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Abstract

We survey some recently obtained generic consequences of the exis-
tence of homoclinic tangencies in diffeomorphisms of surfaces. Among
other things it has been shown that they give rise to invariant topo-
logically transitive sets with maximal Hausdorff dimension, that they
prohibit the existence of various kinds of symbolic extensions, and
that they form an impediment to the existence of SRB measures. The
main new result described here, together with a positive answer to an
as yet unproved conjecture of Palis, would prove that generically on
surfaces, SRB measures only exist on uniformly hyperbolic attractors.

1 Introduction

The study of homoclinic motions forms an important part of the modern
theory of dynamical systems. Such motions were first described by Poincare
in his geometric studies of the restricted three-body problem, and, since that
time, they have been studied by many authors. Transverse homoclinic mo-
tions produce complicated invariant sets which can be completely described
in terms of certain symbolic systems called subshifts of finite type. Moreover
the dynamical properties of these invariant sets persist under small pertur-
bations of the underlying dynamical system. On the other hand, homoclinic
tangencies give rise to rich and varied dynamics under small perturbations.
In this note we will survey some of the phenomena associated to homoclinic
tangencies. After reviewing some definitions and well-known facts, we de-
scribe some recent developments, and present a new result (Theorem 1.4)
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which shows that generically homoclinic tangencies form an impediment to
the existence of SRB measures.

For historical information and various interesting phenomena associated
to homoclinic motions, we refer to the books by Palis and Takens [25] and
Moser [19]. For general information on dynamical systems related to the
concepts we study here, we refer to the books [30], [10], and [22].

While some of our discussion could be extended to systems of arbitrary
finite dimension, the strongest results occur in two dimensional systems.
Hence, we will restrict ourselves to dimension two.

Let M be a compact C∞ two dimensional Riemannian manifold, and, for
r ≥ 1, let Dr(M) be the space of Cr diffeomorphisms of M with the uniform
Cr topology. It is known thatDr(M) is a Baire space: countable intersections
of dense open sets are dense. For f ∈ Dr(M), a compact f−invariant set Λ
is a uniformly hyperbolic set if there are constants C > 0, λ > 1 such that for
each x ∈ Λ there is a splitting TxM = Es

x ⊕ Eu
x such that, for n ≥ 0,

max(| Dfn
x | Es

x |, | Df−n
x | Eu

x |) ≤ Cλ−n. (1)

Here we let | S | E | denote the norm of a linear map S restricted to a
linear subspace E of the domain of S.

Let d denote the topological metric (distance function) on M induced by
the Riemannian metric. It is well-known that if the conditions in (1) hold,
then the subspaces Es

x, E
u
x are unique and depend continuously on x ∈ Λ. The

invariant manifold theorem [11] guarantees that there are Cr injectively im-
mersed manifolds W s(x),W u(x) tangent at x to Es

x, E
u
x , respectively, which

are defined by

W s(x) = {y ∈M : d(fn(y), fn(x)) → 0 as n→∞, }

and

W u(x) = {y ∈M : d(fn(y), fn(x)) → 0 as n→ −∞.}

A uniformly hyperbolic set Λ is called a hyperbolic basic set if it has a dense
orbit and there is a neighborhood U of Λ in M , such that

⋂
n∈Z f

n(U) = Λ.
In this case one calls the neighborhood U an isolating neighborhood of Λ.

If Λ(f) is a hyperbolic basic set for f with an isolating neighborhood
U , then there is a neighborhood N of f in Dr(M) such that if g ∈ N ,

then Λ(g)
def
=

⋂
n∈Z g

n(U) is a hyperbolic basic set for g, and there is a
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homeomorphism h : Λ(g) → Λ(f) such that fh = hg. It is common to
call the set Λ(g) the continuation of Λ(f).

A point q is a homoclinic point of f if there is a hyperbolic basic set Λ
and points x ∈ Λ, y ∈ Λ such that

q ∈ (W u(x) \ Λ)
⋂

(W s(y) \ Λ).

Since we are dealing with two-dimensional manifolds, such a q can only
exist if the sets W u(x),W s(y) are one-dimensional manifolds; i.e., Cr curves.
The homoclinic point q is called a transverse homoclinic point if the curves
W u(x),W s(y) are not tangent at q. Otherwise, we call q a homoclinic tan-
gency.

