A TWO-DIMENSIONAL VERSION
OF THE FOLKLORE THEOREM

MICHAEL JAKOBSON* AND SHELDON NEWHOUSE!

ABSTRACT. We formulate some sufficient conditions for the existence of Sinai-Ruelle-
Bowen measures for piecewise C? diffeomorphisms with unbounded derivatives. The
result can be viewed as a two-dimensional version of the well known one-dimensional
Folklore Theorem on the existence of absolutely continuous invariant measures. Here
we formulate the results and outline the main ideas and tools of our approach. The
detailed version will appear elsewhere.

§1. THE FOLKLORE THEOREM AND SRB MEASURES

The well-known Folklore Theorem in one-dimensional dynamics can be formu-
lated as follows.

Folklore Theorem. Let I = [0,1] be the unit interval and {1, I,...} a countable
collection of disjoint open subintervals of I such that |J, I; has the full Lebesgue
measure in 1. Suppose there are constants Ky > 1 and K1 > 0 and mappings
fi : I; = I satisfying the following conditions:

1. f; extends to a C? diffeomorphism from Closure(I;) onto [0,1], and
inf.er, |Dfi(2)| > Ko for all i.
D2 f;(2
2. sup,¢y, %HJ < K for all i,
where |I;| denotes the length of I;. Then the mapping F(z) defined by F(z) =
fi(z) for z € I; has a unique invariant ergodic probability measure p equivalent to
Lebesgue measure on I.

For a proof of the Folklore Theorem and the ergodic properties of u, see, for
example, [1] and [17].

Here we formulate a theorem that can be considered as a two-dimensional version
of this Folklore Theorem.

Let Q be a Borel subset of the unit square @ in the plane R? with positive
Lebesgue measure, and let F : Q — Q be a Borel measurable map. An F-invariant
Borel probablility measure p on @ is called a Sinai-Ruelle-Bowen measure (or SRB-
measure) for F' if y is an ergodic measure with non-zero Lyapunov exponents and
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there is a set A C Q of positive Lebesgue measure such that for x € A and any
continuous real-valued function ¢ : @ — R, we have

) 1 n—1 .
(1) Jim =~ kZ:O o(F*z) = /sodu-

The set of all points x for which (1) holds is called the basin of p.

We are interested in giving conditions under which certain two-dimensional maps
F which piecewise coincide with hyperbolic diffeomorphisms f;, have SRB measures.
As in the one-dimensional situation, there is an essential difference between a finite
and an infinite number of f;. In the case of an infinite number of f;, their derivatives
grow with ¢ and relations between first and second derivatives become crucial.

A different class of piecewise hyperbolic maps F' = f; | E;, in which the number
of domains E; is finite but derivatives D f;(z) are allowed to grow when z approaches
the boundary of E;, was considered in [10] and [13]. In these works it was assumed
that the derivatives DF(z) grow at most exponentially depending on the distance
between the point z and the singular set where F is not defined. In our work we
allow the domains E; to accumulate towards the limit set in an arbitrary way. Then
the conditions of [10], [13] are typically violated even for linear maps f;.

In [12] a method was developed that reduces the existence of an SRB measure
for F' to the existence of an absolutely continuous invariant measure for the one-
dimensional map G obtained from F' by factorizing along the stable manifolds. The
technique of distortion estimates that we develop here might be used to check the
conditions of [12]. In general, for the systems under consideration, checking the
conditions of [12] looks similar to the straightforward generalization of [3].

§2. HYPERBOLICITY AND GEOMETRIC CONDITIONS

Consider a countable collection & = {Ey, Es, ..., } of full height closed curvilinear
rectangles in . Assume that each E; lies inside a domain of definition &; of a C2-
diffeomorphism f; which maps F; onto its image S; C . We assume each FE;
connects the top and the bottom of ). Thus each E; is bounded from above and
from below by two subintervals of the line segments {(z,y) : y =1, 0 < 2 < 1} and

{(z,y) :y =0, 0 <2z <1}. We assume that the left and right boundaries of E;
(@
Y| < a. We further assume that

are graphs of smooth functions z(¥) (y) with

the images f;(E;) = S; are strips connecting the left and right sides of @) and that
they are bounded on the left and right by the two subintervals of the line segments
{(z,y) :2 =0, 0<y <1} and {(z,y) : z =1, 0 <y <1} and above and below
dy®
dX

follow from hyperbolicity conditions H1, H2 that we formulate below.

The sets E; are called posts , the sets S; are called strips. We say that the E;’s
are of full height in ), while the S;’s are of full width in Q.

We shall assume that the margins between the posts E; and the extended do-
mains &; containing these posts are comparable to E; in the following sense. For a
point z € @, let [, denote the horizontal line through z. If E C @ is a subset of @,

by the graphs of smooth functions Y#(X), < . The bounds on derivatives
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let 6,(E) denote the diameter of the horizontal section I, [ E. We call 6,(E) the
z-width of E.

