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Abstract
We present a new treatment of results of F. Hofbauer on piecewise
monotone mappings of the interval with positive topological entropy. Count-
able state symbolic systems are obtained as models for the dynamics of
the natural extensions of the interval mappings. It follows that the set
of measures of maximal entropy is a finite dimensional simplex and that
each ergodic measure of maximal entropy is a Markov measure.

1 Introduction

Symbolic dynamics plays a fundamental role in smooth Dynamical Systems.
Frequently, deep geometric results can be obtained by passing to a symbolic
model in which special combinatorial methods become available. The earli-
est use of symbolic dynamics goes back to Hadamard, Morse, Hedlund, and
Birkhoff. In the 1960’s Sinai established the existence of symbolic dynamics
for Anosov diffeomorphisms [8]. Later this was done by Bowen for general hy-
perbolic basic sets [1]. In a series of papers, F. Hofbauer obtained remarkable
results on the structure of piecewise monotone maps of an interval with positive
topological entropy [5], [6], [7]. He showed that the natural extensions can be
modeled by countable state Markov shifts after the exclusion of certain “small”
sets. From this, he showed that the set of measures of maximal entropy formed
a finite dimensional simplex and that the (natural extensions ) of the ergodic
measures of maximal entropy are isomorphic to Markov processes.
In this paper we will present new proofs of these results of Hofbauer.

2 Definitions and Statements of Results

We begin with a topological space X and its c—algebra B of Borel sets. A map
f: X — X is called Borel (or Borel measurable) if f~1(A) € B for every A € B.
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A Borel automorphism of X is a bijective map f : X — X such that both f and
f~1 are Borel. Let M(f) denote the set of f—invariant probability measures
on X. We define the topological entropy h(f) of f by

h(f)= sup hu(f)
BEM(F)

where hy,(f) denotes the metric entropy of the measure y with respect to f. If
f has no invariant probability measures, we set h(f) = 0.

Given the Borel automorphism f : X — X, a zero entropy set X, is a subset
X; C X such that

1. f(X1) = X; (invariance).

2. If p is an invariant probability measure for f on X such that pu(X;) =1,
then hy(f) = 0.

By convention, if f has no invariant probability measures, then we say that
all of X is a zero entropy set. We use the notation ze for zero entropy. Also, by
convention, we agree that the empty set is a ze set.

There are the following facts.

1. Every invariant Borel subset of a zero entropy set is also a zero entropy
set.

2. A countable union of zero entropy sets is also a zero entropy set.

3. The wandering set of a homeomorphism of a compact metric space is a
zero entropy set.

4. The set of periodic points of a Borel automorphism is a zero entropy set.

There is a natural definition of isomorphism of Borel automorphisms modulo
zero entropy sets. We say that (f, X) and (g,Y) are isomorphic mod ze iff there
are sets X1 C X, Y7 C Y such that

1. f(X1) = X; and X is a ze set.

2. g(Y1) =Y1 and Y] is a ze set.

3. There is a Borel isomorphism ¢ : X \ X; — Y \ Y7 such that g¢ = ¢f.
We use the notation (f, X) = (9,Y) to denote that (f,X) is isomorphic

mod zero entropy to (g,Y).

Examples.



1. If f: X — X is any Borel automorphism and X; C X is a zero entropy
set, then (f, X) 7% (f | X\ X1, X\ X1). That is, removing a ze—set yields

a system isomorphic mod ze to the original system.

2. A particular case of the above is the following. Let f be a homeomorphism
of the compact metric space X. Let Q(f) be the non-wandering set of f.

Then, (f, X) - (f 1 20F),f))

We now consider a very useful class of models for the equivalence relation of
isomorphism mod ze — the class of finite or countable Markov shifts.

Let A = {v1,va,...} be a finite or countable set. Let A be a 0 — 1 valued
matrix indexed by A x A; i.e., a mapping A : 4 x A — {0,1}.