Let B denote the collection of hyperbolic basic sets of a Cr diffeomor-
phism. There is an equivalence relation ∼ on B defined as follows. We say
Λ1 ∼ Λ2 if either Λ1 = Λ2 or there are points x, y ∈ Λ1 and x1, y1 ∈ Λ2 such
that W u(x) \ Λ1 has a non-empty transverse intersection with W s(x1) \ Λ2

and W s(y) \ Λ1 has a non-empty transverse intersection with W u(y1) \ Λ2.
This relation was considered in [22] for periodic points. If Λ1 ∼ Λ2, we will
say that Λ1 is homoclinically related (or h−related) to Λ2. We call an equiva-
lence class a homoclinic class (or h−class). The closure of an h−class will be
called an h−closure. An h−closure containing more than a single periodic
orbit will be called a homoclinic set. Let Λ be a homoclinic set which is the
closure of a particular h−class C. We call Λ the homoclinic set of C. If p
is a periodic point whose orbit is in C, we will say that p is associated to Λ
and that Λ is the homoclinic set of p. We also say that Λ is the homoclinic
closure of p. If a homoclinic set Λ contains a hyperbolic basic set Λ1 with a
homoclinic tangency, we will say that Λ contains a homoclinic tangency.

The following result is proved in [22].

• Every homoclinic set is an uncountable topologically transitive set con-
taining a dense set of associated periodic points. Moreover, it coincides
with the closure of the transverse homoclinic points of the orbits of any
of its associated periodic points.

We remark that homoclinic sets have a lowersemicontinuity property in
the following sense. Let Λ(f) be a homoclinic set for f , and let p = p(f) be
an associated periodic point of minimal period. If g is Cr close to f , then the
continuation p(g) of p has an h−closure Λ(g) which we call the continuation
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of Λ(f). This is independent of the choice of p with minimal period provided
that g is close enough to f .

• The map g → Λ(g) is lowersemicontinuous as a map from a neighbor-
hood of f in Dr(M) into the collection of compact subsets of M with
the Hausdorff metric.

One can think of homoclinic sets as the basic “building blocks” of sys-
tems with chaotic motion. We are interested in detailed information about
homoclinic sets and the phenomena which are induced from them when the
ambient diffeomorphism f varies with external parameters. We will see that,
there are several interesting phenomena which appear after small pertur-
bations when a given map f has a homoclinic tangency. First, we recall a
general situation in which there is a whole open set in Dr(M) whose elements
have no homoclinic tangencies. An ε−chain is a sequence x0, x1, . . . , xn in M
such that d(fxi, xi+1) < ε for 0 ≤ i < n. A periodic ε−chain is an ε−chain
x0, x1, . . . , xn such that x0 = xn. A point x is chain recurrent if, for every
ε > 0 there is a periodic ε−chain passing through x. The collection of chain
recurrent points is a non-empty, compact, f−invariant set called the chain
recurrent set and is denoted R(f). We say that the diffeomorphism f is hy-
perbolic if R(f) is a hyperbolic set. It is well-known that a diffeomorphism
f is hyperbolic if and only if it satisfies Smale’s Axiom A and No Cycle
properties in which case the chain recurrent set equals the non-wandering
set. Hyperbolic diffeomorphisms are chain stable. This means that there
is a neighborhood N of f in Dr(M) such that if g ∈ N , then there is a
homeomorphism h : R(g) → R(f) such that fh = hg. A famous result due
to Palis [23] following work of Mane [16] states that in D1(M) hyperbolicity
is equivalent to chain stability. A diffeomorphism is called Anosov if the
whole manifold M is a hyperbolic set. In dimension two, M must be a torus
and R(f) = M .

It is easy to see that the existence of a homoclinic tangency is an ob-
struction to hyperbolicity. Indeed, it can be shown that such a tangency
is in the chain recurrent set, and there can be no splitting as required for
hyperbolicity.

