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1 Introduction

We obtain new conditions for dominated and hyperbolic splittings on com-
pact invariant sets for a diffeomorphism in terms of its induced action on a
cone field and its complement. The results are applied to give simple new
proofs of well-known theorems for hyperbolicity of the set of bounded or-
bits in real and complex Henon mappings. In this latter case, much more
complete information can be given making use of complex methods. See, for
instance, [1]

Let M be a compact C∞ Riemannian manifold, let f ∈ D1(M), let Λ be
a compact f−invariant set.

The notion of a dominated splitting arose in the work of Mane on the
stability conjecture [4] and has been considered in several recent works. See
for instance [9].

The usual definition is the following.
Definition. A dominated splitting on Λ is a splitting TxM = E1x ⊕ E2x

for each x ∈ Λ such that there are constants C > 0 and λ > 1 such that

| Dfn
x | E2x || Df−n

fnx | E1fnx | ≤ Cλ−n for n ≥ 0, (1)

Df(Eix) = Ei,fx for i = 1, 2, and (2)

the maps x → Eix are continuous. (3)

Let us give an interpretation of these estimates.
For a linear map L : Rn → Rn, and a subset E ⊂ Rn with E 6= {0}, set

1
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| L | E | = sup
v 6=0,v∈E

| Lv |
| v |

,

and

m(L | E) = inf
v 6=0,v∈E

| Lv |
| v |

.

If L is an isomorphism, and E is a subspace, then

m(L | E) = | L−1 | L(E) |−1
.

We call m(L | E) the minimal expansion of L on E, and m(L−1 | L(E))
the minimal co-expansion of L on E.

We may write condition (1) in several equivalent ways. For n ≥ 0,

| Dfn
x | E2x |m(Dfn

x | E1x)
−1 ≤ Cλ−n (4)

| Dfn
x | E2x | ≤ Cλ−nm(Dfn

x | E1x) (5)

m(Df−n
fnx | E2,fnx)

−1m(Dfn
x | E1x)

−1 ≤ Cλ−n (6)

m(Dfn
x | E1x)m(Df−n

fnx | E2,fnx) ≥ C−1λn. (7)

The last formulation (7) can be simply expressed as follows: the minimal
expansion of Dfn

x on E1x times the minimal co-expansion of Dfn
x on E2x

grows exponentially with n.
Remark:

1. Dominated splittings need not be unique. For example, consider a
toral automorphism with a center and expanding subspace, or, more
generally, any partially hyperbolic set.

2. We will show later that conditions (1) and (2) imply condition (3).
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3. If dim E1x is constant, then it follows from Theorem 1.2 below that the
dominated splitting is unique in the following sense. If Tx = F1x ⊕ F2x

is another splitting of TxM such that, for all x ∈ Λ,

m(Dfn
x | F1x)m(Df−n

fnx | F2,fnx) ≥ C−1λn

and

dim E1x = dim F1x,

then E1x = F1x and E2x = F2x for all x ∈ Λ.

In this note we are interested in establishing simple conditions which
guarantee that dominated splittings exist. Our conditions will be in terms
of the action of Df on certain cone fields over the set Λ. In many examples,
these conditions are easy to verify. They also lead to an elegant and useful
method for proving that invariant sets are uniformly hyperbolic. This has
many applications in bifurcation theory and other areas. As a particular
application, we give a simple new proof of hyperbolicity of the set of bounded
orbits for certain Henon mappings in both the real and complex situations.

There are many known results containing sufficient conditions for hyper-
bolicity. See, for instance, the papers [3], [7], and the books [6], [8], and [10].
Our techniques here are analogous to some which appear in [8] and [10] for
two dimensional systems involving invariant cone fields. We replace the in-
variance conditions in [8] and [10] by expansion conditions on the cones and
their complements. This gives stronger results and fits in easily in the more
general context of domination. The techniques in this section are simple,
and, although we expect that they are known to experts, we have found no
reference with analogous results in the generality presented here.

Let us begin be recasting the domination conditions in a way which gives
uniqueness and continuity.

Let E ⊂ Rn be a proper subspace; i.e, 0 < dim E < n. Let F be a
complementary subspace; i.e., Rn = E ⊕ F .