For a given k > 0 and any z € int E; , let B(;)(z) be the ball of radius k6, (E;)
centered at z. We assume there exists k£ > 0 independent of 7 and z € int E; such
that & contains the set |,y Bx)(2) -

We assume the following geometric conditions:

Gl int E; Nint E; = ( for i # j;

G2 mes(Q \ U; int E;) =0 where mes is the Lebesgue measure;

G3 S;iNS; =0 for i # j and S; are disjoint from the top and from the bottom

of Q;
and the condition G4 will be formulated below.

In the standard coordinate system for a map f : (z,y) — (fi(z,v), f2(z,y)) we
use D f(z,y) to denote the differential of f at some point (z,y) and f;z, fiy, fiza
fizy, etc., for partial derivatives of f;, j =1,2.

We use a version of hyperbolicity conditions introduced by Alekseev ([2]) who
generalized the conditions of Smale ([14]). See [6] for another version of such con-
ditions.

Hyperbolicity conditions. There exist positive constants pi1, f2, €12, €21, such that

for all ¢ the map
F(z) = fi(z) for z € &;
satisfies the conditions
Hl. |Foy — FiyFoo Fr'| < pa, | P < pias |§—i:| < erg, |B2] < ea;
H2. pipe <1
H3. p1 + po — paipe +€12621 < 1.
For a positive real number a > 0, we define the cones

Ky ={(v1,v2) : |va| < afurl},
K, = {(v1,v2) : |u1] < alvz|}.

As is proved in [2], the hyperbolicity conditions H1-H3 imply that there exist
two disjoint families of cones K3 and K independent of the point z such that DF
maps K into the interior of K¥ and DF~! maps K} into the interior of Kj. Also
there exist a constant Ky > 1 and a constant ¢g > 0 such that for any v € K
and for any v(®) € K 4 we have

(2) IDF™™) | > co Ki o™,
(3) IDF~™0®)| > ¢o K7 |v'?)].

The cone conditions imply that any intersection FE; N E; is full width in E;.
Also E;; = E; N F~'E; is a full height subpost of E; and F?E;; is a full width
substrip of Q.

Proceeding with finite strings, we get that each set

E;_,NF'(E; F"(E;,) = P

—n+1) s —ni-n41...%0
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is a full height subpost of E;__, and each set

—n?

FE,NF°E;_,...F""'E;_ = F""™ (P i . .\ )
is a full width strip in . Then it follows from Theorem 4 in [2] that the corre-
sponding infinite intersections are C' curves.

Namely, the following proposition holds.

Proposition 1. Any C! map F satisfying the above geometric conditions G1-G3
and hyperbolicity conditions H1-H3 has a ” topological attractor”

A= | ﬁF’““Ei_k.

cd_p..i_1%0 k=0

The infinite intersections (\reo F*T1E;_, define C' curves v = y(z), that are
the unstable manifolds for the points of the attractor. The infinite intersections
Moo Pi_ iz nir.io define C* curves z(y), that are the stable manifolds for the points
of the attractor.

Remark 1. Let Q be the set of points whose forward orbits always stay in |, int E;.
Then @ has full Lebesgue measure in Q and F maps Q into itself. The union of
the stable manifolds contains (), which has full measure in Q. The trajectories of
all points in Q converge to A. This is the reason to call A a topological attractor.
However, the convergence of Birkhoff averages to the unique SRB measure is a
much stronger property.

Remark 2. The distortion condition D1 and distortion estimates below imply that
if our maps f; are C? smooth, then the unstable manifolds are actually C? smooth.
Similar conditions on the inverses of f; imply that the stable manifolds are C?
smooth, see [9].

§3. DISTORTION CONDITIONS AND THE MAIN THEOREM

Since we have a countable number of domains, the derivatives of f; grow. We
will need certain assumptions on the second derivatives.

In a given coordinate system, we write fi(z,y) = (fir(z,v), fia(z,y)). We use
fijas fijy, fijoa, fijey, etc. for partial derivatives of f;;, j = 1,2. Next we formulate
distortion conditions. These will be used to control the fluctuation of the derivatives
of iterates of F' as in Lemma 1 below.

Suppose there is a constant Cy > 0 such that the following distortion conditions
hold:

DL | fijni (2)]

Supzeghi21 m&z(Ez) < C(), where j = 1,2, k,l =,Y.

Remark 1. The widths 6,(E;) vary continuously as z varies in E;, but as z moves
from the top to the bottom of @, the widths can become arbitrarily small.

The following geometric condition is sufficient to control the fluctuations of the
widths of E;.