We say that f has persistent homoclinic tangencies if there is a hyperbolic
set Λ(f) with a homoclinic tangency and there is a neighborhood N (f) such
that if g ∈ N (f), then the continuation Λ(g) of Λ(f) is defined and also has
some homoclinic tangency. Thus diffeomorphisms with persistent homoclinic
tangencies have neighborhood none of whose elements are hyperbolic.
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The following result [21] shows that on surfaces any diffeomorphism with
a homoclinic tangency can be perturbed to create persistent homoclinic tan-
gencies. The book of Palis and Takens [25] contains a nice proof of this
result.

Theorem 1.1 Let M be a compact C∞ manifold, let r ≥ 2, and let f ∈
Dr(M) have a homoclinic tangency. Then, given any neighborhood N of f
in Dr(M) there is a g ∈ N which has persistent homoclinic tangencies.

Homoclinic tangencies frequently give rise to infinitely many sinks. In
fact, Cr generically with r ≥ 2, a homoclinic set is in the closure of the
periodic sinks provided that it contains a tangency and a dissipative pe-
riodic orbit. A periodic point p with fτ (p) = p is called dissipative if
| detDfτ (p) | < 1.

It is known that if f is a hyperbolic diffeomorphism which is not Anosov,
then the Hausdorff dimension of the chain recurrent set is strictly less than
two. The next theorem, which was recently obtained in [8], shows that Cr

generically with r ≥ 2, each homoclinic set which contains a homoclinic
tangency has maximal Hausdorff dimension. Recall that a subset B of a
topological is called residual if it contains a countable intersection of open
dense sets. In Dr(M) such sets are, of course, dense.

Theorem 1.2 Let r ≥ 2. There is a residual subset B of Dr(M) such that
if f ∈ B, and Λ is a hyperbolic basic set for f with a homoclinic tangency,
then the homoclinic set of Λ has Hausdorff dimension two.

We sketch the idea of the proof of Theorem 1.2 referring the reader to
[8] for the details. The idea of the proof comes from that of a similar result
for C1 area preserving diffeomorphisms which goes back to ([20]). A given
f with a homoclinic tangency is Cr perturbed to get persistent homoclinic
tangencies. Then, one makes use of a result of Gonshenko, Turaev, and
Shilikov to make a further Cr perturbation to obtain a periodic point p whose
stable and unstable manifolds have a whole interval of homoclinic tangencies.
Having this, a further perturbation gives special zero dimensional hyperbolic
basic sets Λ1,Λ2 homoclinically related to p such that the unstable Hausdorff
dimension of Λ1 is close to one and the stable Hausdorff dimension of Λ2 is
close to one. Since Λ1 is homoclinically related to Λ2, Lemma 8 in [21] gives
another hyperbolic basic set Λ in the same h−class which contains them both.
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The set Λ will have Hausdorff dimension close to two. This proves that, given
n > 0, there is a dense set Bn of diffeomorphisms with homoclinic tangencies
having homoclinic sets of Hausdorff dimension greater than 2− 1

n
. This set

is also open since the Hausdorff dimension of hyperbolic basic sets varies
continuously ([26]). Theorem 1.2 follows taking the intersection B =

⋂
n Bn.

During the past fifteen years or so there has been much interest in the
study of so-called SRB measures in area decreasing planar diffeomorphims.
An f− invariant probability measure ν of a diffeomorphism will be called
an SRB measure if it is ergodic, has compact support, and has absolutely
conditional measures on unstable manifolds.

A family (a, b) → fa,b of diffeomorphisms which is near the Henon family
Ha,b(x, y) = (1 + y − ax2, bx) is called a Henon-like family. Diffeomorphisms
fa,b in Henon-like families are called Henon-like diffeomorphisms. It is a
consequence of the work of many authors (e.g., [2], [3], [18], [31]) that for
Henon-like families with | b | small there is a positive Lebesgue measure set of
parameters A(b) such that fa,b has an SRB measure for a ∈ A(b). Thus, such
measures exist with positive probability in parameters in Henon-like families.
At the present time all known SRB measures in Henon-like diffeomorphisms
are supported on homoclinic sets with tangencies.

