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We have proved that solutions to differential equations depend continu-
ously on parameters.

Now we wish to investigate the smooth dependence of solutions in systems
which depend smoothly on parameters.

Theorem. Suppose that f(t, x, λ) is a C1 function of the variables (t, x, λ)
in an open set D ∈ R ×Rn ×Rk. For, (t0, x0, λ0) ∈ D, let φ(t, t0, x0, λ) be
the solution of the initial value problem

ẋ = f(t, x, λ), x(t0) = x0 (1)

.
Then, the solution φ(t, u, x, λ) to the initial value problem

ẋ = f(t, x, λ), x(u) = x (2)

is a C1 function of the variables (t, u, x, λ) for (u, x, λ) near (t0, x0, λ0).
Moreover, the x−partial derivative of the solution

∂φ

∂x
=
∂φ

∂x
(t, u, x, λ) ≡ J(t)

with respect to the space variable x satisfies the matrix (operator) initial
value problem

J̇ =
∂f

∂x
(t, φ(t, u, x, λ), λ) · J, J(u) = id (3)

Remark. The differential equation in (3) (without the λ parameter) is
usually called the variational equation of (1).

We will leave the proof of this last theorem and some of its generalizations
to the exercises.

Differential Inequalities

Let Dr denote the right hand derivative of a function; i.e.,

Drf(x) = lim
h→0+

f(x+ h)− f(x)

h

If ω(t, u) is a scalar function for the scalar variables t, u in some open con-
nected set Ω, we say a function v(t) is a solution of the differential inequality
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Drv(t) ≤ ω(t, v(t)) (4)

on [a, b) if v(t) is continuous on [a, b), right differentiable on [a, b) and
satisfies (4) on [a, b).

Lemma. If x(·) is a continuously differentiable map from a closed inter-
val [a, b] in R, then Dr| x(t) | exists on [a, b) and | Dr(| x(t) |) | ≤ | ẋ(t) | for
all t ∈ [a, b).

Proof.
For any two n− vectors, x, u, and 0 < τ ≤ 1, 0 < h, we have

| x+ τhu | − | τx+ τhu | ≤ (1− τ)| x |

or
| x+ τhu | − | x | ≤ τ(| x+ hu | − | x |)

or

| x+ τhu | − | x |
τh

≤ | x+ hu | − | x |
h

This implies that the difference quotient

φ(h) =
| x+ hu | − | x |

h

is a non-decreasing function of h.
Also,

φ(h) =
| x+ hu | − | x |

h

=
| x− (−hu) | − | x |

h

≥ | x | − | −hu | − | x |
h

≥ −| u |,

so, φ(h) is bounded below.
Thus,

lim
h→0+

φ(h)
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exists.
Now, suppose x(t) is C1.
then,

∣∣∣ (| x(t+ h) | − | x(t) |) − (| x(t) + hẋ(t) | − | x(t) |)
∣∣∣

=
∣∣∣ | x(t+ h) | − | x(t) + hẋ(t) |

∣∣∣
≤ | x(t+ h)− x(t)− hẋ(t) |= o(h)

as h→ 0+.
Thus, Dr(| x(t) |) exists and equals

lim
h→0+

| x(t) + hẋ(t) | − | x(t) |
h

Taking the norm of both sides gives | Dr(| x(t) |) | ≤ | ẋ(t) | which proves
the Lemma. QED.

Theorem. Let ω(t, u) be continuous and locally Lipschitz on an open
connected set Λ ⊂ R2. Suppose u(t) is a solution to u̇ = ω(t, u) on the
interval [a, b] and v(t) is a solution of the differential inequality (4) on [a, b)
with v(a) ≤ u(a). Then, v(t) ≤ u(t) for t ∈ [a, b).

Proof.
Consider the sequence of equations

u̇ = ω(t, u) +
1

n
(5)

for n = 1, 2, . . ..
Let un(t) denote the solution to the equation u̇ = ω(t, u)+ 1

n
with un(a) =

u(a). By the global continuity theorem, there is an n0 > 0 such that for
n ≥ n0, the solution un(t) is defined on all of [a, b] and converges uniformly
to u(t) as n→∞.

We show that
(*) v(t) ≤ un(t) for all t ∈ [a, b] and n ≥ n0

Once this is done, since un converges uniformly to u on [a, b], it follows
that v(t) ≤ u(t) for all t.

If (*) fails for some n ≥ n0, then then there exist t2 < t1 in (a, b) such
that v(t) > un(t) on (t2, t1] and v(t2) = un(t2). Therefore, v(t) − v(t2) >
un(t)− un(t2) on (t2, t1].
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This implies that

Drv(t2) ≥ u̇n(t2) = ω(t2, un(t2)) +
1

n

= ω(t2, v(t2)) +
1

n
> ω(t2, v(t2))

which contradicts the assumption that v is a solution to (4). QED
Corollary. Suppose w(t, u) is continuous and locally Lipschitz in u in

an open set D ⊂ R2. Let u(t) be a solution of u̇ = ω(t, u) defined on the
closed interval [a, b] and assume that (t, u(t)) ∈ D for all t ∈ [a, b]. If x(t)
is a C1 n−vector valued function on [a, b] such that | x(a) | ≤ u(a), and, for
t ∈ [a, b] we have (t, | x(t) |) ∈ D and

| ẋ(t) | ≤ ω(t, | x(t) |),

then | x(t) | ≤ u(t) for all t ∈ [a, b].
Proof.
By a previous Lemma, we have Dr(| x(t) |) exists and is no larger than

| ẋ(t) |. Thus, | x(t) | satisfies the differential inequality Dr(v(t)) ≤ ω(t, v(t))
on [a, b]. By the previous theorem, we have | x(t) | ≤ u(t) for all t. QED.

