%; that is,

Af < m f_j (Vl)' Thus there 1s an integer N>0Q so that for

n> n
k272N, 8) © U [

klsk

-2 -kl n
f (Vl) n Wl nt (AZ) . Setting
Oskskl

e

Cl(z) = z%(z) and taking N large, we have, for k2n =N, that

AR v m f"'j (v,) 1is r_(k) disconnected and each of its components
1,k 0<j<k 1 1

n
is in a (cl,cz,-i-) controlled set in Wl. For k2zn2¥N, let vlnk

B £°(V,), and let V, =V, . aW -f (). Then

0<y<k lok 1

v where D, 1is a (c

n
Dj 5 2 ,—2-) -controlled disk in W
1<3<t(k)

2nk © 1*¢ 1

and deg { < beh (pl,pz). Let ano be an interval in Hl n Wl - f"l(wl)

whose dlameter is twice that of D.‘i n Dlu and whose center is ﬁll;. of

the center of D, n DV, For l1<k<egn, 8>0, let Xn = f--k

5 "Dy ik X 400

There is a constant K >0 such that diam |7 m £ M1 s k™S
11 1
0<j<sn

for n 'N. Let )(n be an interval in Hl centered in P1 with diameter

11

less than 3IKA °" guch that dist |7 - m £3wl, ax | > Xamso,
0%} <sn 1 n 2
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Then, the desired collection of intervals {Xni} in H1 for Lemma (4.8) is

{Xn} U {ank: 1<3<g(k), % k <sn}. Clearly, there are at most Cl (sn)

such intervals where deg Cl < beh (pl,pz) +1, and, if Wl is chosen small

Y ﬂ £Iw) < U V(%) so (4.8a)
l,sn 1 11

0<j<sn 1sisg, (sn)

to begin with, A

holds. On the other hand, since f_']'|D1u 18 linear, we have for

aptogl (Dlu)

yeV 1

-2 E
1nk s d(f (y), A~ (y)) cq 1 |y| for 220 where Cy

is a constant, A<)\1, and |y| denotes the norm of y in p’ This, and

1°

the definition of the intervals Xn’ X give (4.8c). Parts (4.8b) and

njk’

(4.8d) are established similarly.

Proof of Lemma (4.9). We prove (4.9a) and leave the analogous proof of

(4.9b) to the reader.
First we claim

(5.5) For t-b,. small, x eD“-f’l(Dl“),

0 ni 1

| %

it T xnil < Kl' |t-b0| |xni| where Kl' is a constant.

(5.5) is a consequence of the fact that LI is a differentiable

function of t for t near bo. Using this, there is a constant Kl"

such that lx - X '.,K It b

nit ni‘ for |t—b0| small. Then (5.5}

ol

follows since |x_,| 1s bounded below for x . ¢ DY-f" (D
ni ni 1

The differentiable dependence of x on t may be proved by

nit
induction on the number of periodic points {ql, v e e, qv} or as
follows. One may construct an arc nt of diffeomorphisms of M such that
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_-u u -},.s s
@ {x ;0= “11{°1t a [j Y £ (nzyt) u W (Altn} vhere y _ is

the point in Wu(plt,it) associated to E;l (x).
0

u -1, s 8
{(b) the set Dlt n [jL()O Et (DZYt) U W (Alt)] is contained 1in a

hyperbolic set A(nt) for 'nt.

(e) nt = &t on a neighborhood of V

1t’
(d) there is a homeomorphism ht: A(nb ) »~ A(nt) such that
0

X i " ht (xni) and the map t + ht ig differentiable

from a neighborhood of b, into CO[I'\(I']b ), M),

0 0

Fact (c) is proved in the well-known manner of proving that the conjugacy
in the fi-stability theorem is a differentiable function of the diffeo-

morphism (see [4]). Now we prove (4.1lla).

Let X € Dlu—f-l(Dlu), k >0. We need to show that, in local

coordinates, IE;k(x )y - f-k(xni)| < Klf_k(xni)llt—bo‘ for some

nit
constant K >0.