Let ¥4 = {a € AZ . Aq(i),a(i+1) = 1 Vi € Z}. Let dy denote the discrete

metric on A,
1 )
O s

Rescale the metric dy to d; defined by

1
d iy Uj) = fd iy Uj
1(v 'UJ) min(i, ;) o(v U])
The metric d; makes the completion of the space (A,d;) topologically the
same as the one point compactification of (A, dp).
Define a metric d on ¥4 by
> 1
d(a,b) = Z il di(a(i), b(z))

Let 0 : ¥4 — X4 be defined by
o(@)(i) =a(i+1) VieZ

Then, o is a homeomorphism on ¥ 4. We call the pair (o,¥4) the Markov
shift with alphabet A and incidence matrix A. We sometimes call ¥ 4 a Markov
shift without explicitly mentioning o.

We say T : X — X is Markov mod ze if it is isomorphic mod ze to some
Markov shift (o, ¥ 4).

Let (T,X,B,u) be a measure preserving transformation. We say that p
is a Markov measure (for (T,X,B)) if there is a finite or countable partition
a = {A1,As,...}, a sequence m = (m1,m2,...) of non-negative real numbers,
and a stochastic matrix p;; such that

1. EW,’ =1.
2. Ziﬂ'ipij =Tj.



3. For any finite sequence (i, 41, ...,%,—1) Of positive integers, we have
M(Aio ﬂ TilAl& n e ﬂ Tﬁn+1Ain—1) = TigPigi1Pivio - - - Pin_oin_1

With these notations we can now state Hofbauer’s results.
Let I = [0, 1] be the closed unit interval. A map f : I — I is called piecewise
monotone if there is a partition {Iy,...,Is} of I such that, for each 1 < j < s,

1. each I; is an interval.
2. f|I; is monotone and continuous.

Note that f is not assumed continuous on all of I: it may be discontinuous
at boundary points of the IJ’-s.

Let f : I — I denote the natural extension (inverse limit) of f. Denote by
Mimaz(f) the set of measures of maximal entropy for f. As usual, we let h(f)
denote the topological entropy of f.

Theorem 1.(Hofbauer). Suppose f : I — I is a piecewise monotone interval
map with h(f) > 0. Then, [ is Markov mod ze. Moreover, M0z (f) is a

finite dimensional simplex and each ergodic maximal measure for f is a Markov
measure.

We proceed toward a new proof of Theorem 1. The main novelty in our
proof of Hofbauer’s theorem is the use of simple metric entropy methods to
prove that a certain exceptional set in I is a ze—set. Hofbauer used a special
coding technique in [4].

Denote by a the partition {Iy,...,I;}. We first use a to construct a natu-
ral one-sided symbolic system which carries all of the positive entropy ergodic
measures of f.

Let ¥7(s) denote the one-sided full shift on s symbols, £ (s) = {1,..., s}N
where N = {0,1,2,...}. Let

o ={aext(s): m 1 Iu)) # 0}
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with the shift o(a)(i) = a(i+1) Vi. Let {(z) = a where & € ;50 f 7/ (Ia(j))
so that o¢ = (f. Note that typically, ] is not a closed subset of £7(s).

Lemma 1.(Hofbauer [5]). CI(Z]) \ =f is at most countable.

Proof. It is easy to see that

Cl(Ef) ={aeXt(s):foreach n >0, (| f7(La(j) #0}.

0<j<n



Consider a € CI(%}) \ B For n > 0, let

Ia(o)a(l)---a(nfl): ﬂ f_j(Ia(j))-

0<j<n

Note that, since a ¢ EJ{, the interval I,(g)q(1)---a(n—1) is nON-trivial; i.e., not
a single point.
Let
int Io(0)a(1)-a(n-1) = (Qn, B,)
for each n. That is, a, is the left boundary point of int I,(g)a(1)...a(n—1) and 3,
is the right boundary point of int I,(g)a(1)..-a(n—1)-
Then, we have a decreasing sequence of non-trivial open intervals

(a1,B1) 2 (a2,8,) 2 ...

with empty intersection. The only way this can happen is if
1. 8, —an = 0asn — oo.
2. there is a k > 0 such that for n > k, either

(a) an =ay
or

(Note that condition (1) and the fact that the intervals are non-trivial
guarantees that exactly one of (2a) and (2b) holds).