To be more precise, in a Henon-like family fa,b let us call a pair of pa-
rameters (a, b) good if fa,b has a hyperbolic periodic saddle point pa,b and
an SRB measure νa,b supported on the homoclinic set of pa,b. All presently
known good pairs (a0, b0) have the following property. There is a sequence
a1, a2, . . . of real parameters converging to a0 such that each fai,b0 contains
persistent homoclinic tangencies. It may be that techniques of the proof of
Theorem 1.4 below can be extended to show that for any good pair (a0, b0)
one can find a sequence a′1, a

′
2, . . . converging to a0 such that there is no SRB

measure supported on the homoclinic set of pa′
i,b0

. This prompts us to make
the following conjecture.

Conjecture 1.3 Let Ha,b be the Henon family of planar maps. Then, for
each parameter b, there is a residual set of parameters a such that Ha,b has
no SRB measure.

For b = 0 this conjecture is true since the maps essentially reduce to
the familiar logistic family a → fa(x) = ax(1 − x) and one may apply the
well-known results of Graczyk and Swiatek [9] and Ljubich [15]. These imply
that there is a dense open set of parameters a such that fa has an attracting
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periodic orbit whose basin contains a set of full measure. For | b | = 1 the
map Ha,b is area preserving, and the conjecture implies that, for a residual
set of parameters a, one has that Ha,b has zero measure-theoretic entropy on
any invariant set of finite area,

We us proceed to state the main new result in the present note.
If ν is an invariant probability measure for f , we say that a subset Λ

carries the measure ν if ν(Λ) = 1.

Theorem 1.4 There is a residual subset U in Dr(M) for r ≥ 2 such that if
f ∈ U and Λ is a homoclinic set for f which contains a tangency and has an
associated dissipative periodic point, then Λ does not carry an SRB measure.

Theorem 1.4 has interesting relations to a conjecture of Palis [24]. This
conjecture states that there is a dense subset A in the space Dr(M) of Cr

diffeomorphisms of a compact surface M such that if f ∈ A, then either f
is hyperbolic or f has a homoclinic tangency. For r = 1, this conjecture
has recently been proved by Pujals and Samborino [28]. It is still unproved
for r ≥ 2. It follows from Theorem 1.1 that if the conjecture is true for
r ≥ 2, then the set A can actually be chosen to be dense and open and the
homoclinic tangency occurs in some homoclinic set.

If one wants information about all homoclinic sets, one has to pass from
dense and open to residual. Thus, we state the

Conjecture 1.5 (Weak Palis Homoclinic Conjecture) Let r ≥ 1. There is
a residual subset A in Dr(M) such that for f ∈ A, each homoclinic set for
f is either uniformly hyperbolic or has a homoclinic tangency.

In view of Theorem 1.4 we have

The Weak Palis Homoclinic Conjecture implies that there is a
residual subset A of Dr(M) such that if f ∈ A, then any SRB
measure whose support contains a dissipative periodic point must
be supported on a uniformly hyperbolic attractor.

Next, we wish to survey some connections between homoclinic tangencies
and the existence of symbolic extensions.

Let Z denote the set of integers, N ≥ 2 be a positive integer, J =
{1, . . . , N},and let ΣN = JZ be the set of doubly infinite sequences of symbols
in the alphabet J . Elements a in ΣN are denoted
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a = (ai), i ∈ Z.

We give ΣN the standard metric

d(a,b) =
∑
i∈Z

| ai − bi |
2| i |

,

making (ΣN , d) into a compact metric space. The shift automorphism is
the map σ = σN : ΣN → ΣN defined by

σN(a)i = ai+1 for i ∈ Z.

A subshift or symbolic system is a pair (S,X) whereX is a closed σN−invariant
subset of σN and S is the restriction of σN to X for some N .

Subshifts (S,X) are known to have many special dynamical properties.
Let us list some of these.

1. They are expansive. That is, there is a positive real number ε > 0 such
that if x 6= y in X, then there is an integer n such that d(Snx, Sny) >
ε. This implies, for instance, that if ν is an S−invariant probability
measure, then its metric entropy can be computed as the mean entropy
hν(α) for any finite partition α whose elements have diameter less than
ε.

2. The metric entropy function ν → hν(S) is uppersemicontinuous as a
function of ν. Hence, any subshift has measures of maximal entropy.

3. The topological entropy htop(S) can be computed as

htop(S) = lim
n→∞

1

n
log card Bn

where card Bn is the number of n−blocks appearing in X.