We may assume that ¢1t E;l ¢Ii is linear on ¢1t Hlt = R and is

equal to the map v, +—* A;lv with ?&;1 varying differentiably with t

1 1

near bo.

lo(t)]
It'bd

Now, A;l -2 4 o(t) with 1linm

t"'bo

= (, Thus,
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-k

-k IRETG! k -k
AR IEE R IR R LG YOV IR IR )

&

-k -k -
|A (l+ol(t))(xni+xnit-—xni) - X (xni)l

k

It

-k - -k
|A (x )+ X (x g =% ) T A (ol(t)(xni)]

+ A—k(ol(t) x4 ~% ) - ?\_k(xni)l

-k
l A (xnit

nxni) + >‘_k(ol(t) (xni)) + A_k(ol(t) (Xnit‘_xni))|

1A

X' |t-b0| x'k(xni) + A'k((xni) ol(t)] + A'k(ol(t)) K' |t—bol (x_,)

lo, ()

= 0, This gives (4.1la) since the x 's

where K' >0 and 1lim 4

b |t = by

in the statement of (4.11la) are of the form )\-k(xni) with
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§6, In this final section we make some concluding remarks about the
theorems already described, and we discuss briefly the possible extension
of the results to bifurcations of general Axiom A systems.

The first question concerns the possibility of extending

Theorem (4.2) to the case when Eb has a non-equidimensional cycle, or,
0

equivalently, when din1wu(p1) = din1wu(p2) + 1 1in the notation of §4.

Let us mention that one can give rather strong conditions
analogous to those in (5.2) of [18] to insure that structurally stable
&t appear for infinitely many t's with t--b0 > 0 small. While these
conditions hold for an open set of £'s, they are far from dense among

those for which L"(Eb ) is finite and hyperboliec.
0

In general, several new phenomena appear in the non-equidimen-
sional case, and we may jllustrate these with the following 2-cycle

on a three dimensional manifold.

/Ws(pz)
//ﬂ*?‘%L T i}
QI
|

Figure 6.1
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The figure describes parts of Wu(pl), ws(pl), Wu(pz), and Ws(pz)

for Eb . D, H

1? DZS, and H, are defined as in. §4. 1In this example
0

Ws(pz) n Wu(pl) is a countable union of disjoint circles, and

Wu(pz) n Ws(pl) is the orbit of a quasi-transversal intersection Xx.

For t=>b0, Wu(pz) ie raised near x as in the next figure.

/

Figure 6.2

Under certain conditions all the pieces of Wu(pz) u Wu(pl) may
be raised to miss small neighborhoods of those of we (p2) u W® (pl) and
the resulting diffeomorphism will again be Morse-Smale. On the other hand
if the pieces of Wu(pz) U Wu(pl) are ralsed to meet those of Ws(pl) v WS(pZ)

transversely in an appropriate way, the resulting diffeomorphism will be
in AS and will have an infinite non-wandering set. In the latter case,

there are two infinite hyperbolic sets near x corresponding to the
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closures of the homoclinic points of Pie and Py regpectively, and
wu(plc) n WS(pZt) contains wandering points. It 1s clear that this

situation 1s more complicated than the equidimensional case in which a
single topologically transitive hyperbolic set appeared. Moreover, while
we have some specialized results as indicated above, we have not yet
obtained the proof of a general theorem analogous to Theorem (4.2).

The next question relates to the possible extension of Theorem

(4.2) to the case when Eb has a gquasi-hyperbolic periodic point in a
0

cycle. As a simple example consider a Morse~Smale diffeomorphism f on
82 having a single invariant smooth circle C which contains a fixed
sink Py and a fixed saddle point P,- Agssume f is normally hyperbolic

to C [10), and L(f) - {pl,pz} consists of two sources as in Figure 6.3.

Figure 6.3
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With a smooth curve of diffeomorphisms Et’ 0<t<1, slide Py
and P, together leaving C invariant for all t. Do this so that Et
always remains normally hyperbolic to C. It may be arranged that at

the time t = bO(E) when Py becomes equal to Py,s P =P =Py is a

If
]
]
@
8
=1

quasi-hyperbolic fixed point for Eb , and Wu(p) = Ws(p)
0
Figure 6.4.