Statement (2) means that the left or right boundary points of the (ay,, 3,,)’s
must be the same for n > k.
Let K be the set of boundary points of the intervals int o<, [~/ (Za(j))

as a runs through CI(XZ7). Then, K is at most countable.
So to each a € CI(ZT) \ =F we associate the eventually constant boundary
sequence

P(a) = (20, 21, - - -).

The set of eventually constant boundary sequences is in one-to-one corre-
spondence with a subset of the set of finite sequences of elements of . This last
set is at most countable, and the map 1 is at most two-to-one, so CI(Z]) \ =f
is at most countable. 0O

The next result basically says that mod ze we may assume ( is one-to-one.

Let M. (f) denote the set of ergodic f—invariant probabliity measures on I.
Let M} (f) denote those measures in M. (f) with positive metric entropy.

Propostion 1. The set H = {x € I : ("'(¢(z)) properly contains {x}} is
a zero-entropy set.



Proof. Suppose ¢ € H, and let I, = _I(Cm). Then, I, is a non-trivial
interval containing z. Also, f | I, is monotone and continuous, and f(I;) C Iy,.
Thus, f(H) C H. We have H is the countable union of the intervals I,, = € H.
Let pu € M.(f) be such that u(H) > 0. Then, there is an € H such that
u(I;) > 0. It follows that there is an n > 0 with f"I, (I, # 0. But then
f"I, C I, and f™ | I, is monotone. Since a monotone self-map of an interval
carries no invariant measure of positive entropy, it follows that hy(f" | I;) =0
whence hy(f) =0. O

Proposition 2. The map ¢ induces an entropy preserving map
(ot M(f) = M(a | ).

Moreover, the restriction of ¢, to MT(f) is a one-to-one correspondence between
ME(f) and M (0,5F) = M (0, CI(ZT)).

Proof.

Since the fibers of the map ( are intervals mapped monotonically into each
other by f, it follows that for each u € M(f), we have hC N(J) = hy(f). This
is the first statement of Propostion 2. Let us proceed to the second statement.

Since H is a null set for each p € MF(f), and (| I'\ H is injective, we have
that ¢, maps MF(f) injectively into MF(Z]). Let u; € MF(Z}). Consider
¢(H). Each a € ((H) is such that (""(a) = ;50 7 (I()) is a non-trivial
interval J(a) in I. Moreover, a # b in ((H) implies that J(a)(J(b) = 0.
Thus, ¢(H) is at most countable and hence 1, (((H)) = 0 and u, (X7 \¢(H)) = 1.
Since ¢ maps I'\ H injectively onto Xi \ ((H), the latter set is Borel measurable
and, then, (', € M}(f) is mapped by ¢, onto p,. O

The next statement shows that h(f) can be obtained as the growth rate of
the number of elements of the partition \/7—' f~‘a.

Proposition 3.

n—1
o1 i
h(f) = nh—{%o - log card \_/0 Mo

Proof of proposition 3.
We have defined h(f) = supyeaq(s) hu(f). We will show that

h(f) = h(o,CL(ZT)) (a)
From standard facts about subshifts on a finite alphabet, we get that

n—1

1 .
lim —logcard \/ o

n—oo n i
=0

exists and equals h(o, C1(Z)). Thus Proposition 3 follows from (a).



Since C1(X}) is compact, we know

h(o,CI(ZT)) = sup hu(o) = sup hu(o).
pem(o,ci (X)) pemio,cuE)

Now, from Proposition 2, and the definitions, we get

h(f) = Ssup h,u(f) = Ssup hC*N(UJCl(ET)) < h(U,Cl(Ef)),

peM(f) peM(f)
and,
h(f)> sup hu(f) = sup hu(o) = h(o, CL(ZT)).
peME(F) pemMio,cuEhy)

This proves (a) 0O.

Proposition 4. The map f possesses ergodic invariant measures of mazximal
entropy.

Proof.