Let 6; min = minzep; 0;(E;), 0;max = Maxcp, 0,(E;). Let Ko be the expansion
constant from (2).
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G4. There exists Ko > K1 > 1 such that if we let a,, = Zl 0i,max, the sum taken
over those i that satisfy &; min < %, then ) a, < oo

Condition G4 implies that

(4) - Z 6i,max IOg 6i,min < 00.

7

On the other hand, (4) implies G4 for any Kq > K; > 1. So, if G4 holds for
some K7 as above , then it also holds for all Ko > K7 > 1.

Remark 2. Condition G4 is satisfied if there are constants 0 < C7,Cy, 0 < a < b<
1 such for every i and for every z € E;, one has Cha’ < §,(E;) < Cob'.

Theorem 1. If F is a piecewise smooth mapping as above satisfying the geometric
conditions G1-G4, the hyperbolicity conditions H1-H3, and the distortion condi-
tions D1, then, F has an SRB measure whose basin has full Lebesgue measure in

Q.

§4. DISTORTIONS AND RATIOS OF DERIVATIVES

We proceed toward a sketch of the proof of Theorem 1.

We start with the following procedure of width-reducing .

Let & be a finite partition of () into narrow full height rectangular posts P,
all of the same width x, and let & = F~£. Every element P; of £ is a full
height curvilinear subpost of some orginal post E;. Let s, C E; be the horizontal
crossection of E;. The crossection s, is mapped by F' onto the full width curve
~ in @. Bounded distortions imply (see estimate (23) below) that there exists a
constant Cp; depending on Cy such that for any vertical post P we have

|[F~'(yn P)|

(5) |S | < 001|Pﬂ’y|.

It follows from (5) that for any £; > 0 we can choose original partition £ so that

sz (P1)|
|3z(Ei)|

(6)

<eg.

Thus for an arbitrarily small dy > 0 we can choose €; such that the distortion
estimates D1 restricted to the posts P; become

D1'. sup,ep, ;j>1 M@(Pl) < dp.
T |le:c(z)|

We must estimate the distortion of iterates of our map F'. For this purpose it is
convenient to introduce certain affine coordinate systems centered at various points
z,Fz in such a way that, with respect to these coordinates, the Jacobian matrix
of F' at z is diagonal. We will formulate our distortion estimates so that they are
uniform for all such affine coordinate representations of F'. Our assumption that f;
extends to the neighborhood &; guarantees that f; will be defined and C? smooth
on each admissible parallelogram defined below.
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Fix a post P, C E;. Let z € P; and let v,w be a pair of unit vectors with
v € Ky, w € Kj. If Eis a parallelogram with edges parallel to v, w, then the
edges parallel to v are called the top and bottom of E, and the edges parallel to
w the sides of E. We define the width of E to be the common length of the top
and bottom, and the height of E to be the common length of the sides. Let s,
be the crossection of P; through z by the line spanned by v and let [ ,, be the line
through 2 spanned by w.

We fix some T > 1 depending on hyperbolicity conditions, as described below.
Let E, 4,4 be a parallelogram of the smallest width with edges parallel to v, w such
that

(1) The left and right sides of E, , ,, do not meet the interior of P;.
(2) height(E, , ) = T width(s; ,),0 < T < T.
(3) z divides the height of E, ,,,, into equal parts.

Although z is not necessarily located in the center of (s.,), we say E, ., as
indicated is an admissible parallelogram centered at 2 inscribed in P; .

The hyperbolicity conditions imply that there exists ng such that for v(%) € KY,
v e Kg we have

(7) |DF™v™)] > 2},
(8) |IDF~m0u()| > 2]0(?)].

Then there exists Ty > 1 such that for 1 < n < ng we have

(9) |DF™®)| > 2T, o),
(10) |IDF~p®)| > 2757 [0()].

We use this Tp in the above definition of the admissible parallelograms.

Since the tangent lines to the vertical boundaries of the posts belong to the stable
cone and we choose v in the unstable cone, the admissible horizontal directions are
transversal to the boundaries and E. , ., N P = B, is a full width curvilinear
subrectangle of P;.

Given a point z and a pair of linearly independent vectors v,w, consider the
associated unit vectors o = v/[v|, @ = w/|w|. Let e1 = (), e2 = (}) denote the
standard unit vectors in R?. Consider the affine automorphism A4, , ,, of R? such
that A, ,w(2) =2, DA, yw(er) =0, DA, ,w(e2) = w.

Some of these affine automorphisms will give us coordinate changes which will
be useful to control distortions.

Forze PL,ve K} ,wE€ Kf;, write f = f; and consider the local coordinate
representation

F -1
frww = Afz,Df,(v),w ofo Az,'v,fo_zlw'

The map fz,v,w sends z to f;z and its Jacobian matrix at z is a diagonal matrix.
We say that f., . is an adapted representation of f; or that we have a system of

adapted coordinates for f;. We also call fz,v,w the (z,v,w)-adapted representation
of f,
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We shall use admissible parallelograms E_ | 1, Frtw with sides parallel to adapted
axes.

