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Differential Equations on the two dimensional
torus

1 Constant vector fields on the torus

We will now study some simple differential equations on a two-dimensional
torus. These will provide interesting minimal sets.

The 2—torus T? is the product S* x S* of two circles.

Writing S* as

St={zeC:|z|=1},
we get
Slxslz{(21722)602:’21’:|22|:1_

There is an alternative viewpoint which is useful.

Consider the quotient group R/Z; i.e., the set of equivalence classes in R
under the equivalence relation = ~ y iff x —y € Z. There is a natural map
7 : R — Z assigning to each real number z its equivalence class [z].

Notice that the map ¢ : t — 2™ is a surjective map from R onto S!
such that each pre-image ¢ '(z) is an equivalence class in R/Z. Thus, the
map ¥([z]) = ¢(x) gives a well-defined bijection from R/Z to S'.

We can use the map 1 to define a topology on R/Z, so we have notions
of continuity, etc.

Note that we can also think of the circle as a closed interval [a, b] with its
endpoints identified.

We can now apply these ideas to the product 7% = S* x S'. There is a
bijection from R/Z x R/Z onto T?. This defines a topology on T?. There is
another natural bijection between R/Z x R/Z and R?/Z?, and we can think
of this latter quotient set as T? as well. We will use all of these objects.

In particular, we think of T? as either S' x S! or R?/Z2.

Now we wish to define differential equations on T2?. We will use the
representation R?/Z2.

For this purpose, let f(x,y), g(x,y) be two real-valued functions of two
real variables such that they are periodic of period 1 in both variables. That
is,
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flz+1Ly+1) = f(z,y), g(z+1Ly+1)=g(z,y), Vr,y.

The planar vector field X (z,y) = (f(z,v),9(x,y)) is a map from R? —
R?. The periodicity conditions imply that it induces a well-defined map from

R?/Z?% to R%. We call this a vector field on the torus T?. The associated
system of differential equations

T = f($7y>
y = g(z,y)

is called a differential equation on T?2.

The solutions (or orbits) are obtained by taking the orbits in R? and
projecting them down to T?2.

Let us take a simple example.

Consider the constant vector field in R?

X(z,y) = w10, + w20y,

where w1, wsy are positive real numbers.
The associated system of differential equations is

T = w1
. 1
Yy = w2 (1)
The periodicity conditions are obviously satisfied, so we get a differential
equation on T?. This is called the constant or linear vector field on T2,
Let’s us consider its orbits.
The solutions to (1) in R? are the lines

z(t) = wit + c1, y(t) = wat + co.

Each such line has slope ‘:u)—j and passes through the point (¢, ¢2).
On the torus T? we simply take (z(t),y(t)) mod 1.
We have two main cases:

Wy _p

1. %2 js rational. Write it as p in lowest terms with p, ¢ positive

W, Wi
mtegers.

Consider the orbit v, in R? through (0,0) (i.e., ¢; = ¢ = 0).
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The solution in R? has the form
p
x(t) = wit, y(t) = () wit
q

Let 7 : R? — T2 denote the canonical projection.

When t = q/wy, we have x(t) = ¢, y(t) = p, so the projection 7(v,) = v
into T? is a closed curve (topological circle) in T?.

Since all the solutions are vertical tranlates of <, we have that all

solutions in T? are periodic of the same period.

2. % is irrational.
1

This case is more interesting. We will show that every orbit in T? is
dense in T?. Hence, all of T? is a minimal set.

Let us show that the orbit through (0,0) is dense in T?. The analogous
statement for other orbits is similar.

Consider the circle S = 7({z = 0}).

There is a first return map F : S' — S! (also called Poincaré map)
obtained by taking a point (0,y) and taking the point (1, F(y)) where
the orbit through (0,y) hits the line {z = 1}.

Let us compute F.
The orbit through (0,y) is {(wit,wat +y), t € R}.
We get

wit+y = F(y).
Hence,
t=1/wi, F(y)=y+wz/w
So, letting a = % we get that F(y) =y + a (mod 1).

To show that the orbits of X are dense, it suffices to show that the
iterates {F"(y),n € Z} are dense mod 1
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This is the number theoretic statement: for « irrational, and
A={na+m:neZmeZ}

then

A is dense in R. (2)

This elementary fact is proved as follows.

(a) A is clearly an additive subgroup of R.

(b) To show that A is dense, it suffices to show that 0 is an accumu-
lation point of A.

(c) For this latter fact, for each n > 0, let m,, € Z be such that
T, = na+m, € [0,1). Since « is irrational, the numbers z,, are
all distinct. Since [0, 1] is compact, there is a subsequence z,,, of
(x,) which converges. In particular, if € > 0 is arbitrary, there are
points x,,, x,, such that

| Tp, — Tpy | < €.

But then this difference x,, — z,, is in AN(—¢,€). Since, € is
arbitrary, we have that 0 is an accumulation point of A as required.

Let us now give an application of these ideas.

Consider the mass spring system whose equation is
mi + kx =0

where m is the mass of an object suspended vertically by a spring,
k > 0 is the spring constant, and x = 0 represents the equilibrium
position.