Since pr — hy (o) is uppersemicontinuous on CI(ZY), it follows that (o, CI(E]))
has measures of maximal entropy. Further, since entropy integrates over ergodic
decompositions, it follows that ¢ has an ergodic measure p of maximal entropy.
Then, C:l 1 is an ergodic measure of maximal entropy for f. O

We proceed to a proof of the first statement of Theorem 1. Let H be the set
defined in Proposition 1. Let H; be the total f—orbit of the set of boundary
points of the intervals Iy,...,I,. Let L = I\ (H|{JH:), and let ¥ = o1\
C(H\JH;). The transformation ¢ maps L injectively onto 3 and H, H;, and
L are f—invariant. Moreover, for each finite word w = a(k) ...a(j) in X7, the
set I, = f:_g f_iIa(k+i) is an open interval in 1.

The natural extension f : L — L factors isomorphically onto the two sided
shift

Yo ={a€ %N(s):Vk € Z,a(k)a(k+1)--- € 2T}

where X(s) is the full 2-sided shift on the symbols {1,...,s}.

Let B be the set of finite admissible words in X,. Thus, if b € B, then there
are infinite words by, by such that b1bbs € X5. For each b = bgby...b, € B, let
L(b,) be its last element, and let F(b) = {w € 3 : bw € £} be its future set
in 3. Define the equivalence relation ~ on B by a ~ b iff F(a) = F(b) and
L(a) = L(b). We say that an element a € Xy is past-stabilizing if for every
k € Z there is an | < k such that

m<Il=a(m)alm+1)...a(k) ~a(l)...a(k)



Let X3 be the set of past-stabilizing words in ¥. It is easily seen to be shift
invariant. Moreover, the elements of ¥3 are also past-stabilizing for 3. Let ¢
be the natural extension of the map ¢ : L — X3 . Thus, { maps L injectively
onto Y.

Main Proposition. The complement X2\ X3 of X3 in X5 is a zero-entropy
)
set. Consequently, so is its pull-back to L, ¢ (22 \ I3).

Proof.

For j € Z, let A; be the set of all elements a € ¥, \ X3 such that for
every n < j there is an m < n such that F(a(m)...a(j)) is a proper subset of
F(a(n)...a(j)). Then, since X5 \ X3 consists of non past-stabilizing elements,

we have that
D2\ = | A4
je

Suppose p € M.(o | Ea \ X3). We must show that hy (o) = 0.

Now, there is a j € Z such that p(A;) > 0. Let & be the partition of ¥ \ X3
induced by the partition a of I. This is obtained as follows. Let 71 : 9 — 7,
75 : L = L be the natural projections from the inverse limits, and let oy, be the
restriction of the partition « to L. So, & is the partition fﬁg Yay, restricted to
Ez \ 23.

Then, & generates p, so hy(&,0) = hy(o).

Also,

hu(@,0) = hu(o) (1)

We prove the last quantity is 0.
This is equivalent to the statement that

For pu— almost every word a € X3 \ X3, if one knows the symbols (x)
a(k) for k < j, then the symbol a(j) is uniquely determined.
Now we know that each a is not past-stabilizing. So, for arbitrarily large

negative k,

F(a(k —1)...a(j)) is a proper subset of F(a(k)...a(j)) (3)

But each finite word w € X3 corresponds to an interval I, C I. Also, (3)
means

f(Ta(k—1)) does not contain Iy, a(j) (4)



If we let f; be the continuous extension of f | I; to its closure, then (4)
gives fo(r—1)(0Iak—1)) N La(k)...a(j) 7 0 Where OI; denotes the boundary of the
interval I;.

Let I; be the left boundary point of I;, and let r; be the right boundary
point of I;. We have for each a € Xy \ X3, there are infinitely many negative
integers k < j such that either

fa(h—1)(la(k=1)) € La(k)...a(s) (5)

or

fatb=1)(Ta(k=1)) € Ia(k)...a() (6)

Let X1, be the set of elements a € Xo \ X3 such that there are infinitely many
k's < j such that (5) holds, and let X be the set of elements a € X, \ X3 such
that there are infinitely many &'s < j such that (6) holds.