For a local diffeomorphism f and a parallelogram E on which f is defined and
C? smooth, we define the following quantities:

o culf, B) = sup (R0
. 1) =g 2
o) ca(h.F) = mp 2
(14) B11(f,E _max< lflzlj‘u)( )|( )’fgg Ifzjjcii)(LA)l(E)),
19wt )= (L B,
16 (s, B) = mox (sup P = up e ),

where A(E) = max{height(E), width(E)} is the size of E.
Finally, we set

(17) O,k(fi) = sup (I)jk(fz,v,waEz’v,Df—lw)
2€PIEB; wEKY , wEK f=

for (j,k) = (1,1),(1,2), or (2,2).

An upper bound on ©;4(f;) is a uniform upper bound on the distortions of the
local coordinate representations of f;, using those affine coordinate systems centered
at (z, fiz) that diagonalize the Jacobian matrix of f; at z.

We claim that ©;(f;) are uniformly bounded by a constant depending on dis-
tortion conditions and on hyperbolicity conditions . First we notice that second
derivatives with respect to various adapted coordinates differ by a bounded factor.
Next, hyperbolicity conditions imply that the vectors belonging to the unstable
cone are expanded proportionally to |fiz|. Then there exists p; > 0 such that for
all 7 at the center zy of any adapted coordinate system we have

| f1z,adapted(20)| > P1|fiz,standard(20)]-

Finally, for an arbitrary point z of an admissible parallelogram we have a similar
estimate because the difference of derivatives at zg and at z is estimated in terms
of distortions (see below), which we made arbitrarily small. That gives

(18) |f1w,adapted(z)| > pOlflz,standard(z)l-

It remains to estimate the difference between the width of an admissible parallel-
ogram and the width of the corresponding dynamically defined horizontal crossec-
tion s, of P;. That difference depends on the horizontal deviation of the boundary
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curves of P; within admissible height, which by definition is less than (1/2)Tp|s.]|.
The horizontal deviation is a function of y given by

sy = [ |2

dy.
flm Y
In an adapted coordinate system, fi,(20) = 0 and

& is estimated using

1z
distortion conditions D1 as in (21) below. Since we made the distortions arbitrarily

small by reducing the width we get that the horizontal shift is arbitrarily small
compared to the width of the horizontal section. Therefore

. dyn
(19) Wldth(Ez,v)fo—:w) S (1 + 8)(52 (Ez,v,fo_zlw)
for any z € P,
This implies that D1 holds for any adapted coordinate system with another small

constant depending on dy. We shall keep the notation dy for that constant. So we
get sup;;r Ok (fi) < do.

§5. FLUCTUATION OF DERIVATIVES

Let z € E; and let E be an admissible parallelogram containing z (perhaps
centered at a different point zg of E;). Let A be the size of E. Write f for f;. We
can estimate €;;(f) in terms of ®;; by the mean value theorem using the fact that
in adapted coordinates fi,(20) = f2z(20) = 0. We get

1@ @5, @

1fi. (D) = [fi. (2)] lfi ()

_ |f1mm(7-1)| A |f1m'y(7—1)|
22 log . (r) = log ,,(2) < T A 4 e T

(21)

A.

So we get
|£10 (7)]
(23) 7. @) < exp(®11(f) + ®12(f))-
Using (21), (23) we get
(24) 12 < (12(f) + ®22(f)) exp(®11(f) + P12(f))-
Similarly from
(25) oo () faue (DI R Foey (DI 3

[fie ()] 7 [fia (2) /1. (2)]

(26) 21 < (@11 (f) + P12(f)) exp(P11(f) + P12(f))-
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. |2 (2)] |2, (20)]
To estimate ~—=~——, we use (9), (10) and get — 22— < 79, where 19 = T2 /4.
[ e e O, (10) o)l =7 0=To/
For other points z € E we get as above
(27) g22 < (10 + P12(f) + B22(f)) exp(P11(f) + 12(f))

Finally, we see that after restricting to small parallelograms E' obtained after
width-reducing, we have

/1o (DI
2 7. () S P
(29) €12,€21 < (2dp) exp(2dy),
(30) €99 < (To + 2d0) exp(2d )

So by width-reducing we make £12,€91 arbitrarily small, ratios of derivatives
arbutrarily close to one, and €92 arbitrarily close to 7p.
Estimates for ®;;(f) allow us to get bounds for the fluctuation of derivatives of
f- Namely, for two unit tangent vectors both within a small cone about an adapted
1 2 2

x axis, v' = (v},vy) at 21 , v® = (v},v)) at 2y , 21,22 € E as above, we have the

following result.