The standard unit cone determined by the subspaces E and F is the set

K1(E, F ) = {v = (v1, v2) : v1 ∈ E, v2 ∈ F, and | v2 | ≤ | v1 |}.

A cone in Rn with core E, denoted C(E), is the image T (K1(E, F )) where
T : Rn → Rn is a linear automorphism such that T (E) = E. By a cone C
in Rn we mean a set C(E) for some proper subspace E of Rn.
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Now consider a diffeomorphism f on the manifold M and compact in-
variant set Λ as above.

A cone field C = {Cx} on Λ is a collection of cones Cx ⊂ TxM for x ∈ M .
We say that the cone field Cx has constant orbit core dimension on Λ if
dim Ex = dim Efx for all x ∈ Λ where Ex, Efx are the cores of Cx, Cfx,
respectively. Note that there is no a priori continuity assumption on x → Cx.

Given such a cone field C = {Cx}x∈M , let

mC,x = mC,x(f) = inf
v∈Cx\{0}

| Dfx(v) |
| v |

,

and

m′
C,x = m′

C,x(f) = inf
v/∈Cfx

| Df−1
fx (v) |
| v |

.

We call mC,x the minimal expansion of f on Cx or of Df on Cx, and we
call m′

C,x the minimal co-expansion of f on Cx or of Df on Cx.
We define the domination coefficient of f on C to be

md(C) = md(C, f) = inf
x∈Λ

mC,x ·m′
C,x. (8)

We say that f is dominating on C over Λ (or C is a dominating cone field
on Λ) if C has constant orbit core dimension and md(C) > 1.

Remark. This condition depends on the choice of Riemannian metric on
M . An analogous weaker condition, which is independent of the Riemannian
metric, is that md(C, fn0) > 1 for some n0 ≥ 1. It is easy to see that the
results below also hold under this weaker condition.

We have the following simple lemma.

Lemma 1.1 Suppose that f is dominating on C over Λ. Then, C is an
f−invariant cone field. That is, for x ∈ Λ, we have

Dfx(Cx) ⊂ Cfx. (9)

Proof.
Let v ∈ Cx \ {0}, and let w = Dfx(v).
Then,

| Dfx(v) | ≥ mC,x(f)| v |.
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We want to show that w ∈ Cfx. We actually show that w ∈ interior(Cfx).
Indeed, if this were not true, then

| Df−1
fx (w) | ≥ m′

C,x| w |.

This would give

| v | = | Df−1
fx (w) | ≥ m′

C,x| w |
≥ m′

C,x ·mC,x| v |
> | v |

which is a contradiction. QED.
We say that f is strongly dominating on C over Λ if C has constant orbit

core dimension and (
inf
x∈Λ

mC,x

)
·
(

inf
x∈Λ

m′
C,x

)
> 1. (10)

Theorem 1.2 Suppose that f is dominating on C over Λ. Then there is a
unique Df−invariant splitting TΛM = E1 ⊕ E2 such that for all x ∈ Λ, we
have E1x ⊂ Cx and E2x ⊂ TxM \ Cx.

Further, if f is strongly dominating on C over Λ, then the functions
x → E1x, x → E2x are continuous in x.

Proof.
Existence:
Let f be dominating on C.
Let Cc

x = TxM \ Cx.
Set

C+
x =

⋂
n≥0

Dfn
f−nx(Cf−nx) ⊂ Cx,

C−x =
⋂
n≥0

Df−n
fnx(Cc

fnx) =
⋂
n≥0

Df−n
fnx(Closure(Cc

fnx)).

Let Ef−nx be the core of Cf−nx.
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Then, E ′
n,x = Dfn

f−nx(Ef−nx) is a linear subspace which is contained in
Cx, and they all have the same dimension.

Let

Ex = lim
ni→∞

E ′
ni,x

in the Grassmann sense for some sequence ni →∞.
Similarly, let Ffnx be a subspace contained in Cc

fnx complementary to the
core of Cfnx, and let F ′

n,x = Df−n
fnx(Ffnx).