Since ¥y, and ¥ g are o— invariant, p is ergodic, and ¥5 \ ¥3 is the union of
Y1 and Xg, it follows that either u(Xr) = 1 or u(Xg) = 1. We suppose that
(X)) = 1. The other case is similar.

Given a € X, if one knows a(k) for k¥ < j, and m < j is such that
fatm=1)(am=1)) € Ia(m)...a(s)» then f™ 7 fo 1) (lagm—-1)) € Iaj)- Thus, know-
ing a(m — 1) tells us what /,(m,—1) is, and then this uniquely specifies a(j). This
gives (x) and proves the Main Proposition. O

Next consider the shift invariant set ¥3. Let B’ be the set of finite admissible
words in X3.

The equivalence relation ~ on B restricts to one on B’ which we also denote
by ~.

Let E;r be the set of infinite words aga; ... such that there is an infinite
word b= (...b_3b_1) with baga; ... € X3.

For b = boby ...b, € B', let L(b) = b,, F(b) = {w € =3 : bw € £ }. Then
w ~ z if and only if L(w) = L(2) and F(w) = F(2).

Let A be the set of equivalence classes of ~ on B’, and define the incidence
relation

[w] = [2] iff wL(z) ~ 2.

This defines a matrix A indexed by A x A with values in {0,1} by
A[w]’[z] =1 iff [w] - [Z]

Then, one gets a directed graph (A, =) which of course yields a corresponding
two-sided shift (o,%4) (on the doubly infinite words). Hopefully the common
use of the letter o to denote various shift automorphisms will not confuse the
reader.

We note in passing that a compact shift-invariant set 3 is called sofic if the
set of A(X) equivalence classes is a finite set. In that case, one of the irreducible



components of the doubly infinite sequences of A(X) exhibits ¥ as a boundedly
finite-to-one factor. Because of the analogy to sofic systems, we call the con-
struction of the shift (o, ¥ 4) the sofic construction. It is this construction which
yields the Markov symbolic dynamics for ( f, I ). Our goal now is to show that

(0,24) = (f,I). For this purpose, it suffices to show that (o, X 4) = (o,23).

This is contained in the following lemma.

Lemma 2. The map ¢, defined by

Ci(- - ananyr...) = (.. L(an) L{ant1) - - .)

is an isomorphism mod ze from X 4 to X3.

Proof. The proof consists of three steps.
Let K = ¢; " (Z3).

Step 1: Y3 is contained in the image of (;.

Let a € X3. Since a is past stabilizing for X5, it must also be past stabilizing
for ¥3. Thus, there is a k& < 0 such that a(k)a(k +1)...a(0) ~ a(l)...a(0)
for all I < k. Let wo be the equivalence class of a(k)a(k +1)...a(0) in A.
For i > 0, let w; be the equivalence class of a(k)a(k +1)...a(i) . Then, w =
wow; . .. maps to the one-sided word a(0)a(l).... To prove Lemma 2, we need
to extend w to a two sided word which maps to a. There is an m < k such
that for I < m, a(l)...a(=1) ~ a(m)...a(—1). Let w_; be the equivalence
class of a(m)...a(—1). Since m < k, a(m)...a(0) ~ wg so w_1wp ... maps to
a_1ag . ... Proceeding in this way, we get an element = € ¥ 4 which {; maps to
(---L(an)L(any1) - - ).

Step 2: (; | K is injective.

Let w € K, and let a = (4 (w). We show that w is determined by a. Since
a € Y3, we have that ﬂiez f‘im;lIa(i) is a single point, say = € I. Letie Z,
and consider the symbol w; € A. Let z be a finite admissible word in B’ which
represents w;, say z = by ... bg. Then, by, = a(i), and Iy,_, is the unique interval
in a such that msfiJz € I,,_,. Thus, knowledge of z specifies w; uniquely.
Since ¢ was arbitrary, w is uniquely specified by a and Step 2 is proved.

Step 3. ¥4\ K is a ze set.

