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Differential Equations on the two dimensional
torus

We will now study some simple differential equations on a two-dimensional
torus. These will provide interesting minimal sets.

The 2—torus T? is the product S* x S* of two circles.

Writing St as

SlZ{Z€C|Z’:1}7
we get
S'x St ={(z21,%)€C*: |z |=|2|=1

There is an alternative viewpoint which is useful.

Consider the quotient group R/Z; i.e., the set of equivalence classes in R
under the equivalence relation z ~ y iff v —y € Z. There is a natural map
7 : R — Z assigning to each real number z its equivalence class [z].

Notice that the map ¢ : t — e* is a surjective map from R onto S*
such that each pre-image ¢ *(z) is an equivalence class in R/Z. Thus, the
map ¢ ([z]) = ¢(z) gives a well-defined bijection from R/Z to S.

We can use the map 1 to define a topology on R/Z, so we have notions
of continuity, etc.

Note that we can also think of the circle as a closed interval [a, b] with its
endpoints identified.

We can now apply these ideas to the product 7?2 = S* x S!. There is a
bijection from R/Z x R/Z onto T?. This defines a topology on T?. There is
another natural bijection between R/Z x R/Z and R?/Z?, and we can think
of this latter quotient set as T? as well. We will use all of these objects.

In particular, we think of T2 as either S' x S! or R?/Z2.

Now we wish to define differential equations on T?. We will use the
representation R?/Z?.

For this purpose, let f(z,y),g(z,y) be two real-valued functions of two
real variables such that they are periodic of period 1 in both variables. That
is,

flz+1Ly+1) = f(x,y), g(z+1Ly+1)=g(x,y), Vr,y.
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The planar vector field X (z,y) = (f(z,y),9(z,y)) is a map from R? —
R?. The periodicity conditions imply that it induces a well-defined map from
R?/Z? to R%. We call this a vector field on the torus T?. The associated

system of differential equations

y = g(x,y)

is called a differential equation on T?2.

The solutions (or orbits) are obtained by taking the orbits in R? and
projecting them down to T?2.

Let us take a simple example.

Consider the constant vector field in R?

X(z,y) = w10, + w20y,

where wq,ws are positive real numbers.
The associated system of differential equations is

T = w1
. 1
Yy = w2 (1)

The periodicity conditions are obviously satisfied, so we get a differential
equation on T?. This is called the constant or linear vector field on T?2.

Let’s us consider its orbits.
The solutions to (1) in R? are the lines

z(t) = wit +c1, y(t) = wat + co.

Each such line has slope % and passes through the point (cq, ¢z).
On the torus T? we simply take (z(t),y(t)) mod 1.
We have two main cases:

1. %—f is rational. Write it as % = g in lowest terms with p, q positive

integers.
Consider the orbit 7, in R? through (0,0) (i.e., ¢; = ¢ = 0).

The solution in R? has the form

=W = ZZ W1
o) — it y(t) (Q) t
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Let 7 : R? — T? denote the canonical projection.

When t = q/wy, we have x(t) = ¢, y(t) = p, so the projection 7(v,) =
into T? is a closed curve (topological circle) in T2

Since all the solutions are vertical tranlates of «, we have that all
solutions in T? are periodic of the same period.

2. %—f is irrational.

This case is more interesting. We will show that every orbit in T? is
dense in T?. Hence, all of T? is a minimal set.

Let us show that the orbit through (0, 0) is dense in T?. The analogous
statement for other orbits is similar.

Consider the circle ST = 7({x = 0}).

There is a first return map F : S* — S! (also called Poincaré map)
obtained by taking a point (0,y) and taking the point (1, F(y)) where
the orbit through (0,y) hits the line {z = 1}.

Let us compute F'.
The orbit through (0,y) is {(wit,wast +y), t € R}.
We get

wlt = 1
wot +y = F(y).

Hence,
t=1/w, F(y)=y+ws/wi

So, letting a = g—f we get that F(y) =y + a (mod 1).

To show that the orbits of X are dense, it suffices to show that the
iterates {F"(y),n > 0} are dense mod 1

This is the number theoretic statement: for « irrational, and

A={na+m:ne€Z meZ}

then
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A is dense in R. (2)

This elementary fact is proved as follows.

(a) A is clearly an additive subgroup of R.

(b) To show that A is dense, it suffices to show that 0 is an accumu-
lation point of A.

(c) For this latter fact, for each n € Z, let m, € Z be such that
x, = na+m, € [0,1). Since « is irrational, the numbers z,, are
all distinct. Since [0, 1] is compact, there is a subsequence z,,, of
(x,) which converges. In particular, if € > 0 is arbitrary, there are
points x,,, ,, such that

| Tp, — Tpy | < €.

But then this difference x,, — x,, is in AN(—¢,€). Since, € is
arbitrary, we have that 0 is an accumulation point of A as required.

Let us now give an application of these ideas.

Consider the mass spring system whose equation is
mz + kxr =0

where m is the mass of an object suspended vertically by a spring,
k > 0 is the spring constant, and x = 0 represents the equilibrium
position.

Let w = \/g . The associated first order planar system can be written

T = —wy
Yy = w<x

(3)

Let us write this system (3) in polar coordinates.
We have

x =rcos(d), y = rsin(0)
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T = 1*003((9)—7“52’71(«9)9:
y = rsin(f)+ rcos(6)0

So, we see that the simple polar coordinate system

is equivalent to (4).
The solutions off (0,0) are

r=c>0, 0(t) =wt+ 6.

Hence, the orbits in the plane off (0,0) consist of the circles r = ¢ and
the motion has constant rotational speed w with period %
Now, consider two uncoupled springs whose equations in R* become

T = —wWi
no= o wn (6)
T2 = —W2 Y2
Y2 = w2 T

Using polar coordinates (rq,01,79,6,) in R* in the obvious way, we get
the equivalent equations

fo= 0
91:w1
a0 (7
92:(,02

Hence all solutions in R? off the union of the two subspaces R*x{(0,0} {0, 0} x
R? lie on two dimensional tori 7, = ¢, 72 = ¢y, and the motion on each is a
constant vector field. If ws/w; is rational, then all these orbits are periodic,
and if wy/wy is irrational, then all these tori are minimal sets.



