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Differential Equations on the two dimensional

torus

We will now study some simple differential equations on a two-dimensional
torus. These will provide interesting minimal sets.

The 2−torus T2 is the product S1 × S1 of two circles.
Writing S1 as

S1 = {z ∈ C : | z | = 1},

we get

S1 × S1 = {(z1, z2) ∈ C2 : | z1 | = | z2 | = 1.

There is an alternative viewpoint which is useful.
Consider the quotient group R/Z; i.e., the set of equivalence classes in R

under the equivalence relation x ∼ y iff x − y ∈ Z. There is a natural map
π : R→ Z assigning to each real number x its equivalence class [x].

Notice that the map φ : t → e2πit is a surjective map from R onto S1

such that each pre-image φ−1(z) is an equivalence class in R/Z. Thus, the
map ψ([x]) = φ(x) gives a well-defined bijection from R/Z to S1.

We can use the map ψ to define a topology on R/Z, so we have notions
of continuity, etc.

Note that we can also think of the circle as a closed interval [a, b] with its
endpoints identified.

We can now apply these ideas to the product T 2 = S1 × S1. There is a
bijection from R/Z×R/Z onto T 2. This defines a topology on T 2. There is
another natural bijection between R/Z×R/Z and R2/Z2, and we can think
of this latter quotient set as T2 as well. We will use all of these objects.

In particular, we think of T 2 as either S1 × S1 or R2/Z2.
Now we wish to define differential equations on T2. We will use the

representation R2/Z2.
For this purpose, let f(x, y), g(x, y) be two real-valued functions of two

real variables such that they are periodic of period 1 in both variables. That
is,

f(x+ 1, y + 1) = f(x, y), g(x+ 1, y + 1) = g(x, y), ∀x, y.
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The planar vector field X(x, y) = (f(x, y), g(x, y)) is a map from R2 →
R2. The periodicity conditions imply that it induces a well-defined map from
R2/Z2 to R2. We call this a vector field on the torus T2. The associated
system of differential equations

ẋ = f(x, y)
ẏ = g(x, y)

is called a differential equation on T2.
The solutions (or orbits) are obtained by taking the orbits in R2 and

projecting them down to T2.
Let us take a simple example.
Consider the constant vector field in R2

X(x, y) = ω1∂x + ω2∂y,

where ω1, ω2 are positive real numbers.
The associated system of differential equations is

ẋ = ω1

ẏ = ω2
(1)

The periodicity conditions are obviously satisfied, so we get a differential
equation on T2. This is called the constant or linear vector field on T2.

Let’s us consider its orbits.
The solutions to (1) in R2 are the lines

x(t) = ω1t+ c1, y(t) = ω2t+ c2.

Each such line has slope ω2

ω1
and passes through the point (c1, c2).

On the torus T2 we simply take (x(t), y(t)) mod 1.
We have two main cases:

1. ω2

ω1
is rational. Write it as ω2

ω1
= p

q
in lowest terms with p, q positive

integers.

Consider the orbit γ0 in R2 through (0, 0) (i.e., c1 = c2 = 0).

The solution in R2 has the form

x(t) = ω1t, y(t) =

(
p

q

)
ω1t
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Let π : R2 → T2 denote the canonical projection.

When t = q/ω1, we have x(t) = q, y(t) = p, so the projection π(γ0) = γ
into T2 is a closed curve (topological circle) in T2.

Since all the solutions are vertical tranlates of γ0 we have that all
solutions in T2 are periodic of the same period.

2. ω2

ω1
is irrational.

This case is more interesting. We will show that every orbit in T2 is
dense in T2. Hence, all of T2 is a minimal set.

Let us show that the orbit through (0, 0) is dense in T2. The analogous
statement for other orbits is similar.

Consider the circle S1 = π({x = 0}).
There is a first return map F : S1 → S1 (also called Poincaré map)
obtained by taking a point (0, y) and taking the point (1, F (y)) where
the orbit through (0, y) hits the line {x = 1}.
Let us compute F .

The orbit through (0, y) is {(ω1t, ω2t+ y), t ∈ R}.
We get

ω1t = 1
ω2t+ y = F (y).

Hence,

t = 1/ω1, F (y) = y + ω2/ω1

So, letting α = ω2

ω1
we get that F (y) = y + α (mod 1).

To show that the orbits of X are dense, it suffices to show that the
iterates {F n(y), n ≥ 0} are dense mod 1

This is the number theoretic statement: for α irrational, and

A = {nα +m : n ∈ Z,m ∈ Z},

then
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A is dense in R. (2)

This elementary fact is proved as follows.

(a) A is clearly an additive subgroup of R.

(b) To show that A is dense, it suffices to show that 0 is an accumu-
lation point of A.

(c) For this latter fact, for each n ∈ Z, let mn ∈ Z be such that
xn = nα + mn ∈ [0, 1). Since α is irrational, the numbers xn are
all distinct. Since [0, 1] is compact, there is a subsequence xni

of
(xn) which converges. In particular, if ε > 0 is arbitrary, there are
points xn1 , xn2 such that

| xn1 − xn2 | < ε.

But then this difference xn1 − xn2 is in A
⋂

(−ε, ε). Since, ε is
arbitrary, we have that 0 is an accumulation point of A as required.

Let us now give an application of these ideas.

Consider the mass spring system whose equation is

mẍ+ kx = 0

where m is the mass of an object suspended vertically by a spring,
k > 0 is the spring constant, and x = 0 represents the equilibrium
position.

Let ω =
√

k
m

. The associated first order planar system can be written

ẋ = −ω y
ẏ = ω x

(3)

Let us write this system (3) in polar coordinates.

We have

x = rcos(θ), y = rsin(θ)
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ẋ = ṙcos(θ)− rsin(θ)θ̇

ẏ = ṙsin(θ) + rcos(θ)θ̇
(4)

So, we see that the simple polar coordinate system

ṙ = 0

θ̇ = ω
(5)

is equivalent to (4).
The solutions off (0, 0) are

r = c > 0, θ(t) = ω t+ θ0.

Hence, the orbits in the plane off (0, 0) consist of the circles r = c and
the motion has constant rotational speed ω with period 2π

ω .
Now, consider two uncoupled springs whose equations in R4 become

ẋ1 = −ω1 y1
ẏ1 = ω x1
ẋ2 = −ω2 y2
ẏ2 = ω2 x2

(6)

Using polar coordinates (r1, θ1, r2, θ2) in R4 in the obvious way, we get
the equivalent equations

ṙ1 = 0

θ̇1 = ω1

ṙ2 = 0

θ̇2 = ω2

(7)

Hence all solutions in R4 off the union of the two subspaces R2×{(0, 0}⋃{0, 0}×
R2 lie on two dimensional tori r1 = c1, r2 = c2, and the motion on each is a
constant vector field. If ω2/ω1 is rational, then all these orbits are periodic,
and if ω2/ω1 is irrational, then all these tori are minimal sets.