We may assume that the sequence ni is chosen such that Fx = limni→∞ F ′
ni,x

.
Then, Ex ⊂ Cx, Fx ⊂ interior(Cc

x), and dim Ex + dim Fx = dim TxM .
Also, since Ex

⋂
Fx = {0}, we have TxM = Ex ⊕ Fx.

We claim:

C−x = Fx, (11)

and

C+
x = Ex. (12)

For x ∈ Λ, let xi = f ix, and set

mxi
= mC,xi

(f), m′
si

= m′
C,xi

(f).

For n ≥ 1 set

Mn =
n−1∏
j=0

mxj
, M ′

n =

n−1∏
j=0

m′
xj

−1

.

From condition (8) we may choose ρ > 1 so that

mxj
·m′

xj
> ρ ∀j, which of course gives

Mn

M ′
n

> ρn. (13)

Observe that for v ∈ C−x \ {0}, we have

Dfn
x (v) ∈ Cc

xn
\ {0}, (14)

and

| Dfn
x (v) | ≤ M ′

n| v |, (15)
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while, for v ∈ C+
x \ {0}, we have

Dfn
x (v) ∈ Cfnx \ {0}, (16)

and

| Dfn
x (v) | ≥ Mn| v |. (17)

Let us now prove (11) and (12).
We know that Fx ⊂ C−x and Ex ⊂ C+

x . Suppose there is a v ∈ C−x \ Fx.
Write v = v1 + v2 with v1 ∈ Ex, v2 ∈ Fx. Of course, v1 6= 0.
From (15) and (17), we have

M ′
n| v | ≥ | Dfn

x (v) |
= | Dfn

x (v1) + Dfn
x (v2) |

≥ Mn| v1 | −M ′
n| v2 |

or, by (13),

| v |+ | v2 |
| v1 |

≥ Mn

M ′
n

≥ ρn.

Since the left side of this equation is bounded, this is a contradiction,
proving (11).

Replacing f by f−1 gives C+
x = Ex, so (12) is also proved.

Now, we set E1x = Ex, E2x = Fx to give the splitting required in Theorem
1.2. It is clearly Df -invariant since both C+

x and C−x are.
Uniqueness:
If Ē1x ⊂ Cx, Ē2x ⊂ Cc

x for all x ∈ Λ, and the Ēix are Df−invariant, then
we clearly have Ē1x ⊂ C+

x and Ē2x ⊂ C−x . Hence, Ē1x ⊂ Ex and Ē2x ⊂ Fx.
If dim Ē1x < dim Ex, then dim Ē1x ⊕ Ē2x < dim M , contradicting the
assumption that we have a splitting of TxM . Hence, Ex = Ē1x. Similarly,
Fx = Ē2x.

Continuity:
Assume that f is strongly dominating over C, and let E⊕F = {Ex⊕Fx}

be the induced Df− invariant splitting over Λ with Ex ⊂ Cx, Fx ⊂ Cc
x.

Suppose that z → Fz is not continuous at some x. We we may choose a
sequence yi converging to x and subspaces F̃x, Ẽx of TxM such that
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dim Fyi
is constant, (18)

Fyi
→ F̃x and Eyi

→ Ẽx in the Grassmann sense , (19)

and

F̃x 6= Fx. (20)

Case 1: There is a unit vector v ∈ F̃x \ Fx.
Choose unit vectors vi ∈ Fyi

such that vi → v as i → ∞, and write
v = v1 + v2 and v1 ∈ Ex, v2 ∈ Fx. Since v is not in Fx we have v1 6= 0.

For n ≥ 0, let

Mn =
n−1∏
j=0

mfjx, M ′
n =

n−1∏
j=0

m′
fjx, M ′

n,i =
n−1∏
j=0

m′
fjyi

.

Now, for each n > 0, we have

| Dfn
x (v) | = lim

i
| Dfn

yi
(vi) |

≤ lim inf
i→∞

| vi |
M ′

n,i

= lim inf
i→∞

1

M ′
n,i

,

and

| Dfn
x (v) | = | Dfn

x (v1) + Dfn
x (v2) |

≥ | Dfn
x (v1) | − | Dfn

x (v2) |

≥ Mn| v1 | −
1

| M ′
n |
| v2 |.