If a given system (f,M) could be “modelled” in some sense by a sub-
shift, then one would have much information about the dynamics of f . The
most useful notion of “modelling” is that of topological conjucacy. However,
since subshift spaces have topological dimension zero, most systems cannot
be topologically conjugate to subshifts. Thus, one would like to weaken
the notion of topologically conjugacy somewhat to use symbolic systems as
models.
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Let f : X → X and g : Y → Y be homeomorphisms of the compact
metric spaces X and Y , respectively. We say that (g, Y ) is an extension of
(f,X) if there is a continuous surjection π : Y → X such that πg = fπ. In
this case, we call the triple (g, Y, π) an extension triple of (f,X).

It is natural to ask when a given system (f,X) has a symbolic extension.
That is, when can we find an extension (g, Y ) which is a symbolic system. An
obvious necessary condition is that htop(f) <∞. Around 1988, J. Auslander
asked the converse question:

Does every homeomorphism of a compact metric space with finite
topological entropy have a symbolic extension?

This question turned out to be highly non-trivial. In 1990, Mike Boyle
found a counter-example using an inverse limit construction which led to a
certain zero dimensional system with no symbolic extension.

One can ask for more precise information regarding the kinds of extensions
a system may or may not have. One says that an extension triple (g, Y, π) is a
principal extension of (f,X) if the extension map π simultaneously preserves
entropies of all invariant probability measures. That is, for every g−invariant
probability measure ν, we have hπ?ν(f) = hν(g) (here, π?ν = ν ◦ π−1). In
the sense of information theory, a principal extension of a given system is
indistinguishable from that system.

Around the time of the discovery of Boyle’s example mentioned above,
several authors proceeded to study the existence of symbolic and principal
symbolic extensions. Tomasz Downarowicz [7] gave a characterization of fi-
nite entropy zero dimensional systems (f,X) which have principal symbolic
extensions in terms of certain uppersemicontinuous functions on the space of
invariant probability measures. It turned out that a necessary and sufficient
condition was that f be asymptotically h−expansive in the sense of Misi-
urewicz [17]. Later, Boyle, D. Fiebig, and U. Fiebig [5] extended this to the
general case; i.e. a finite entropy system has a principal symbolic extension if
and only if it is asymptotically h−expansive. On the other hand J. Buzzi [6]
proved that every C∞ map is asymptotically h−expansive. So, these results
together yield the following striking result.

Theorem 1.6 Every C∞ diffeomorphism of a compact manifold has a prin-
cipal symbolic extension.
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It is natural to ask about systems with a finite amount of smoothness.
Since every C1 self map of a compact manifold has finite topological entropy,
the question simply becomes when does a Cr map on a compact manifold
with 1 ≤ r < ∞ have a symbolic or principal symbolic extension. In this
connection, recently T. Downarowicz and the author [8] have proved the
following results.

Theorem 1.7 1. Given any compact C∞ manifold M , there is a C1 dif-
feomorphism f on M with no symbolic extension at all.

2. There is a residual subset A in the space of C1 symplectic diffeomor-
phisms on a compact orientable two dimensional manifold such that if
f ∈ A, then either f is Anosov or f has no symbolic extension at all.

3. For any r ≥ 2 and any compact two dimensional manifold M2, there
exists a residual subset A of an open subset U ∈ Dr(M2) such that if
f ∈ A, then f has no principal symbolic extension.

Regarding Cr maps with 2 ≤ r <∞, we have the following
Problem. Let 2 ≤ r < ∞. Does every Cr self-map of a compact C∞

manifold have at least one symbolic extension?
It turns out that intervals of homoclinic tangencies again play a funda-

mental role in the proof of Theorem 1.7. After making certain perturbations,
one gets diffeomorphisms such that the entropy functions of invariant invari-
ant probability measures exhibit pathological continuity properties. Then
one applies results of Boyle and Downarowicz [4] concerning the existence of
various types of symbolic extensions.

During our lecture at the conference, Dennis Sullivan made the following
interesting observation. Note that if a system (f,X) possesses a (principal)
symbolic extension, then so does any system (f1, X1) which is topologically
conjugate to (f,X). Thus, the above results have some interesting new corol-
laries. For instance, a generic C1 non-Anosov area preserving diffeomorphism
on a surface is not topologically conjugate to any C∞ diffeomorphism.