Figure 6.4

Tt is not hard to see that the rotation number of Et c (gee [7]) will

vary through an interval for bO <t <b0-+€, so any perturbation of £

will necessarily have infinitely many bifurcation points near bo. Now,
using Peixoto's theorem and arguments in {18] one may show that for most

arcs n near £, there are nelghborhoods Un of bo(n) in 1 for which

B(n) n U(n) is nowhere dense. Thus, this situation is pretty well

understood. However, 1n contrast to Theorem (4.2a), one might not expect
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meas [B(ﬂ)) /diam U(N) to be small with diam U(N). This is because the
arc N restricted to the invariant circle induces a curve ¢t of diffeo-
morphisms of the circle Sl. Generic arcs of diffeomorphisms of the
circle do not necessarily have bifurcation sets of measure zero. TFor
instance, one could choose a (non-generic) CS curve qbt such that the

rotation number varies as Ot(t-bo) for b0< t<b0+€ with O a monotone

positive function. Then the map (u,t)'—"‘(dbt(u),t)- for (u,t) € Sl>< [bo,b +€)

0
is a twist mapping [11], [12, p. 227]. Any C5 perturbation ¥ of the

map (u,t) v—ﬂbt(u) gives a map (u,t)+* (w(u,t),t] whose invariant circles
corresponding to strongly irrational rotations have measure close to the

measure of S1 x [bo,b +€). While generically, there are many Morse-Smale

4]
diffeomorphisms &t for t arbitrarily near bo, it seems unlikely that

meas B{({)/diam U(f) will be small even if diam U(E) 1is small.

Now, suppose that before bringing 12 and p2 together to p one

pushes in Wu(pz) to the left of P, as in Figure 6.5.

Figure 6.5
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This will cause Wu(pz) to oscillate as it approaches 1] and Wu(pz) U {pl}

is no longer contained in a smooth circle. Now bring Py and Py together
via an arc Et as before. In certain cases, this procedure gives
infinitely many different Morse-Smale diffeomorphisms Et for t> bo(ﬁ)
while in other cases Et can have hyperbolic periodic points with
transversal homoclinic points. Which of these cases occurs depends on

the structure of Eb on Wu(p) away from a small neighborhood of p.
0

Of course, one may enlarge the situation to produce cycles of any given

length containing a quasi-hyperbolic fixed point as in Figure 6.6,

N

Figure 6.6

If the cycle for Eb has leagth greater than 1, then one always has
0

transversal homoclinic points for Et, t >b0.
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It should be pointed out that while these statements give some

qualitative information about the structure of gt for t > b we do

09
not yet have a general theorem about the existence of structurally

stable diffeomorphisms near bO. That is, we do not have a proof of a

theorem analogous to Theorem (4.2) when Eb has a quasi-hyperbolic
0

periodic point contained in a cycle. Nevertheless, we expect such a
result to be true.

T
Consider now an arc £ € @k’

with EO any diffeomorphism
satisfying Axiom A and the transversality condition. Assume bO(E) < 1.

Generically, what can be said about the structure of Et for t near bo?

As an example, let us look at Smale's horseshoe diffeomorphism on S?'
(see [32]). A square Q 1s mapped by a diffeomorphism f as in

Figure 6.7 below with f(A) = A', £(B) = B', etc.

F(Q)

2

//

Figure 6.7
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There will be a hyperbolic fixed point p in the left component of

£(Q) n Q whose stable and unstable manifolds enclose A = (/\\ £2(Q)
nez

as in the next figure.

A4
N

Figure 6,8

With a suitable modification of £ off Q through a curve £t one may

introduce a quasi-transversal intersection x of Wu(p) and ws(p)

for €b off A as in Figure 6.9.
0
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N

Figure 6.9

Then one has Q(Eb ) = Q(f) U o(x) and the general orbit structure of «Eb

0 0

1s easily described. Indeed, there 1s a small neighborhood U of x so

that if vy, fn(y) are in U for n>0, then y lies above x and fn(y)

lies below x. Using this, one sees that L(Eb ) = Q(EO) remains
0

hyperbolic. However, the structure of Et for t>b_ 1is quite complicated.