Letting

m0 = inf
x∈Λ

mC(f), m′
0 = inf

x∈Λ
m′
C(f),

we have
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M ′
n,i ≥ (m′

0)
n, Mn ≥ mn

0 , and M ′
n ≥ (m′

0)
n.

Then, the above inequalities give

lim inf
i→∞

1

M ′
n,i

≥ Mn| v1 | −
| v2 |
M ′

n

,

or,

1

(m′
0)

n
+

| v2 |
(m′

0)
n
≥ mn

0 | v1 |,

or,

1 + | v2 |
| v1 |

≥ (m′
0m0)

n.

For n large this is a contradiction.
Case 2: There is a unit vector v ∈ Fx \ F̃x.
Write the unit vector v as v = v1i + v2i with v1i ∈ Eyni

and v2i ∈ Fyni
.

The angles between the subspaces Eyi
and Fyi

are bounded below, so, for
large i, the norms | v1i | are bounded below. Hence, the quantities

1 + | v2i |
| v1i |

are bounded above. On the other hand, as in Case 1, we can show that
they are no smaller than (m′

0m0)
n for each n. This contradiction proves that

z → Fz is continuous.
Similarly, we obtain that z → Ex is also continuous.
This proves Theorem 1.2. QED.

Proposition 1.3 A sufficient condition for f to have a dominated splitting
over Λ is that there is an integer n0 > 0 such that fn0 has a strongly domi-
nated cone field C over Λ.

Proof.
By Theorem 1.2, we get a continuous Dfn0−invariant splitting TxM =

E1 ⊕ E2 and a τ > 1 such that, for all x ∈ Λ,
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m(Dfn0
x | E1x) ·m(Df−n0

fn0x | E2,fn
0 x) > τ.

This implies that for each k ≥ 0,

m(Dfkn0
x | E1x) ·m(Df−kn0

fkn0x
| E2,fkn0x) > τ k.

Let n ≥ 0 and write n = kn0 + r with 0 ≤ r < n0.
Then,

m(Dfn
x | E1x) ≥ m(Dfkn0 | E1x) · inf

0≤j<n0

m(Df j
fkn0x | E1,fkn0x) (21)

and

m(Df−n
fnx | E2,fnx) ≥ m(Df−kn0

fkn0x
| E2,fkn0x) · inf

0≤j<n0

m(Df−j
fjx | Efjx), (22)

so, we get

m(Dfn
x | E1x) ·m(Df−n

fnx | E2,fnx) ≥ Cτ k ≥ C1λ
n0k+r = C1λ

n

for some constants C, C1 > 0 and λ > 1. This proves the Proposition.
QED.

Let us now apply these results to give a useful condition for uniform
hyperbolicity involving cone fields.

One standard definition of uniform hyperbolicity is the following.
Let f : M → M be a C1 diffeomorphism of a Riemannian manifold M ,

and let Λ be a compact invariant subset of M ; i.e, f(Λ) = Λ. We say that Λ
is a uniformly hyperbolic set for f , if there are constants C > 0, λ > 1 and a
continuous splitting TxM = Eu

x ⊕ Es
x for each x ∈ Λ such that

1. Dfx(E
s
x) = Es

fx and Dfx(E
u
x) = Eu

fx,

2. for v ∈ Eu
x and n ≥ 0, we have

| Dfn
x (v) | ≥ Cλn| v |,
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3. for v ∈ Es
x and n ≥ 0, we have

| Df−n
x (v) | ≥ Cλn| v |.

We now use our previous results and definitions to get

Theorem 1.4 A necessary and sufficient condition for Λ to be a uniformly
hyperbolic set for f is that there are an integer N > 0 and a cone field C
with constant orbit core dimension over Λ such that fN is both expanding
and co-expanding on C.

Proof.
Sufficiency:
If C and N are as in the statement of the theorem, then, C is obviously

strongly dominating for fN over Λ. From Theorem 1.2 and Proposiiton 1.3
we get a dominated splitting TxM = Ex⊕Fx for f over Λ with Ex ⊂ Cx and
Fx ⊂ Cc

x for every x ∈ Λ. Thus, in fact, Ex ⊕ Fx is a uniformly hyperbolic
splitting for f on Λ.