Lemma 1. We have

|DfZ1(Ul)| |21 — 2| 1,2
31 1+ k1@ ———+ k(v —v
(31 Di.e) = h A 2 )
where |v| = |vg| + |vy| and the distances are measured with respect to the adapted

coordinate system under consideration and ki, ks are positive constants.

To prove Lemma 1, we present the numerator of (31) as

sz2(v2) + sz2(1)1 - Uz) +(Dfa - Dsz)('Ul)
and we take |f1,(22)(v2)| out of the denominator. Then (28), (29), (30) give (31).

§6. DISTORTIONS OF COMPOSITIONS

We estimate ®; for compositions of hyperbolic maps. Let g be the map f; and
let f be the map f;. The map h = f;jo f; = f o g is defined in E;; = E; N f;*
which is a full height subpost of E;. Let 2o € E; N f; 'E;. Earlier we estimated
distortions on admissible parallelograms inscribed in the posts P; , but now we
need to know the distortions on the preimages of such posts. As ¢ is not a Markov
partition, the posts P; can be in arbitrary positions relative to the posts P. To
overcome that problem, we shall vary the initial partition £ which we use for width
reducing. Thus, instead of the fixed partition £ we consider a family of partitions
& obtained by translating each post by ¢ along the z-axis. The distortion estimates
obtained above do not depend on ¢.

We shall also use initial partitions with elements of two sizes. Let x be the width
of an element of £ which is a standard rectangular post. Let ¢ be a similar partition
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of @ into rectangular full height posts P that are so narrow that the width of any
crossection spanned by v € K} of any preimage F*k(Pg) , 1 <k < ng, is less than
X/2.

Any admissible parallelogram inscribed in F~*(P;) has width less than (1 +
€)(x/2) and can be put in the middle of an element P; of an appropriate partition
&:. There we can use distortion estimates (20)—(30).

For v € K3, w € Kj, let us consider the (20, v, w)-adapted representation h for
h. Thus, h = A;:(lz()) Dh(v) w°PoAL v Dh-1(w)- We can express has h = fo§, where

§ is the (29, v, Df~'w)-adapted representation of g, and f is the (gzo, Dg(v),w)-
adapted representation of f. Let P = fj_l(PC), P,=f"(P)=f"o fj_l(PC).

Let Ej be the minimal parallelogram centered at zp with edges parallel to
v, Dh}(w) such that

(1) the left and right sides of E}, do not meet the interior of P»;

(2) height(E}p) = width(s,, (P2)).
Then Ej, is contained in an admissible parallelogram E, inscribed in f;' P, with
the height of E, equal to the width of s, (f; ' P;) centered at zo with edges parallel
to v, Dh1w.

Although the vectors in K ;4 can expand under a single iterate, we know that they
cannot expand by more than Tp/2. Respectively, the image g(E, N Ps) is contained
in an admissible parallelogram Ey inscribed in P;, centered at g(zo), and having
edges parallel to Dg(v), Df '(w). Let 6, = width(E}), dy = width(Ey), &, =
width(E,).

As in (19), we get that lengths of horizontal crossections ¢, of Ej, and the width
of Ey are related by

(32) 6. <0n < (1+en)ds,

where g5, is a small constant.

Since the map Dg restricted to E}, is close to a constant diagonal the horizontal
crossections are mapped into curves close to horizontal crossections of Ef. Any
horizontal crossection s, of Ey lies in the middle of the corresponding crossection

sp of some rectangular post P € &. Let us denote by d(y14v) the ratio % By
the choice of partitions ¢ and £ we have

(33) S5y < (1/2)(1 + ).

When we pull back, the ratios are multiplied by a factor due to distortion which is
close to one because Ey is a small parallelogram. We obtain the following estimate:

(34) Q19| En) < (1+8)07010v)@jr(9 | Ey)-

Then we have

(35) Vel > |Frainal (1 - M) |
|glzf1w|
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where the partial derivatives of g are computed on Ej. We define

~ -1
|§2zf1y|
36 =|1- =

and get, as in (25) and (26),

(37) N < 1+e12(f)s(riey) (14 €)(P11(g) + P12(9)) exp(P11(g) + P12(7))
We also introduce

|§1z(2’1)|
38 Y= Sup
( ) z1,22€Ep |gl$(z2)|

and get, as in (22) and (23),

(39) v < exp [(®11(9) + D12(9)) 8 1ev) (1 +8)] -

Using the chain rule for partial derivatives, we get

811 (h) < n[®11(H)y(1 +2n) + 2812(Fean (§)7 + P2(fe21(3)*y
+ ®11(§)0f(rew) (1 + )],
B12(h) < n[®11(Fer2(9)dsev) (1 + )y + Br2(f)ler2(§)e21(5)y + €22(9)7]
+ @25(f)e22(§)e21(3)7 + 12(8) 3 (ritn) (1 + )]

The quantity ®22(h) can be expressed similarly.