Let w = \/% . The associated first order planar system can be written

T = —wy
Yy = w<x (3)
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Let us write this system (3) in polar coordinates.
We have

x =rcos(0), y = rsin(f)

T = f‘cos(@)—rsin(@)e:
y = 7rsin(0)+ rcos(0)0

So, we see that the simple polar coordinate system

is equivalent to (4).
The solutions off (0,0) are

r=c>0, 0(t) =wt+ 6.

Hence, the orbits in the plane off (0,0) consist of the circles r = ¢ and
the motion has constant rotational speed w with period %
Now, consider two uncoupled springs whose equations in R* become

T = —wi
no= wn (6)
T2 = —Wa Y2
Y2 = w2 T

Using polar coordinates (rq,01,79,6,) in R* in the obvious way, we get
the equivalent equations

o= 0
91:(,01
a0 (7)
0 = wo

Hence all solutions in R* off the union of the two subspaces R*x {(0, 0} U{0, 0} x
R? lie on two dimensional tori 7 = ¢, 72 = ¢y, and the motion on each is a
constant vector field. If ws/w; is rational, then all these orbits are periodic,
and if wsy/wq is irrational, then all these tori are minimal sets.
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2 Gradient vector fields on the torus

To specify a gradient vector field on the two dimensional torus, we need to
consider smooth potential functions on the torus T? = R?/Z?. These are
smooth functions 1 (z,y) such that

Yz +1,y+1) = p(x,y) for all (z,y) € R,

From the theory of Fourier series, we can write such functions as sums
U(z,y) =Y akcos(2rkz) + bysin(2mk)
k=0
The simplest such examples are the trigonometric polynomials
N
Un(z,y) = agcos(2mkx) + bysin(27k)
k=0

for a positive integer N.
Givena function ¥ (z,y) with ¥ (z + 1,y + 1) = 9¥(z,y), we obtain its
gradient vector field by

X(z,y) = (0:9(z,y), 00 (x,y))

We wish to give a simple geometric interpretation of this in a special case.
First, we recall some concepts about surfaces of revolution in R?.

Let (X,Y, Z) denote the coordinates of a point in R3.

Let I = (a,b) be an open interval in R with a < b.

Consider a C" parametrized curve n : I — R? in the XY -plane given by

such that

inf | X(t) ) > 0

tel

and

~ A2 V()2
}5161§|X(t) +Y'(t)*| >0



November 1, 2010 9b-7

with » > 1.

Thus, the image of n is disjoint from the Y — axis, and the tangent vectors
to n never vanish.

The surface obtained by revolving 17 about the Y —axis can be parametrized

by
v(t,0) = (X (t)cos(2m8), Y (t), X (t)sin(276))

with 0 < 6 < 1).

Thus, the map 7 : (a,0)x(0,1) — R3is a C" embedding from (a, b)x (0, 1)
into R3. Its image is the surface of revolution determined by 7 and the Y —
axis.

Next, consider the open unit box in R? given by (0,1) x (0,1). We use
this to parametrize an open dense set of a torus of revolution in R? as follows.

Let 0 < r < R be two positive real numbers.

Consider the embedding 7 from (0,1) into the X — Y —plane given by

n(t) = (R+r cos(2nt),r sin(27t),0) = (X (t),Y(t),0)
This maps (0, 1) onto the circle
{(X,Y,0): (X —R?*+Y?=r?}

with a point removed.
Using this to parametrize the surface obtained by revolving n about the
Y —axis, we get the map ® : (0,1) x (0,1) — R? defined by

O (t,0) = ((R+ rcos(2nt)cos(2m8), r sin(2nt), (R + rcos(2nt)sin(270)).

The image is an open torus of revolution with two circles removed. The
image is dense in the torus of revolution.

Consider the height function h(X,Y,Z) = Z from R3 to R. This function
is defined as a C™ function on all of R?, and, in particular on the closure of
the image of ®.

This gives a function v (t, d) from (0,1) x (0,1) to R defined by

Y(t,0) = (R + rcos(2nt))sin(276)

Replacing ¢ by x and 6 by y, and still using ¢/ to denote the function, we
have
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U(z,y) = (R + reos(2nzx))sin(2my). (8)

This formula can be extended to a doubly periodic (periodic in both x
and 1) function from R? to R which induces a function ¢ : T2 — R.

Let X denote the closure of the image of ®. This is a representation of a
torus of revolution in R?. The function h restricted to ¥ is (by definition) a
C° function on Y. Consider the level sets of h in X; i.e., the intersections of

{h(X,Y,Z) = c} and . These sets are one of the following types.

1. isolated points
2. disjoint union of two topological circles
3. a topological figure eight

4. topological circles

For p € X, let T}, denote the tangent plane to X at p.

One can define a vector field on ¥ by assigning to each point p € X the
vector in 7,3 obtained by projecting the vector (0,0,1) at p into 7,%. This
is defined to by the gradient vector field on ¥ induced by the function A | X.

Using the parametrization ® : (0,1) x (0,1) — X this vector field can be
pulled back to (0,1) x (0,1). This latter vector field can be extended to all
of R?, and this is the gradient vector field of the function 1 above.

Remark The function v is a real-valued function from R? to R with
infinitely many critical points. Its level sets in (0,1) x (0,1) are the pre-
images by ® of the level sets of A on the image of ®.