0
For example, If the appropriate Cantor sets in W (f) and _ﬁs(f) are
thick (see [14] for definitions and notation), none of the Et will be
structurally stable, and indeed many may have infinitely many sinks [16].
On the other hand, if the Cantor setsg are thin, then there will exist

infinftely many structurally stable diffeomorphisms among the Et's,

t»bo.
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For the next example, compose the horseshoe diffeomorphism f
with an arc of downward translations for Et so that f(Q) 1is moved
downward with t. Let P, denote the hyperbolic periodic point of Et

near p for t near bo. Then Wu(pb » Eb } will have a quasi-transversal
0 0

intersection x with Ws(pb ’ Eb )} which lies in the closure of
0 0

m E: (Q) as in Figure 6.10.
neZ 0

N

o
=Y

oY u

Figure 6,10

Here ﬂ CE (@) will be a non-hyperbolic F’b -invariant topologically
n 0 0

transitive set with periodic points dense. Also, all the periodic
n

(el @ 18
n 0

topologically conjugate to the quotient space obtained by identifying

points will be hyperbolic. In this example, E;b
0
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two orbits In the shift automorphism on two symbols. Moreover, the

remarks in the preceding example for t>b,_ are applicable here too.

0
For our next example one may Introduce a quasi-hyperbolic

periodic point near some periodic poimnt of fIQ so that for t >b0’

£ is in AS and Q(Et) becomes modified. In the figure below, we

t

introduce a quasi-hyperbolic fixed point near p.

N
Cdl
N
re

N/

A

A~
Ny
P2y

Figure 6.11

All of these bifurcations may be generalized to higher dimensions, and
the other kinds of generlc bifurcations of periodic points (see [36])
may be incorporated into basic sets (i.e. isolated invariant topologically

transitive hyperbolic sets) in the obvious manner.
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Also, the diffeomorphisms Eb in the above examples lie in
0

smooth codimension one submanifolds of Br(M). These periodic point
bifurcations may radically change the non-wandering sets of a given
Axiom A diffeomorphism. For example, R. Williams pointed out to us that
one may pass from an Anosov diffecmorphism on the two torus to the DA
diffeomorphism [41] after the introduction of one quasi~hyperbolic fixed
point (see [17) for a description of this in the context of flows).

Other bifurcations may be obtained by introducing non-transversal
intersections of stable and unstable manifolds of different hyperbolic
basic sets. For example, in a four dimensional manifold consider an AS
diffeomorphism with two baslc sets Al, A2 which are two-dimensional

tori such that f]Ai is Anosov and ﬁu(Al) n QS(AZ) z . Modifying

f off Al UA2 through a curve Et, one may introduce an intersection

between {:Ju(A , & ) and Ws(l\ s € ). If one first modifies £ on A
2 bo 1 bo 1

so that Al ceases to be smooth (see [12, §6]) 1t appears that one may
get non-smooth parts of the boundary of AS., This would be in contrast

to the situation for MS. For in our open set of £'s with L(Eb )
0

having finitely many orbits, Eb lies in a smooth condimension one
0

submanifold.
The main question is: are the examples so far described the

only kinds of bifurcations which occur generically at Cb for EO « AS?
0

To be more precise, we state the following problems. We feel that even

partial answers to these questions would be interesting.

1. 1Is it true for most ¢ with CO ¢ AS that L(€b ) 1s a
0
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finite union of closed invariant topologically transitive
sets at most one of which is not hyperbolic?

2. Describe the set of arcs & with EO e AS such that Eb is
0

in a smocoth submanifold of codimension omne.

3. Suppose f and g are in AS, dim Q(f) = dim Qg) = 0, and £
is isotopic to g. 1Is there an arc from f to g with a
zero-dimensional bifurcation set?

4, Is the topological entropy h(Et) (see [7]) a continuous
function of t for t near b0 for most & with EO € AS?
5. Describe B(E) for most £ with EO € AS, El e AS and

dim Q(El) = 0. In particular, assume EO is Anosov.