2 Proof of Theorem 1.4

We begin with a proposition which says that if a homoclinic set carries an
SRB measure ν, then the support ν contains the full unstable manifold of
the orbit of any associated periodic point.
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Proposition 2.1 Suppose that Λ is a homoclinic set which carries an SRB
measure ν. Then, the support of ν consists of the closure of the orbit of the
unstable manifold of every periodic point associated to Λ.

Proof.
Since ν is ergodic, Λ is f−invariant, and ν(Λ) > 0, we have, in fact,

that ν(Λ) = 1. Also, since ν has non-zero Lyapunov exponents, there is
an invariant set Λ1 ⊂ Λ of full ν-measure such that each x ∈ Λ1 has a Cr

unstable manifold W u(x). This is the set of points y such that d(f−nx, f−ny)
approaches 0 exponentially fast as n→∞. Since ν has absolutely continuous
conditional measures along unstable manifolds, it is known that one can
choose Λ1 so that if x ∈ Λ1, then W u(x) is completely contained in the
support of ν. We refer to standard places (e.g. [1], [27], [14]) for proofs of
these facts. Thus, µ is supported on a set which contains many full unstable
manifolds. We wish to show that every unstable manifold of a periodic orbit
associated to Λ is also in the support of ν. Note that, obviously, Λ1 contains
no periodic orbits. Let p be a hyperbolic periodic point associated to Λ.

For any point x, let O(x) = {fn(x) : n ∈ Z} denote the orbit of x.
Let x ∈ Λ1, and let y ∈ Λ be an ω−limit point of x. Thus, there are three

distinct iterates x1 = fn1x, x2 = fn2x, x3 = fn3x near y so that

1. there is a small curvilinear rectangle D such that f(D)
⋂
D = ∅,

2. the boundary of D consists of pieces γu
1 ⊂ W u(x1), γ

s
1 ⊂ W s(x1), γ

u
2 ⊂

W u(x2), γ
s
x ⊂ W s(x2),

3. x3 is contained in the interior of D, and

4. O(p)
⋂
D = ∅.

Let us recall a result due to Katok in [13]. He proves that there is a se-
quence µ1, µ2, . . . of measures supported on hyperbolic periodic orbits which
converges weakly to ν. Indeed his proof shows that we may find three hy-
perbolic periodic points pi arbitrarily close to xi, such that there are curves
ηu

i ⊂ W u(pi), η
s
i ⊂ W s(pi) such that

5. ηu
i is Cr close to γu

i and ηs
i is Cr close to γs

i for i = 1, 2, 3,

6. there is a rectangle D̃ close toD and bounded by the curves ηu
1 , η

s
1, η

u
2 , η

s
2

such that p3 ∈ interior(D̃), and
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7. O(p)
⋂
D̃ = ∅.

These properties are illustrated in Figure 1.
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Figure 1: Solid lines correspond to xi, dashed lines correspond to pi

It now follows that each W s(pi) has some non-empty transverse intersec-
tions with W u(O(x)), so the Inclination Lemma (Theorem 2, page 155, in
[25]) implies that

W u(O(pi)) ⊆ Closure(W u(O(x))) ⊆ Λ (2)

for each i.
Further, since Λ is the closure of the set of transverse homoclinic points

of p, we have that W s(O(p)) accumulates on x3. Since O(p)
⋂
D̃ = ∅, we

may find a q ∈ O(p) such that W s(q) meets both the interior and exte-
rior of D̃. Hence, it must also cross either ηu

1 or ηu
2 . In the first case, an

elementary two dimensional argument using the Inclination Lemma shows
that W u(O(p)) ⊂ Closure(W u(O(p1)), and a similar argument in the second
case gives W u(O(p)) ⊂ Closure(W u(O(p2))). Now (2) implies the required
statement that W u(O(p)) ⊂ Λ. QED.

The next Lemma, which gives new information about the typical way in
which sinks approach a homoclinic set, is the key new ingredient of the proof
of Theorem 1.4.

12



Let p be a hyperbolic saddle periodic point, and q be a hyperbolic sink
(attracting periodic point). We say that q is u−related to p (short for unstably
related) if

W u(O(p))
⋂

W s(O(q)) 6= ∅.