Necessity:
Let Λ be uniformly hyperbolic with splitting Tx = Eu

x ⊕ Es
x for x ∈ Λ.

It is known [3] that there is an adapted Finsler norm | · |1 on TM . This is
a norm induced by a Finsler metric such that there is a τ > 1 such that for
x ∈ Λ,

1. if v ∈ Eu
x , then | Dfx(v) |1 ≥ τ | v |1, and

2. if v ∈ Es
x, then | Df−1

x (v) |1 ≥ τ | v |1,

3. if v = v1 + v2 with v1 ∈ Eu
x , v2 ∈ Es

x, then | v |1 = max(| v1 |1, | v2 |1).

For x ∈ Λ, set

Cx = {v = (v1, v2) ∈ Eu
x ⊕ Es

x : | v1 |1 ≤ | v2 |1}.

The core of Cx may be taken to be Eu
x . This is clearly an expanding

and co-expanding cone field of constant core dimension for f relative to the
adapted norm | · |1. But, since any two norms have uniformly bounded ratios
on non-zero vectors, it is clear that in any norm there is a positive integer N
such that C is expanding and co-expanding for fN . QED.
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2 Application to the Henon Family

In this section we apply the preceding results to two dimensional systems,
both real and complex. This gives a simple proof of hyperbolicity on the
set of bounded orbits in the Henon family H(x, y) = (A − x2 − By, x) for
| A | sufficiently large depending on | B |. In the real case this was originally
proved by Devaney and Nitecki [2]. Their proof is elementary but heavily
dependent on real geometry. In fact, it is not clear that their methods apply
to the complex case. Before we began the work reported here, we asked
several experts about the complex case and were told that R. Oberste-Vorth
has a proof which, however, was never published. We do not know what
estimates he obtained for the relative sizes of | A | and | B |.

Devaney and Nitecki proved that hyperbolicity holds provided that

A >

(
5 + 2

√
5

4

)
(1 + | B |)2. (23)

At the end of our calculations below, we were, in fact, quite surprised
to find that essentially the same estimate holds in the complex case. In
retrospect, it seems that our arguments are very similar to those in [2], so our
main contribution here, perhaps, is that we have made the arguments cleaner
and removed the dependence on real geometry. After this work was done,
John Smillie informed us that better estimates can be obtained using complex
methods. In fact, Proposition 7.4.6 in [5] gives that the bounded orbits form
a topological horseshoe for A > 2(1 + | B |)2, and then complex methods
can be used to show actual hyperbolicity. Nevertheless, our estimates are
sufficiently elementary that we feel it is desirable to present them here.

As is well-known, all degree two polynomial diffeomorphisms are affinely
conjugate to members of the Henon family. Hence, in studying their dynam-
ical properties, there is no loss of generality in assuming that 0 < | B | ≤ 1

Theorem 2.1 Consider the real or complex Henon family HA,B(x, y) with
0 < | B | ≤ 1. Let ΛA,B denote the set of points with bounded orbits. Assume
that

| A | >
(

5 + 2
√

5

4

)
(1 + | B |)2. (24)

In the complex case or the real case with A > 0, we have that ΛA,B is a
non-empty compact invariant uniformly hyperbolic set. In the real case with
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A < 0, the set ΛA,B is empty.

Let us proceed to the proof.
Consider V = R or V = C and the family of maps H(x, y) = HA,B(x, y)

for x, y ∈ V . If V = R, we let A, B be real, but we allow them to be complex
if V = C.

We begin with simple criteria for expansion and co-expansion of a linear
map using the standard unit cone. We use the max norm

| v | = max(| v1 |, | v2 |)

for a vector v = (v1, v2) ∈ V 2.
Define the standard unit cone, K in V 2 = V ⊕ V .

K = {v = (v1, v2) : | v2 | ≤ | v1 |}.

The complementary cone is

Kc = {v = (v1, v2) : | v1 | < | v2 |}.

For a linear map L : V 2 → V 2 with matrix

L =

(
L11 L12

L21 L22

)

and determinant det(L) = L11L22 − L12L21, we have the inverse matrix

L−1 =
1

det(L)

(
L22 −L12

−L21 L11

)
.