Let © be the one-sided shift on the alphabet A. The set 4 \ K is the

inverse limit of the set f]: of elements w = (wp,wi,...) € T} such that
(L(wo), L(wy),...) € Cl § \ ©3. As in the proof of Lemma 1, one can show

10



=t . . . .
that X 4 is at most countable. Hence, it is a ze set. Thus, X 4 \ K is the inverse
limit of a ze set, and, hence, must also be a ze set.
This completes the proof of Theorem 1.

We next move to a new proof of the following result which is a consequence
of Lemma 13 in [5].

Theorem 2. Let 0 < ¢ < h(f). Consider the Markov shift (o,X4). There
are only finitely many irreducible components of ¥ 4 with entropy greater than
or equal to c.

We first need the following lemma.

Lemma 3. Let pq, o, ... be a sequence of f—invariant ergodic measures
converging weakly to the measure p such that hy, (f) > c for each i = 1,2,....
Then, u(da) = 0 where da denotes the set of boundary points of the partition
a = {Il,IQ, e IS}

Proof.

We assume the hypotheses of Lemma 3 and that u(0a) > 0. We proceed to
obtain a contradiction. Since da is a finite set and p(da) > 0, it follows that
Oa contains at least one periodic point p which is a y atom; i.e. u({p}) > 0.
Let AT be the set of these atoms.

Now, lift the measures pu, iis,... to measures fi,fis,... on ¥4. Taking
subsequences if necessary, we may assume that these measures converge to a
measure ji on C1(Z3).

We have two cases:

L g(Cu=H\ =3) > 0.
2. W(CUZH\Zf) =0,

In case 1, since CI(X])\ =7 is at most countable and invariant (same proof
as for X7), there must be a set of shift invariant (hence periodic) fi atoms in this
set. Those atoms project to intervals in I, and at least one of them must contain
a point of AT in its boundary. Pick one such interval, say J. It follows that
some iterate f™ maps J monotonically into an interval which contains J. But
then J cannot meet the support of an ergodic f—invariant measure of positive
entropy. But convergence of the p,’s to p implies that the supports of the p}s
must meet J giving a contradiction. Thus, case 1 is taken care of.

In case 2, the measure [i projects to u, and we again get an interval J mapped
monotonically into an interval containing J giving another contradiction as in
case 1.

This proves Lemma 3. O

11



Before proceeding to the proof of theorem 2, we need to examine the inci-
dence relation > a bit further.

Since each representative of an equivalence class w has the same last element,
it makes sense to define L(w) by setting L(w) = L(by ... by,) for any word by ... by,
representing w.

To each finite word b = bob; ... bi_1 in B’ we can associate two open intervals
in I which we will call the initial interval I of b and the final interval Fy of b.
The intervals I, and F} are defined by

k—1
L= f(int L)
=0

and
F, = ¥,

Note that if a ~ b € B', then F, (72 (83) = Fy (\m2l (T3).

Recall that w > z means that if bybs ... by represents w, then bibs ...bxL(2)
represents z. We write w = z if there is a finite sequence w = w; > ws >
... > wy = z. Given a shift invariant subset ¥ of ¥ 4, we write A(X) for the set
of elements of the alphabet 4 which appear in doubly infinite words in . An
irreducible component ¥ of Y. 4 is a maximal shift invariant subset of ¥ 4 such
that for any two symbols w, z in A(X), we have w >=> z, and z => w.

Lemma 4. Let z € A be an element of the alphabet of some irreducible
component of ¥ 4, let . be a possibly different irreducible component of ¥ 4, and
let we X. Letb € X3 and k < 0 be chosen so that, for £ < k, bgbgi1...bo

represents z. Suppose that, for arbitrarily large i > 0, we have 7r2€_1(:1 (07 tw) €
Fy,..00- Then, z => v for every v € A(X).

Proof. Assume that w = (... wjwjti1wjq2...) and a; = L(w;) for j € Z, so
that a = (...aja;41...) = ¢(;(w). Choose k1 < k so that for I < ki, a;...ao
represents wg. Then, for n > 0, ¢ < k;, we have that ay...a, represents w,,.