We also say that q is u−related to a homoclinic set Λ if there is a periodic
saddle point p associated to Λ such that q is u−related to p.

Lemma 2.2 Let r ≥ 1, and let f be a Cr diffeomorphism of a compact
surface, and let p(f) be a dissipative hyperbolic periodic point of f whose
homoclinic closure contains a tangency. Then, arbitrarily Cr close to f one
can find a g such that p(g) has a u−related sink.

Proof.
Observe that the orbit of a homoclinic tangency consists of homoclinic

tangencies, and the stable and unstable manifolds of p accumulate near the
orbit of the homoclinic tangency in Λ(f). Thus, the stable and unstable
manifolds of p accumulate on some homoclinic tangency in Λ(f). After a
small perturbation, we may assume that W u(p) has a point of tangency with
W s(p).

Let τ > 0 be the period of p.
Next, we can find a g1 C

r near f such that

1. g1 is C∞,

2. the continuation p(g1) is defined and hyperbolic,

3. there is a C2 linearization of gτ1 near p(g1), and

4. W u(p(g1)) and W s(p(g1)) have a quadratic tangency at a point q1.

Replacing g1 by gτ1 , we may assume that p(g1) is a fixed saddle point of
g1.

Let λ, σ denote the eigenvalues of Dgτ1 (p(g1) with 0 ≤ | λ | < 1 < | σ |.
Replacing g1 by g2

1, we may assume that λ and σ are positive.
Next, we embed g1 in a one parameter family µ→ fµ of diffeomorphisms

defined for µ near 0 so that the family creates a non-degenerate tangency of
W u(pµ) and W s(pµ) at q1. Here, f0 = g1 and pµ is the continuation of p(g1).
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Now, we use the techniques of the proof of Theorem 1 on page 47 of
the book [25] of Palis and Takens, to show that, for some µ′s near 0, there
are curvilinear rectangles Dµ near q1 whose first return maps Fµ of fµ are
smoothly conjugate to small perturbations of certain Henon maps Hµ̄,b de-
fined on the square Q = [−1, 1]× [−1, 1] where µ̄ = µ̄(µ) depends smoothly
on µ. . We will see that the maps Hµ̄,b can be chosen to have fixed sinks z0(µ̄)
whose stable sets contain a full-width strip of fixed height in Q. Thus, the
corresponding maps fµ will have periodic sinks w0(µ) whose stable manifolds
contain full-width subrectangles of Dµ. The return maps Fµ will contract
area very sharply for small µ on a larger rectangle D′

µ ⊃ Dµ which has a part
of W u(p1) as a full-height curve. This will imply that p1 is u-related to the
sinks w0(µ).

Let us proceed to the details.
We find a one-parameter family µ → fµ of Cr diffeomorphisms on M

such that the following conditions hold.

1. f0 = g1

2. the family {fµ} creates a non-degenerate homoclinic tangency between
W u(g1) and W s(g1) at q1

3. there is a µ-dependent C2 linearization ψµ of fµ in a neighborhood of
a compact curve γs(µ) ⊂ W s(pµ) such that γs(0) contains q1 and p(g1)

4. there is a sequence Jn of parameter intervals converging to 0 as n→∞
so that if µ ∈ Jn, then one can find a rectangle Dµ near q1 and a Cr

diffeomorphism Φµ : Dµ → Q such that, letting Fµ be the first return
map of fµ to Dµ and λ = λµ, σ = σµ be the eigenvalues of Dfµ at pµ,
we have

(a) ΦµFµΦ−1
µ

def
= Gn,µ is defined on Q and has the form

Gn,µ(x, y) = (y, µ̄+ y2 − λn
µσ

n
µx) + S(µ, x, y)

where S(µ, x, y) → 0 as n→∞ and µ̄ ∼ µ · σ2n
µ ,

(b) µ̄ crosses all of [0, 1
2
] as µ crosses Jµ, and

(c) denoting the height of Dµ by height(Dµ) and the width of Dµ by

width(Dµ), we have height(Dµ) ∼ σ−2n
µ , width(Dµ) ∼ height(Dµ)

1
2 .
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Thus, we have that the first return map Fµ on the rectangle Dµ is conju-
gate to a small perturbation of the Henon map

Hµ̄,b(x, y) = (y, µ̄+ y2 − bx)

on the rectangle Q with b = λn
µσ

n
µ and n large.

