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Limit Sets

Consider an autonomous system of the form ẋ = f(x) for which solutions
are defined for all time in an open set D. For x ∈ D, the ω−limit set of x,
denoted ω(x) is the set of points y such that there is a sequence t1 < t2 < . . .
with ti → +∞ as i→∞, and φ(ti, x) → y. Similarly, the α−limit set of x is
the set of points y for which there is a sequence t1 > t2 > . . . with ti → −∞
as i→∞ and φ(ti) → y as i→∞.

The ω−limit set of x is denoted ω(x) and the α−limit set of x is denoted
α(x). It is easy to show that these are closed subsets of D. They may be
empty. One can define ω(x) in the case that φ(t, x) exists for all t > t0 for
some t0. A similar statement holds for α(x), if φ(t) exists for t < t0.

A point x0 for which f(x0) = 0 is called an equilibrium or stationary point
or critical point of ẋ = f(x).

We also say that a function f : D → Rn is a vector field in D. Thus,
being given a vector field in D is the same as being given an autonomous
differential equation in D.

An invariant set for the differential equation ẋ = f(x) or for the vector
field f in D is a subset Ω of D such that if x ∈ Ω and φ(t, x) is a solution to
ẋ = f(x) with φ(0) = x, then φ(t, x) ∈ Ω for all t.

Facts:

1. Suppose the f is a C1 vector field in D ⊂ Rn and x ∈ D has the
property that the orbit φ(t, x) of x remains in a compact subset F of
D for t ≥ 0. Then, ω(x) is a compact invariant connected subset of F .

2. Any orbit is an invariant set.

Vector Fields as Differential operators

Recall that an autonomous differential equation ẋ = f(x) is given by simply
giving a function f : D → Rn from a domain D in Rn. Suppose that f is
Ck for k ≥ 1. Let Ck[D,R] be the space of Ck real-valued functions defined
on D. We can use f to define an operator Lf from Ck+1[D,R] to Ck[D,R]
in the following way.

For x ∈ D, let φ(t, x) be the solution to ẋ = f(x), φ(0, x) = x. For,
ψ ∈ Ck+1[D,R], let (Lfψ)(x) = d

dt
ψ(φ(t, x)) |t=0. This defines a mapping
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from Ck+1[D,R] to Ck[D,R] which satisfies the following two properties.

1. (linearity). L is a linear mapping; i.e., Lf (αψ+βη) = αLf (ψ) = βLf (η)
for any two functions ψ, η and scalars α, β.

2. (derivation). For ψ, η ∈ Ck+1[D,R],

Lf (ψ · η) = Lf (ψ) · η + ψLf (η).

The operator Lf is called the Lie derivative operator. It maps Ck+1

functions to Ck functions.
Let πi : x→ xi be the projection of a vector onto its i−th coordinate as

a function on Rn.
Facts.

1. The value of the function Lf (ψ) can be computed from knowledge of
the vector field and the partial derivative functions of ψ by the formula

Lf (ψ)(x) =
n∑

i=1

∂ψ

∂xi

(x)(πi ◦ f)(x). (1)

2. It follows from this formula that the component functions of the vector
field f are equal to the functions Lf (πi). Indeed, if f(x) = (f1(x), f2(x), . . . , fn(x)) =
(π1 ◦ f(x), . . . , πn ◦ f(x)), then

Lf (πi) = fi.

Thus, the operator Lf and the vector field f completely determine each
other, and we can think of vector fields as differential operators on real-
valued functions or as assignments of vectors at each point in a domain
D.

3. The function ψ is constant along solution curves of ẋ = f(x) if and
only if Lf (ψ) is the zero function in D.

Let ei be the unit vector in Rn whose i−th coordinate is 1 and whose
other coordinates are 0. It is common to write ∂

∂xi
for the operator Lf where

f(x) = ei is the constant vector field whose value at each x is ei.
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We will often identify an autonomous differential equation ẋ = f(x) with
the vector field f and with the operator Lf .

In this sense, we can write

f(x) =
n∑

i=1

fi(x)
∂

∂xi

.

This means that given a function f : D → Rn, with f(x) = (f1(x), . . . , fn(x)),
we get any one of three objects: the system of differential equations

ẋi = fi(x), i = 1, . . . , n

the vector field
x→ f(x), x ∈ D

the operator
ψ → Lf (ψ)

Structure of autonomous differential equations

near a non-critical point

Definition. Suppose f is a vector field in the domain D ⊂ Rn. Let ρ : D →
D′ be a smooth change of coordinates from D to the domain D′. Then, ρ
maps the vector field f to the new vector field ρ?f defined by

ρ?(f)(y) = Dρρ−1y(f(ρ−1y))

Thus, we can write ρ? = Dρ ◦ f ◦ ρ−1 as vector valued funtions.
Theorem(Flow-box theorem, path-cylinder theorem). Let k ≥ 1. Sup-

pose f is a Ck vector field in a domain D and x0 is a point in D such that
f(x0) 6= 0. Then, there is a Ck change of coordinates ρ from a neighborhood
U of 0 in Rn to a neighborhood V of x0 such that ρ carries solutions of the
constant vector field ∂

∂x1
onto those of ẋ = f(x).