Pick ¢ > | ky | such that z = 7r2€_1(:1(a_"w) € Fy, . b, Since a € X3, we have
ﬂj>_i f791,, = {z}. This implies that, for large n > 0, I,_; .4, C Fby.. -
Then, by = a_;, and,

F(bk...boa_i+1...an) =F(bk...b_1a_i...an) =F'(a_,-...an)

(future sets in 33, so z == w,. But, since ¥ is irreducible, we have w,, => v
for any v € A(X). So, we also have z == v for any v. O

Now consider an irreducible component ¥ of ¥4 with topological entropy
h(X)>c¢>0.

Let éE be a compact shift invariant topologically transitive subset of CI (; (%)
with topological entropy greater than c. For instance, we could take an ergodic
measure p on ¥ with hy (o) > ¢, and let G, be the closure of the (;, u-generic
points in the support of (;,u. Alternatively, we could take a shift invariant

12



subset corresponding to a finite irreducible subgraph of the graph of ¥ with
entropy greater than c.

Let Gy, = WQé'_léz, so that Gy, is an uncountable subset of I which is
invariant under forward and backward f—iterates. Let a(X) be the set of inter-
vals I; € a such that int I; |Gy, # 0. For i € a(X), let I; be the interior of the
smallest closed interval containing int I; (] Gyy. Then,

each boundary point of I; is in the closure of Gy, (7)

Also, we can use the partition ay = {I; : i € a(Z)} to give symbolic
dynamics for (f, GE) which is isomorphic mod ze (in fact, up to orbits in the
boundary of elements of a(X)) to that of the partition «. The important point
about using the intervals I; is (7). Next, construct the open intervals Fy for
representatives b of w € A(¢ fl(éz)). Note that for two representatives a, b of

w € A((T (Gy)), we have F, = Fy (since F, (\mal  (S3) = Fymal (Ss)).

Thus, we may define F), to be F, for any representative a of w € A(¢ fl(ég)).
From lemma 4 and (7) it follows that

if ¥1,%, are distinct irreducible components of ¥4 with (8)
h(%;) > ¢, and sets Gy, ,ay, as above, then for w; €

A(Z;), we have Fy, () Fu, = 0.

Proof of the Theorem 2.
For each irreducible component ¥ of ¥4 with entropy greater than ¢, we
construct Gy, axy as above. Let A;(X) = A((fl(Gz)), and let

t(2) = max{length(F,) : w € A (Z)}.

Then, let t(f) be the infimum of the set of t{(X)'s where ¥ runs through the
irreducible components of ¥ 4 of entropy greater than c.

We claim that
t(f) >0 9)

Since any disjoint collection of open intervals in I with lengths bounded
away from zero is finite, theorem 2 follows from (8) and (9).

To prove the claim we assume that ¢(f) = 0.

Let X1,%9,... be a sequence of irreducible components of Y. 4 with entropy
greater than ¢ with ¢(X;) — 0 as ¢ = 0o. Let uq, i15, . . . be ergodic o—invariant
measures with entropy greater than ¢ with p,; supported on ¥; for each i. Let

[; = v asi — oo. Let y be the f-invariant measure (7@&_1(1)*1/. By Lemma 3,
u(0a) = 0. Let 0 < € be such that u(Be(da)) < 5. If z; is a p;-generic point,
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then for large ¢, we have the orbit of 7r26 71C1(:cz~) spends relatively little time
in Be(Oa). But the only times that new symbols can be created are when the
intervals corresponding to symbols have their images meeting elements of Ja.
Since the intervals associated to X; are small for large i, and the orbits of these
intervals spend a small frequency of time near da, we see that for large i, the
entropy of p; must be less than %, which is a contradiction and (9) is proved.
O

In [5], Hofbauer proves that each irreducible component of ¥ has at most
one measure of maximal entropy, and that if such a measure exists, its natural
extension is a Markov measure. These results were also given by Gurevic [2],

In view of Theorem 2, we thus have the following corollary.

Corollary. The set to measures of mazimal entropy for [ is a finite di-
mensional simplex. Moreover, the natural extension of each ergodic mazimal
measure is Markov.

This Corollary is the last statement of Theorem 1.

Problem. Suppose that f has s branches on each of which it is monotone
and continuous. Is h(f) <logs ?.
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