We claim that, for small | b |, and µ̄ ∈ [ 1
64
, 1

16
], the map Hµ̄,b has a unique

attracting fixed point z0 = z0(µ̄, b) such that W s(z0) contains the rectangle
R = [−1, 1]× [−7

8
, 7

8
].

To see this, first consider the singular familyHµ̄,0. The calculations reduce
to analogous ones in the one dimensional logistic family y → µ̄ + y2. One
easily computes that, for µ ∈ [ 1

64
, 1

16
], Hµ̄,0 has the attracting fixed point

z0(µ̄, 0) = (1−
√

1−4µ̄
2

, 1−
√

1−4µ̄
2

), and its stable manifold contains R. Now, for
small | b |, the fixed point z0(µ̄, 0) continues to a nearby one z0(µ̄, b) with the
required properties. Here we use the fact that stable manifolds of hyperbolic
fixed points depend continuously on compact sets even for singular maps.
This follows from the proofs of the stable manifold theorem in [12] or [29].

Now, return to the map Fµ above. In the domain of the linearizing
coordinates ψµ, enlarge the rectangle Dµ horizontally to a rectangle D̃µ which
projects vertically onto all of γs and has Dµ as a full-height subrectangle.
Thus, D̃µ will contain bothDµ and a full-height curve γu which is contained in
W u(pµ). Since λµσµ < 1, for n large, the image Fµ(D̃µ) is a slight thickening
of Fµ(γu) which is much narrower than the width of Dµ as in Figure 2.

This implies that the stable manifold of the attracting fixed point of Fµ

will meet Fµ(γu), proving Lemma 2.2. QED.
We can now complete the proof of Theorem 1.4.
For each positive integer n, let Un be the subset of Dr(M) such that if

f ∈ Un, then all periodic points of f of period less than or equal to n are
hyperbolic with characteristic exponent sum different from zero. As is well-
known, arguments as in the proof of the Kupka-Smale theorem give that Un

is a dense open subset of Dr(M).
For f ∈ Un, let P t

n(f) denote the periodic points p of f of period less than
or equal to n such that

1. p is dissipative, and

2. there is a sequence of diffeomorphisms g1, g2, . . . converging to f in
Dr(M) such that, for each i, the h−closure of p(gi) contains a homo-
clinic tangency.
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Figure 2: D̃µ is a rectangle containing Dµ which is wide enough to project onto a
line segment in W s(p) which contains both p and q1; Fµ(D̃µ) is near q1 and is a slight
thickening of the curve Fµ(γu).

Let Vn be the set of f ′s in Un such that P t
n(f) is empty. Then, Vn is an

open subset of Un. Letting Fn = Un \ Vn, we have that f ∈ Fn implies that
P t

n(f) is a finite non-empty set of periodic points. Label these as

P t
n(f) = {p1(f), p2(f), . . . , psn(f)}

with sn = sn(f).
For m > 0, let

Fn,m = {f ∈ Fn : sn(f) = m},

and let

Tn = {m : Fn,m 6= ∅}.

Then, Tn is a finite set of positive integers and we have the disjoint union

Fn =
⊔

m∈Tn

Fn,m.
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For m ∈ Tn and 1 ≤ j ≤ m, let Fn,m,j be the set of f ′s in Fn,m such that
the h−closure of pj(f) has persistent tangencies and a u−related sink.

By Theorem 1.1 and Lemma 2.2, each Fn,m,j is dense and open in Fn,m.
Hence, the set

En
def
=

⊔
m∈Tn

[ ⋂
1≤j≤m

Fn,m,j

]
is also dense and open in Fn.
Let Gn = Vn

⋂
En. This set is dense and open in Dr(M) for each n. If

f ∈ Gn, then any dissipative periodic point p of f with period less than or
equal to n whose h−closure contains a tangency must have a u−related sink.
By Proposition 2.1, no such h−closure can carry an SRB measure.

Now, set U =
⋂

n Gn. This is the residual subset of Dr(M) required in
Theorem 1.4. QED.
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