Proof. Since f(x0) 6= 0, we may consider f(x0) as a vector attached to
the origin 0 in Rn and pick non-zero unit vectors v2, v3, . . . vn so that the
vectors f(x0), v2, v3, . . . , vn are linearly independent. Let H̃ be the subspace
of Rn spanned by the vectors vi, i ≥ 2. The affine subspace H = x0 + H̃
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is then transverse to the vector field f(x0) at x0. By the local continuity
of solutions to ẋ = f(x) on initial conditions and the continuity of f , there
are a neighborhood V1 of x0 in H and an interval I about 0 in R such
that if x ∈ V1, then φ(t, x) is defined on all of I and meets H only for
t = 0. For (y2, . . . , yn) = y near 0 in Rn−1, we have an associated point
η(y) = x0 +

∑
j yjvj ∈ H. Write (y1, y) for the point (y1, y2, . . . , yn) in Rn

with y ∈ Rn−1.
We define a mapping ρ(y1, y) by

ρ(y1, y) = φ(y1, η(y)).

We claim that this transformation ρ is the required change of coordinates.
First, note that ρ is a Ck mapping of the variables (y1, y).
To prove that ρ is a change of coordinates, it suffices to show that its

jacobian determinant at 0 is not zero and use the implicit function theorem.
Now, at (y1, y) = 0, the first column of the jacobian matrix of ρ, ∂ρ

∂y1
is

just f(x0), while the j−th column is just ∂ρ
∂yj

is vj (exercise). By the choice of

the v′js, these vectors are linearly independent. Thus, the required jacobian
determinant is not zero.

Finally, we have to show that the mapping ρ carries solutions to ∂
∂x1

to
those of f .

A solution to the constant vector field ∂
∂x1

is simply a function (t, (y1, y)) →
(t + y1, y). Transforming this by ρ gives the function (t, (y1, y)) → ρ(t +
y1, y) = φ(t+y1, η(y)). But, as we saw in the proof of the local flow property
of autonomous systems, if φ(t, z) is a solution, then so is φ(t + s, z). Thus,
the function t→ φ(t+ y1, η(y)) is a solution to the equation ẋ = f(x).

Suppose the f is a C1 vector field defined in an open set D ⊂ Rn.
Definition. An invariant set K is called a minimal set if it is compact,

non-empty, and does not properly contain another compact, non-empty, in-
variant set.

Proposition. Any compact invariant set contains a minimal set.
Proof. Let K be a compact invariant set. The set C of non-empty

compact invariant subsets of K is partially ordered by inclusion A ≺ B if
and only if A ⊇ B. Each totally ordered subset has an upper bound, so by
Zorn’s lemma, C contains a maximal element, say Σ. Then, Σ is a minimal
set. QED.

Example and Remark.
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1. A critical point or periodic orbit is a minimal set.

2. It is remarkable fact that in the plane for a C1 autonomous vector field,
there are no other minimal sets.

3. In Rn, n > 2, there are many examples of non-trivial minimal sets. We
will see this later.

Proposition. Suppose f is a C1 vector field in an open set D ⊂ Rn and
there is a closed non-empty ball B ⊂ D such that f is non-zero and nowhere
tangent on the boundary of B. Then, f possesses a critical point in B.

Proof. Let φ(t, x) be the local flow of f . Since, f is non-zero and not
tangent to the boundary of B, orbits at the boundary either flow into or
outof B. We suppose they flow into B. In the other case, replace f by −f .

For x ∈ B, the solution φ(t, x) is defined and remains in B for all t > 0.
Let m > 0 be a positive integer, and consider the mapping x→ φ 1

m
(x). This

is a continuous self-map of the closed ball B to itself. By the Brouwer fixed
point theorem, it has a fixed point, say xm. Since B is compact, the sequence
xm has a subsequence xmk

which converges, say to the point y as k →∞.
Let us show that f(y) = 0. If not, then by the flow box theorem, there

are a neighborhood U of y in D and an interval Iε = [−ε, ε] about 0 in R
such that,

(*) for z ∈ U , the solution φ(t, z) is defined for all t ∈ [−ε, ε]

(**) φ(t1, z) 6= φ(t2, z) for t1 6= t2 ∈ Iε

But, if k is large enough, then xmk
∈ U , and 1

mk
< ε. But then,

φ 1
m

(xmk
) 6= xmk

by (**) which contradicts the definition of xmk
. QED.