In closing, we make some comments about the use of the methods
given here for flows (vector fields). The results carry over with the
obvious changes for flows without critical points. Also, it does not
appear difficult to determine the variations necessary to handle the
cases when critical points occur. On the other hand, recent develop—-
ments indicate that flows allow considerably more freedom for modifications
of the non-wandering set with isolated bifurcations. For imstance,
Sotomayor showed us an example of an arc of flows with a single generic
bifurcation joining a gradient-like Morse-Smale flow to an AS flow
tiaving Infinftely many periodic orbits. The structure of these vector
iclds near the non-trivial basic sets was also discovered independently
by Silnikov [29].

The example may be described as follows. Comnsider an MS
pradient vector field X on a three dimensional manifold M having

different saddle points p and g with dimwu(p) = 2, dimws(q) = 2,
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and w”(p) n Ws(q) consisting of three (one-dimensional) orbits Yl’ Y2’

and Y3. See Figure 6.12.

Figure 6.12

Moving X through a curve of MS vector fields one may make
Y, U Yy Y {p,q} and Y3 U Yy U {p,q} into two curves tangent along

Y, {p,q} as in Figure 6.13.
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\
Y
A

i

RS

Ed-
-

Figure 6.13

The double arrows indicate sharper rates of attraction or repulsion
than the single arrows.

Now with a curve Et of vector fields bring q and p together
to create a quasi-transversal critical point. Immediately afterward,
one will have an AS vector field Y such that $%(Y) contains a closed
invariant transitive hyperbolic set which 1s topologically equivalent to
the suspenslon of a shift automorphism on two symbols. 1If one starts
with w“(p) n ws(q) having n+1 orbits, the same construction ylelds a
basic sct equivalent to the suspension of a shift on n symbols. The
same phenomena may be obtained on a manifold of arbitrary dimension
using crittcal points p and q with dim Wu(p) = dim Wu(q)+l and

W”(p) n Ws(q) consisting of n+1 orbits. Note that if Wu(p) n Ws(q)
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consists of only two. orbits, the procedure produces a single hyperbolic
closed orbit. If the intersection is a single orbit, the critical
points cancel out as is familiar in Morse theory.

This example 1is actually a part of a general situation for
flows. More precisely, with our methods transcribed to flows one may
prove the following.

let I = (0,1] and let )Cr(M) be the space of ¢t vector fields
on M, rz22. For most & ¢ Ck(I,Xr(M)), k=1, r>2, such that EO € MS,

L(Eb ) has finitely many orbits, and L(E,'b ) contains a quasi-hyperbolic
0 0

critical point, there is a neighborhood U of bO in T so that

B(E) n U = {bo}. If the quasi-hyperbolic critical point of &,  is
0

contained in a cycle whose stable and unstable manifolds meet in more
than two orbits, then Q(Et) will have infinitely many periodic orbits

for t>b. din U. Otherwise, §

0 € MS for t e U~ {bo}. Observe that

t

here we permit t:b to have cycles of arbitrary length.
0

In another direction, it is proved in [19] that any two MS flows
may be joined by a stable arc with finitely many bifurcations. In {17]
it is shown that this is true for a large class of AS flows with one
dimensional non-wandering sets. Alsc, it holds for any AS flows on a
manifold of dimension less than four. These last results have no
analogs In the bifurcation theory of diffeomorphisms. Indeed,
Propogition (2.4) of [18] shows that generally an arc of diffeomorphisms
beginning in MS and ending in AS with an Iinfinite non-wandering set
necegsarlly has an infinite bifurcation set,

As a final remark, it is worthwhille to observe that all known

examples of open sets of non-{-stable systems may be obtained near the
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boundary of AS. That is, all the relevant phenomena in these examples

alreadv appear in Et with t near b0 for certain arcs £ having
E,O ¢ AS. Thus aside from being interesting in their own right, it seems

that a good understanding of the problems in this section (and the
analogous ones for flows) would contribute much to the theory of generic

properties of non-parametrized dynamical systems.
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