Note that in the formula for ®11(h) the value ®11( f) is multiplied by factors
that are of the form (1 + const dz(14y)) and by (1 +¢p) from (32).

So when the domains of f and of h are small, these factors are close to one. In

the formula for ®2(h), distortions of f are multiplied by small factors in each term
except for e95 estimated in (30) and the same is true for @22(71).

Taking the suprema over adapted coordinates, we get analogous estimates for
Oji (h)-

In a similar way we estimate distortions for compositions F™ = f;, o...0 f;
and taking into account that the widths of the initial rectangles P can be taken

arbitrary small, we get for distortions of compositions F°

(40) sup O,p(F™) < di,
ijk

where d; = d; (dp) and limg,,0d; = 0.
By construction, we have in adapted coordinates

(41)

Now if we consider the iterates F°™ of the map F™, we get the uniform decrease
of @12(F"0m), @22(F"°m).

This implies, by induction, the following estimate similar to the one-dimensional
estimate of distortion for the compositions of hyperbolic maps [5, Lemma 1].
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Proposition 2. For an arbitrary composition F* = f; o ... f; restricted to the
preimages f;, o... f;l(P) of the elements P of the partition ( we have

(42) 01 (F¥) < erdy,
(43) max ((“)12 (Fk), @22 (Fk)) S Cldl (q)k,

where dy 1is from (40) and ¢; > 0,0 < ¢ < 1 are determined by the initial parameters
from the hyperbolicity and distortion conditions.

§7. SINAI LOCAL MEASURES

According to Proposition 1, to any infinite sequence (...i_,...i_1i9) there
corresponds an unstable manlfold wH i1io) of full width in E;,. Moreover,
fio W( dmeni1io) is a full width unstable manlfold in Q. The curve W( i 1io)
as well as all its preimages have tangents inside K. é ).

Letusdenote B, = E;_,NF 'E;_,,,...NF "Ej,andlet W, = F"we ;o0

E_,. First we notice that the maps F™ from W(“_n) onto the full width unsta-
ble manifolds in ¢ all have uniformly bounded distortions. For a given k£ > 0
we fix two points 21,22 € W(“_k) and connect their images Z1,Z> by a chain
Yo = Z1,Y1,...,Ym = Zy of m < N + 1 points, N = card(, such that Y;,Y; 1
belong to the same elements of the partition (. Then 21,29 are connected by the
chain of preimages y;, and for y;,y;1+1, Proposition 2 and Lemma 1 give the uni-
form bound on the ratio of derivatives. Namely, applying Lemma 1 to the pairs
(yO;'Ul); (y2:vl)a sy (ymfla Ul)a (ymaUQ) we get from (31)

|DF, (v!)

4 DFE (%)

: < (]. + k1¢11)N+1(1 + k’2(|Ul - 'l)2|) = (.

The estimate (44) implies that for any iterate of F' the ratios of distances between
points are uniformly preserved up to some constant which depends on Ci. Then we
fix a large k, take E_ = E;_, N F~'E; .NF~ E,07 and denote by &_, , &;_,

1 k+1 "

the widths of E_, E;_, respectlvely Let W( k) = =F*we, NE_y.

z_k...z_lzo
We want to estimate the ratios of derivatives at 21,22 E W(’ik) and v,,,v,,

tangent to W[ k) at z1, 2.
Using the hyperbolicity conditions and bounded distortion we get that the ratio
of widths of E_j and FE;_, satisfies the estimate

S

—k < CQKO_k.

1—k

(45)

S

To compare unit tangent vectors v,,,v,,, we go backward to some high or-
der preimage W((fzn) of W(( 3:)’ take the preimages wq,ws of 21, 22, and take unit
horizontal vectors wi,us at wi,ws. Then v,,,v,, will be within the respective
const K, 2(m—k) cones around DF™~ky, DF™—ky,. These last vectors have com-
ponents Fi"~ ¥ (w;), Fi? % (w;), j = 1,2. We can assume that the points wi,ws
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belong to an admissible parallelogram E'(m) that is mapped by F™ onto a full
width curvilinear subrectangle of an element of the initial partition . Since the
elements of ¢ have fixed widths, by using again the bounded distortion property we
get

w1 — w,|

(46) _
|Em)|

< C3K(;k.