Lemma 2.2 A sufficient condition for L to be expanding on K is that

| L11 | − | L12 | > 1. (25)

Analogously, a sufficient condition for L to be co-expanding on K
is that

| L11 | − | L21 | > | det(L) |. (26)
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Proof.
Let λ > 1 be such that

| L11 | − | L12 | > λ.

For v = (v1, v2) ∈ K, we have | v | = | v1 |, and

| Lv | ≥ | L11v1 + L12v2 |
≥ | L11| v1 | − | L12 || v2 | |

= | v1 |(| L11 | − | L12 |
| v2 |
| v1 |

)

≥ λ| v1 |
= λ| v |.

Similary, let λ > 1 be such that

| L11 | − | L21 | > λ| det(L) |.

For v ∈ Kc, we have | v | = | v2 |, and

| L−1v | ≥ 1

| det(L) |
(| −L21v1 + L11v2 |))

≥ 1

| det(L) |
(| L11v2) | − | L21v1 |)

≥ 1

| det(L) |
| v2 |(| L11 | − | L21 |

| v1 |
| v2 |

)

≥ λ| v2 |
= λ| v |.

QED.
Now, we return to the Henon family H = HA,B(x, y) = (A− x2 −By, x)

with 0 < | B | ≤ 1.
For C > 0 let QC = {(x, y) ∈ V 2 : max(| x |, | y |) ≤ C}.
In the real case, the next result is contained in [2].

Proposition 2.3 Let C0 be the largest root of the quadratic polynomial
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p(r) = r2 − (1 + | B |)r − | A |,

and, let Q0 = QC0. Then,

ΛA,B ⊂ Q0.

Proof.
Write (x1, y1) = (A− x2 −By, x).
Take any C > C0. We show that ΛA,B ⊂ QC . The result then follows

taking the intersection

⋂
C>C0

QC .

Since C is greater than the largest root of the polynomial

r2 − (1 + | B |)r − | A |,

we can choose λ > 1 close enough to 1 so that C is greater than the
largest roots of the polynomials

p1(r) = r2 − (λ + | B |)r − | A |,

and

p2(r) = r2 − (1 + λ| B |)r − | A |.

Consider the sets K+ = K \QC , and K− = Kc \QC .
Let π1(x, y) = x, π2(x, y) = y be the natural projections on R2, and write

H = HA,B.
We show

(a) H(K+) ⊂ K+ and z ∈ K+ implies that | π1H(z) | > λ| z |, and

(b) H−1(K−) ⊆ K− and z ∈ K− implies that | π2H
−1(z) | > λ| z |.
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These statements give that the norms of the forward iterates of points in
K+ approach infinity while the norms of the backward iterates of points in
K− approach infinity. Hence, bounded orbits must be in QC .

If (x, y) ∈ K+, then | y | ≤ | x | and | x | > C, so

| x1 | = | A− x2 −By |
≥ | x |2 − | A | − | B || y |
≥ | x |2 − | A | − | B || x |

For | x1 | > λ| x |, we need

| x |2 − | A | − | B || x | > λ| x |,

or, | x | must be greater than the largest root of p1(r). But, this follows
from our choice of λ since | x | > C.

Further, since, | y1 | = | x | < | x1 |, we have H(x, y) ∈ K+.
This is statement (a).
Statement (b) is similar.
Suppose (x1, y1) ∈ K−.
Then, | x1 | < | y1 | and | y1 | > C and

(x, y) = H−1(x1, y1) = (y1,
A− y2

1 − x1

B
)

give

| y | =
1

| B |
| A− y2

1 − x1 |

≥ 1

| B |
(| y1 |2 − | x1 | − | A |)

≥ 1

| B |
(| y1 |2 − | y1 | − | A |).

To get | y | > λ| y1 | we need that | y1 | be larger than the largest root of
p2(r).

