8-1

Limit Sets

Consider an autonomous system of the form & = f(x) for which solutions
are defined for all time in an open set D. For x € D, the w—limit set of z,
denoted w(x) is the set of points y such that there is a sequence t; < ty < ...
with ¢; — 400 as i — 00, and ¢(t;, z) — y. Similarly, the a—limit set of x is
the set of points y for which there is a sequence t; >ty > ... with t; — —o0
as 1 — oo and ¢(t;) — y as i — oo.

The w—limit set of z is denoted w(x) and the a—limit set of x is denoted
a(x). It is easy to show that these are closed subsets of D. They may be
empty. One can define w(z) in the case that ¢(t,z) exists for all ¢ > ¢, for
some tg. A similar statement holds for a(x), if ¢(t) exists for ¢ < .

A point z for which f(xg) = 0 is called an equilibrium or stationary point
or critical point of & = f(x).

We also say that a function f : D — R" is a vector field in D. Thus,
being given a vector field in D is the same as being given an autonomous
differential equation in D.

An invariant set for the differential equation & = f(x) or for the vector
field f in D is a subset € of D such that if x € 2 and ¢(¢, z) is a solution to
& = f(x) with ¢(0) = z, then ¢(t,z) € Q for all ¢.

Facts:

1. Suppose the f is a C! vector field in D € R™ and € D has the
property that the orbit ¢(¢,z) of  remains in a compact subset F' of
D for t > 0. Then, w(z) is a compact invariant connected subset of F.

2. Any orbit is an invariant set.

Vector Fields as Differential operators

Recall that an autonomous differential equation & = f(x) is given by simply
giving a function f : D — R"” from a domain D in R". Suppose that f is
C* for k > 1. Let C*[D, R] be the space of C* real-valued functions defined
on D. We can use f to define an operator £ from C**'[D,R] to C*[D, R]
in the following way.

For x € D, let ¢(t,z) be the solution to & = f(x),¢(0,2) = z. For,
¢ € C*D,RY, let (LpY)(z) = £4(¢(t,2)) |i=o. This defines a mapping
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from C**1[D,R] to C*[D, R] which satisfies the following two properties.

1. (linearity). £ is alinear mapping; i.e., Ls(ap+0n) = aLls(¢) = BL(N)
for any two functions 1, n and scalars «, 3.

2. (derivation). For ¢,n € C*1[D R),
Lp(-m) = LpW)-n+PLs(n).

The operator Ly is called the Lie derivative operator. It maps Slan
functions to C* functions.

Let 7; : x — x; be the projection of a vector onto its :—th coordinate as
a function on R".

Facts.

1. The value of the function £¢(1) can be computed from knowledge of
the vector field and the partial derivative functions of ¢/ by the formula

L)) = Y- g @) (0 ) 0

=1

2. It follows from this formula that the component functions of the vector

field f are equal to the functions L;(m;). Indeed, if f(x) = (fi(z), fa(x), . ..

(my10 f(z),...,m 0 f(x)), then
Ly(m;) = fi.

Thus, the operator L and the vector field f completely determine each
other, and we can think of vector fields as differential operators on real-
valued functions or as assignments of vectors at each point in a domain

D.

3. The function 9 is constant along solution curves of & = f(x) if and
only if £;(1)) is the zero function in D.

Let e; be the unit vector in R™ whose i—th coordinate is 1 and whose
other coordinates are 0. It is common to write 8 for the operator £y where
f(x) = e; is the constant vector field whose Value at each 7 is e;.
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We will often identify an autonomous differential equation & = f(z) with
the vector field f and with the operator Ly.
In this sense, we can write
F) =3 Fila) o
aﬂfi

i=1

This means that given a function f : D — R", with f(x) = (fi(x),..., fu(x)),
we get any one of three objects: the system of differential equations

xZ:fZ(ac), izl,...,n

the vector field
r— f(x),z €D

the operator

Y — Lr(¥)

Structure of autonomous differential equations
near a non-critical point

Definition. Suppose f is a vector field in the domain D C R™. Let p: D —
D' be a smooth change of coordinates from D to the domain D’. Then, p
maps the vector field f to the new vector field p, f defined by

p(f)(y) = Dp,—r,(f(p~'y))

Thus, we can write p, = Dpo f o p~! as vector valued funtions.