We can take w; as the origin of an adapted coordinate system for E(m) so that
F" % (w;) = 0. Then

Fg;_k('lUQ) < Cs
m—k = 7k
Fla: (U)g) KO
and, respectively,
C3
(47) |Uz1 - Uzzl < K_(])c
Using (45), (46), (47), and (31) we get
|DF, (v")] Cy
Ll B S IS il
1) o < (&)

Let us denote by D¥F(2) the derivative of F' along the unstable manifold W*(z)
at z. Then (48) implies that for any two points 21,29 € W(“_n) the following limit
exists:

. H"_l DYF(F~329)
4 1 5= ;
(49) et [, D“F(F—*z)

Considering £(21, 22) obtained in the preceding limits as functions of z;, we get,
up to constants, densities of special measures on the unstable manifolds. The family
of these measures defined on local unstable manifolds is invariant in the following
sense. If we have two Lebesgue measurable subsets of a local unstable manifold
W*(z), and their images are subsets of the local unstable manifold W*(F(z)), then
the ratios of local measures of these subsets are preserved, see for example [15,
Lecture 16]. We call these measures Sinai local measures or just local measures.
Let pwu(.) denote the normalized Sinai local measure on W*(z).

§8. CONSTRUCTION OF AN SRB MEASURE

A global SRB measure is obtained by averaging the iterates of a local measure
on an arbitrary unstable manifold. Let Wy = W(‘f“i_n___z._l i0) and let po be the
local measure on Wy. Then the measures p, = Fug are defined on F"(W,) by
pn(A) = po(F~™(A)). For any E; we fix full height curve transversal to unstable
manifolds, for example, some stable manifold ~;. Every iterate of Wy is a union of
unstable manifolds that are full width in ). Each of these manifolds intersects ~; at
a unique point z. The piece of that manifold cut by E; is the local unstable manifold
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denoted by W;(z). Then on each E; the sequence of discrete factor measures myy,
is defined by assigning to z € ; the measure p,(W;(z)).
Then we consider sequences of measures

1 n—1
)\n = E Z Mk
k=0
and
) 1 n—1
)\:l = E Z mik
k=0

for each 7 and choose a subsequence ny such that the corresponding measures weakly
converge to ' )
A= lim A, A'= lim A}
k—oc0 —00

Then A is an F-invariant measure. The following lemma is a modification of [15,
Lecture 17, Theorem 5].

Lemma 2. ) is a Gibbsian measure , i.e., the conditional measures that A generates
on the local unstable manifolds coincide with the local measures.

Outline of the proof. Let

Heviomoiorio) = Wioniivio) VYios  Xio = Z(iononirio)

Let ¢(z) be a continuous function with the support inside E;,. The uniformly
bounded distortions imply that

Y(z) = / e(y) dpw,, (=) (y)

is a continuous function of z € Xj,.

Since we are dealing with an infinite number of E;, the union of the strips S;,
as well as the intersection of that union with +;,, are not closed sets, and the same
is true for |J, F™(E;) for any n. Respectively, X;, is not a closed subset of ;, and
1(2) is not continuous on the closure X;,. However, since the measure of the union
of E; with i > n tends to zero as n tends to 0o, the bounded distortion conditions
imply that Y;, = X;, \ X;, has uniform measure zero with respect to all p in the
following sense: for every € > 0 there exists an open cover U, ;, of Y;, such that
ur(Ue) < g for all k.

With this modification the proof of Lemma 2 is similar to the proof of Theorem
5 in [15, Lecture 17].

Remark. When constructing A we implicitly use the following result.
For any smooth curve Y = y(z) transversal to the stable foliation with angles
uniformly bounded away from zero, Y N (|J; E;) has full Lebesgue measure in Y.
In order to get this property we notice that G4 implies that the measure of
YN (U, E;) depends continuously on the curve belonging to some smooth foliation.
Then the property follows from G2 using the Fubini theorem.
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§9. ABSOLUTE CONTINUITY AND COROLLARIES

The key property of SRB measures — absolute continuity of the projection along
the stable foliation — is proved similarly to [3,9], but again requires a modification
because of the infinite number of E; in the initial partition.

Let us take two smooth curves Wi, W, with tangent lines within K} in the same
E; and iterate them forward long enough. After n iterates the distance between
the pieces of images Wy, W2 that had the same itinerary [i,4,...4,] will be
less than const K;". When we prove the absolute continuity property we com-
pare the Lebesgue measures of preimages Wi [, i,,..i,] = F~"(Wpn1) € W1 and
Walis iny..in] = F~"(Wn2) € Wa. By the uniformly bounded distortion, we have

n

(50) mes(Wh, iy ia,...in)) € [c1, 2] mes(Woy) (J] D F*(zi)) ™", k=1,2
s=1

where x1 € W1 [5, 4s,...in]> T2 € Wa [iyis,...i,] Delong to the same stable manifold.

Formula (50) implies that the ratios of the measures of Wy, [;, ..., are expressed
up to a uniform constant by

[15_, D“F(F*z1) mes Wy

1
(51) [1,_, D¥F(F3z5) mes Wy

However, contrary to the classical case, the ratios of unstable Jacobians at F'*(xy)
are close to 1 only if the distances between F®(z},) are small compared to the widths
of those E;, that contain F*(xy). Similarly, the ratios of the measures of W, are
close to one under the same condition.