Again, this follows from the choice of λ since | y1 | > C. In addition, we
have | x | = | y1 | < | y |, so (x, y) ∈ K−. QED.
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It remains to prove the hyperbolicity of ΛA,B under the assumption (24).
Let

α = 1 + | B |,

and, let

C0 =
1

2

(
α +

√
α2 + 4| A |

)
be as in Proposition 2.3.
An elementary algebraic calculation shows that the inequality in (24) is

equivalent to that in (27). So, Theorem 2.1 follows from

Proposition 2.4 In the complex Henon map, suppose

| A | > α2

4
+ αC0, (27)

Then, ΛA,B is a non-empty hyperbolic set for HA,B.
In the real Henon map, if (27) holds, then ΛA,B is hyperbolic if A > 0

and empty if A < 0.

Proof.
For notational ease, let us suppress the subscripts and write H = HA,B,

and Λ = ΛA,B. .
We will prove that

(?) If (27) holds, then Λ is hyperbolic provided that it is not empty.

This takes care of the complex case. (In that case, ΛA,B is clearly non-
empty since H has periodic points.)

For the real case, let U be the set of parameters (A, B) ∈ R2 satisfying
(24), and let G ⊂ U be the subset of those (A, B) ∈ U such that ΛA,B 6= ∅.

Letting

β =

(
5 + 2

√
5

4

)
α2

be the number on the right side of the inequality (24), we have that the
set U is the disjoint union of the two open connected sets
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U1 = {(A, B) : A > β},

and

U2 = {(A, B) : −A < −β}.

Statement (?) and the local stability of hyperbolic isolated invariant sets
(Theorem 3, page 157 in [8]) imply that G is an open subset of U . We claim
U \G is also open.

Indeed, we have

Λ =
⋂
n

Hn(Q0)

is the decreasing intersection of the compact sets⋂
−k≤n≤k

Hn(Q0).

If Λ were empty, then for some finite k0 > 0, we would have⋂
−k0≤n≤k0

Hn(Q0) = ∅,

and this property persists under small changes in (A, B).
It follows that G

⋂
Ui is either empty or equal to Ui for i = 1, 2.

Fix 0 ≤ | B | ≤ 1. Then,

| C0 | ≤ 1 +
√

1 + | A |

Using this, it is easy to show that if A is very large and negative, then
for any (x, y) ∈ Q0, we have

π1H
n(x, y) → −∞

as n →∞. Thus, if | A | very large and negative, we have Λ = ∅. Hence,
Λ must be empty for all A in (−∞,−β). On the other hand, if A is very
large and positive, then Λ is non-empty since HA,B has fixed points. So, Λ
is non-empty for all A in (β,∞).



April 8, 2003 19

It remains to prove (?).
Now,

DH =

(
−2x B

1 0

)
and det(DH) = B,

so, (25) and (26) are both implied by

| 2x | > 1 + | B |,

or,

| x | > 1 + | B |
2

=
α

2
. (28)

We want to consider z = (x, y) ∈ Q0 such that

| x | ≤ α

2
. (29)

We show that (29) together with (27) implies that the image H(z) is
not in Q0. This will imply that K is expanded and co-expanded by DH
on Q0

⋂
H−1(Q0). Since Λ is contained in this latter set, this will prove

hyperbolicity.
To get H(z) /∈ Q0, it suffices to have

| A− x2 −By | > C0.

Since | x | ≤ α
2

and | y | ≤ C0, this is implied by

| A | − α2

4
− | B |C0 > C0,

or

| A | − α2

4
> αC0. (30)

But this is the same as (27). QED.
Remark. In addition to the hyperbolicity, Devaney and Nitecki prove

that, in the real case with A

| B | large, the set of bounded orbits of HA,B

equals its non-wandering set, and the map HA,B restricted to this set is
topologically conjugate to the full two-sided shift on two symbols. We easily
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obtain this in our situation even in the complex case. First note that these
facts are fairly easy to prove for a real Henon map HA1,B1 with A1 large and
| B1 | sufficiently small. In the general (even complex) case, for arbitrary
(A, B) satisfying (27), we connect HA,B to a real Henon map HA1,B1 through
a curve {Ht = HAt,Bt , t ∈ [0, 1]} of Henon maps keeping (27) and Λt 6= ∅ for
all t. Then, each Λt is a hyperbolic isolated invariant set. Hence, the local
stability of isolated invariant hyperbolic sets gives that all the pairs (Ht, Λt)
are topologically conjugate.
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