Theorem(Flow-box theorem, path-cylinder theorem). Let k > 1. Sup-
pose f is a C* wvector field in a domain D and xq is a point in D such that
f(x) # 0. Then, there is a C* change of coordinates p from a neighborhood
U of 0 in R™ to a neighborhood V' of xy such that p carries solutions of the
constant vector field % onto those of & = f(x).

Proof. Since f(xy) # 0, we may consider f(zq) as a vector attached to
the origin 0 in R"™ and pick non-zero unit vectors vy, vs,...v, so that the
vectors f(xg), vz, Vs, . . ., vy are linearly independent. Let H be the subspace
of R™ spanned by the vectors v;,i > 2. The affine subspace H = xq + H
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is then transverse to the vector field f(xo) at zp. By the local continuity
of solutions to & = f(x) on initial conditions and the continuity of f, there
are a neighborhood Vj of xy in H and an interval I about 0 in R such
that if = € Vj, then ¢(t,x) is defined on all of I and meets H only for
t = 0. For (y2,...,yn) = y near 0 in R"™!, we have an associated point
n(y) = xo + X y;v; € H. Write (y1,y) for the point (y1,y2,...,yn) in R?
with y € R"1.
We define a mapping p(y;,y) by

p(y1,y) = o(y1,n(y))-

We claim that this transformation p is the required change of coordinates.
First, note that p is a C* mapping of the variables (y1,y).
To prove that p is a change of coordinates, it suffices to show that its
jacobian determinant at 0 is not zero and use the implicit function theogem.
p

Now, at (y1,y) = 0, the first column of the jacobian matrix of p, B is

just f(zo), while the j—th column is just 88—;]_ is v; (exercise). By the choice of
the v}s, these vectors are linearly independent. Thus, the required jacobian
determinant is not zero.

Finally, we have to show that the mapping p carries solutions to % to
those of f.

A solution to the constant vector field 8%1 is simply a function (¢, (y1,y)) —
(t + y1,y). Transforming this by p gives the function (¢, (y1,y)) — p(t +
y1,Y) = o(t+y1,1(y)). But, as we saw in the proof of the local flow property
of autonomous systems, if ¢(t, z) is a solution, then so is ¢(t + s, z). Thus,
the function t — ¢(t + y1,m(y)) is a solution to the equation & = f(z).

Suppose the f is a C* vector field defined in an open set D C R".

Definition. An invariant set K is called a minimal set if it is compact,
non-empty, and does not properly contain another compact, non-empty, in-
variant set.

Proposition. Any compact invariant set contains a minimal set.

Proof. Let K be a compact invariant set. The set C of non-empty
compact invariant subsets of K is partially ordered by inclusion A < B if
and only if A O B. Each totally ordered subset has an upper bound, so by
Zorn’s lemma, C contains a maximal element, say . Then, ¥ is a minimal
set. QED.

Example and Remark.
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1. A critical point or periodic orbit is a minimal set.

2. Tt is remarkable fact that in the plane for a C'!' autonomous vector field,
there are no other minimal sets.

3. In R"™,n > 2, there are many examples of non-trivial minimal sets. We
will see this later.

Proposition. Suppose f is a C! vector field in an open set D C R"™ and
there is a closed non-empty ball B C D such that f is non-zero and nowhere
tangent on the boundary of B. Then, f possesses a critical point in B.

Proof. Let ¢(t,x) be the local flow of f. Since, f is non-zero and not
tangent to the boundary of B, orbits at the boundary either flow into or
outof B. We suppose they flow into B. In the other case, replace f by —f.

For z € B, the solution ¢(¢,z) is defined and remains in B for all ¢t > 0.
Let m > 0 be a positive integer, and consider the mapping © — ¢1 (x). This
is a continuous self-map of the closed ball B to itself. By the Brouwer fixed
point theorem, it has a fixed point, say z,,. Since B is compact, the sequence
T, has a subsequence z,,, which converges, say to the point y as k — oo.

Let us show that f(y) = 0. If not, then by the flow box theorem, there
are a neighborhood U of y in D and an interval I¢ = [—¢, €] about 0 in R
such that,

(*) for z € U, the solution ¢(t, z) is defined for all ¢ € [—¢, €]
(**) @(t1,2) # ¢(ta, 2) for ty # ts € Ie

But, if k is large enough, then z,,, € U, and mik < €. But then,
¢1 (T, ) F T, by (**) which contradicts the definition of z,,,. QED.