Here we use the geometric condition G4. According to this condition, if we
avoid at step s those E; that have widths less than K{K, *, we delete at this step
the subset of W} of the relative measure less than the corresponding term of a
converging series. So we get at the limit a Cantor set C} of positive measure in
Wy, k = 1,2. On this set the ratios (51) are uniformly bounded between two
positive constants r11,712. If 7w is the projection along stable manifolds, then it
follows from [3] that for any subset of positive Lebesgue measure M; C Ci and
for My =nM; C C% the ratios of Lebesgue measures of My and M, are uniformly
bounded.

The remaining points in Wy belong to the preimages of E; with large i. For
these sets we take several extra forward iterates and repeat the previous argu-
ments. We obtain Cantor sets C7 of positive measure, disjoint from C}, with
uniformly bounded ratios (51), but with different constants ra1,722. Repeating this
construction, we get

Wy, = ﬂ ¢4 mod 0,

=1

where C,Z are disjoint Cantor subsets of W}, of positive measure with uniform es-
timates rj1,rj2 of ratios (51) on CY, k = 1,2. That proves absolute continuity of
.

The ergodicity of A follows from the absolute continuity of # and from the
“Bernoulli” topological structure of the map F' (see, for example, [3]). The same
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arguments show that any two measures constructed by the above averaging starting
from different unstable manifolds, coincide. Finally, the absolute continuity of =
implies that for Lebesgue a.e. point in () and any continuous function ¢, (1) holds
with v = p.

§10. FURTHER ERGODIC PROPERTIES OF (F,\)

10.1. Let us denote by a the original partition of the attractor A

Let
0 .
n= \/ F'a.
—0o0

Up to a set of measure zero, the elements of 7 coincide with the intersections of full
height stable manifolds with the attractor. The partition 7 satisfies the following
properties:

Fn=n,  VaF'm=¢,  N\F'n=v.

So we get from [16] that (F,\) is a K-system.
Proposition 3. The map (F, \) is Bernoulli.

The following weak Markov property was introduced in [11]. It was used to prove
the Bernoulli property of Anosov flows (see [4,11]).

Let 8 be any partition,
\/ Fis.

k<i<l

We say that (8 is weak Markov (WM) if for any € > 0 there exists N = N(e),

a set P = P(g) of atoms of 5°, A\(P) > 1—¢, and a set M = M(e) of atoms of

N os MM) > 1—¢, such that if 2,5 € PNz}, z¥ € BY, then for any set A C M
of atoms of 3~ one has

(52)

We take for 8 our original partition a of the attractor. Then the correspond-
ing ag® is the partition into unstable manifolds W*; .. elements of af are

Sicpoio =F'Ei_,NF"'E;_ . N---NFE;_, NE;, and aN_
into pieces of stable manifolds within o' .

In order to get P, we first delete an open cover U as in Lemma, 2. Then |, i E;\
U is a closed set and we can cover it by a finite number of strips S;_,..i,, n < N,
such that for any two points belonging to the same stable manifold 21,22 € W§nN
Si_....i, the ratio of densities of local measures (49) differs from 1 by less that e.
The un1on of the unstable manifolds W¥, that belong to the above strips
Si_...igs m < N, constitutes P. For M we take the union of stable leaves outside

of UzZzo E; and within S;__ . ;,. Then, the WM property is satisfied.

is the partition
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Using the WM property for « we get from [1, Proposition 2.2] that every partition
G = {E1,Es,...,Ex,U;>, Ei} is weak Bernoulli. As k — oo, the partitions (j
converge to the generating partition a and we get Bernoulli property for (F, ), see

[8].

10.2. Entropy formula. By construction, the measures of E; satisfy
(53) Cl5z',min < )\(Ez) < CQ&j’max.

Using (4), (56) we get that the entropy of the generating partition « is finite and

(54) ha(F) < H(a) < oc.
Similarly,
(cl6i,min)71 > |DuF | Ez' > (026i,max)71
implies
(55) /log |D*F|dA < oo.

Let £ = /4~y F¥a. The elements of £ coincide with the local unstable manifolds
Wi (z). Respectively, £ is an increasing partition with respect to F~! and it has the
same K-properties as the above 7.

Since a is generating and a < &, we get, using the properties of the entropy, that

(56) ha(F) = H(F~'al¢) = H(F'¢[€).

Then the arguments of Theorem 5.1 from [16] (proved for systems with smooth
invariant measure) or similar arguments from Section 4 of [7] (where the smoothness
of invariant measure is not assumed) give

(57) H(F¢lé) = / log | D" F|d,

which proves the entropy formula.
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