Proposition. Suppose ω(t, u) is continuous and locally Lipschitz in u in
a domain D ⊂ R2, and let u(t) be a non-negative solution of u̇ = ω(t, u) on
an interval [a, b) such that {(t, y) : t ∈ [a, b), 0 ≤ y ≤ u(t)} is in D. Let
f(t, x) be continuous and locally Lipschitz in x in all of Rn+1 and suppose
that

| f(t, x) | ≤ ω(t, | x |)

for t ∈ [a, b) and (t, | x |) ∈ D.
Then, the solutions of

ẋ = f(t, x), | x(a) | ≤ u(a)

exist on all of [a, b) and | x(t) | ≤ u(t) for t ∈ [a, b).
Proof.
Since Rn+1 has no boundary, the only way a solution to ẋ = f(t, x) with

| x(a) | ≤ u(a) can fail to exist on [a, b) is that there is some c ∈ (a, b) such
that x(t) is defined for a ≤ t < c and
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lim sup
t→c−

| f(t, x(t)) | =∞. (6)

Now, u(t) exists for all t ∈ [a, c] and

E
def
= {(t, y) : t ∈ [a, c], 0 ≤ y ≤ u(t)}

is a compact subset of D. So, ω(t, y) is bounded on E. Thus, there is a
constant K > 0 so that ω(t, y) ≤ K for all (t, y) ∈ E.

Let c1 ∈ (a, c) be such that

| f(c1, x(c1)) | > K. (7)

Now,

Dr(| x(t) |) ≤ | ẋ(t) | = | f(t, x(t)) | ≤ ω(t, | x(t) |), | x(a) | ≤ u(a),

and both u(t) and x(t) exist for all t ∈ [a, c1].
So, by the Corollary above, we have that | x(t) | ≤ u(t) for all t ∈ [a, c1].
Thus,

F
def
= {(t, | x(t) |) : t ∈ [a, c1]} ⊆ E

and, in particular, | f(c1, x(c1)) | ≤ ω(c1, | x(c1) |) ≤ K which contradicts
(??).

This proves the theorem. QED.
Now we give a result on the existence of long time solutions to ODE’s.
Lemma. Consider the scalar differential equation u̇ = φ(t)ψ(u) where φ

is defined and continuous on the half infinite interval [α,∞) and ψ is defined,
non-negative, and locally Lipschitz on the half infinite interval [0,∞). If∫ ∞

0

du

ψ(u)
=∞,

then, for any t0 > α, u0 > 0, the IVP u̇ = φ(t)ψ(u), u(t0) = u0 has a
unique solution u(t) defined on the whole interval [t0,∞).

Proof. Suppose the (right) maximal solution u(t) of the IVP only exists
on the interval [t0, c). If u(t) remained bounded as t→ c−, then, continuity of
ψ on closed bounded intervals would imply that φ(t)ψ(u(t)) remains bounded
on [t0, c). Consequently, u(t) would have a limit as t→ c− and then, we could
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get a non-tivial continuation of u(t) to an interval [t0, c+ ε) for some positive
ε. This would contradict the maximality, so there must exist a sequence
tn ∈ [t0, c) with tn → c− and u(tn)→∞.

Now, since du
dt

(t) = φ(t)ψ(u(t)), we have

∫ u(t)

u0

dv

ψ(v)
=
∫ t

t0
φ(s)ds.

Putting tn into this formula gives∫ u(tn)

u0

dv

ψ(v)
=
∫ tn

t0
φ(s)ds.

By assumption on ψ, the left hand side becomes infinite as n → ∞, but
the right hand side remains bounded by

∫ c
t0
| φ(s) |ds. This is a contradiction,

so the solution u(t) exists on all of [t0,∞). QED
Theorem. If φ, ψ are as in the lemma, and f(t, x) is a continuous, lo-

cally Lipschitz Rn-valued function on Rn+1 such that | f(t, x) | ≤ φ(t)ψ(| x |)
for all t ≥ t0 and all x, then any solution x(t) to the IVP ẋ = f(t, x), x(t0) =
x0 with | x0 | ≤ u0 can be extended to the whole interval [t0,∞).

Proof. This follows immediately from the preceding results. QED.
Corollary. Suppose that A(t) is an n×n matrix-valued function of t and

h(t) is an n−vector valued function of t and that both A(t), h(t) are defined
and continuous on the whole line R. Let x0 ∈ Rn and t0 ∈ R. Then, the
linear differential equation

ẋ = A(t)x+ h(t)

has a unique solution x(t) with x(t0) = x0 which exists for all t.
Proof. It suffices to bound
| A(t)x+ h(t) | by a function of the form φ(t)ψ(| u |) with φ continuous

on R, ψ(u), C1 on R, and
∫∞ dv

ψ(v)
=∞.

We can use φ(t) = max(| A(t) |, | h(t) |) and ψ(u) = u+ 1. QED


