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Dependence of Solutions to Differential Equa-

tions on Parameters

We now want to investigate the dependence of solutions to differential equa-
tions on parameters.

Lemma.(Gronwall Inequality). Suppose f(t), a ≤ t ≤ b is a continuous
non-negative real-valued function on the closed real interval [a, b] such that
there are positive constants K1, K2 such that, for all t ∈ [a, b],

f(t) ≤ K1 + K2

∫ t

a
f(s)ds.

Then, for all t ∈ [a, b],

f(t) ≤ K1exp(K2(t− a)) ≤ K1exp(K2(b− a))

Proof.
Let U(t) = K1 +K2

∫ t
a f(s)ds. Then, U is a strictly positive continuously

differentiable function on [a, b] with

U ′(t) = K2f(t) ≤ K2U(t)

for all t. Thus, U′(t)
U(t)

≤ K2. Integrating this last inequality over the

interval [a, t] gives

logU(t)− logU(a) ≤ K2(t− a)

or

logU(t) ≤ logU(a) + K2(t− a)

and

f(t) ≤ U(t) ≤ U(a)exp(K2(t− a)) = K1exp(K2(t− a))

QED.
Theorem 1 (Local continuity of solutions on parameters). Sup-

pose f(t, x, λ) is a continuous function defined in an open set D ⊆ R×Rn×
Rk. Suppose that there are constants M > 0, K > 0 such that
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1. for (t, x, λ) ∈ D, | f(t, x, λ) | ≤ M

2. for (t, x, λ), (t, y, λ) ∈ D, | f(t, x, λ)− f(t, y, λ) | ≤ K| x− y |.

Let (t0, x0, λ0) ∈ D. Then, there are a positive number α > 0 and a
neighborhood V of (t0, x0, λ0) such that for each (u, y, λ) ∈ V , the IVP ẋ =
f(t, x, λ), x(u) = y has a unique solution φ(t, u, y, λ) defined on the interval
[u − α, u + α] and the function φ(t, u, y, λ) is a continuous function of the
variables (t, u, y, λ) in [t0 − α, t0 + α]× V .

Remark. This result says that for all (u, y, λ) near (t0, x0, λ0) the solution
to the IVP ẋ = f(t, x, λ), x(u) = y is defined on the same sized interval (of
length 2α) about the initial time u and the solution depends continuously on
the initial time, value, and parameter.

Proof.
Let Iα0 = [t0 − α0, t0 + α0].
First take a closed product neighborhood V̄ = Iα0 × Bβ × Cγ ⊂ R ×

Rn ×Rk where α0 > 0, β > 0, γ > 0 so that

V̄ ⊆ D

Then, in V̄ , we have | f(t, x, λ) | ≤ M and | f(t, x, λ)− f(t, y, λ) | ≤
K| x− y |.

Let α ∈ (0, α0/2) be such that

αM ≤ β

4
(1)

and

αK < 1. (2)

Let V = [t0 − α, t0 + α]×Bβ
2

× Cγ .

Claim 1:
For (u, y, λ) ∈ V , the IVP, ẋ = f(t, x, λ), x(u) = y has a unique solution

φ(t, u, y, λ) defined on the interval [u−α, u+α] and the vector φ(t, u, y, λ) ∈
Bβ .

This is proved exactly as the proof of the E-U Theorem and will be left
as an exercise.
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Claim 2: The solution φ(t, u, y, λ) is a continuous function on [t0−α, t0 +
α]× V .

To prove this, we write, for t ≥ u,

| φ(t, u, y, λ)− φ(t̄, ū, ȳ, λ̄) |

≤ | φ(t, u, y, λ)− φ(t, ū, ȳ, λ̄) |+ | φ(t, ū, ȳ, λ̄)− φ(t̄, ū, ȳ, λ̄) |
≤ | φ(t, u, y, λ)− φ(t, ū, ȳ, λ̄) |+ M | t− t̄ |.

Also, we have

| φ(t, u, y, λ)− φ(t, ū, ȳ, λ̄) |

≤ | y +
∫ t

u
f(s, φ(s, u, y, λ), λ)ds

−ȳ −
∫ t

ū
f(s, φ(s, ū, ȳ, λ̄), λ̄)ds |

≤ | y − ȳ |+
∫ t

u
| f(s, φ(s, u, y, λ), λ)− f(s, φ(s, ū, ȳ, λ̄), λ̄) |ds

+|
∫ t
u f(s, φ(s, ū, ȳ, λ̄), λ̄)ds−

∫ t
ū f(s, φ(s, ū, ȳ, λ̄), λ̄)ds |

≤ | y − ȳ |+ M | u− ū |

+
∫ t

u
| f(s, φ(s, u, y, λ), λ)− f(s, φ(s, u, y, λ), λ̄) |ds

+
∫ t

u
| f(s, φ(s, u, y, λ), λ̄)− f(s, φ(s, ū, ȳ, λ̄), λ̄) |ds

For (s, u, y, λ) ∈ Iα0×Iα0×Bβ×Cγ , the vectors (s, φ(s, u, y, λ), λ), (s, φ(s, u, y, λ), λ̄)

are in V̄ . Since f is coninuous on V̄ and V̄ is compact, it is uniformly con-
tinuous on V̄ .

Let ε > 0. Then, there is a δ > 0 such that for | λ− λ̄ | < δ and any
u ∈ Iα0 , y ∈ Bβ , we have

| f(u, y, λ)− f(u, y, λ̄) | < ε.

Thus, for | λ− λ̄ | < δ, the first integral in the above inequality is bounded
above by 2αε.
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Thus, for | λ− λ̄ | < δ, and using that f is y-Lipschitz, we have

| φ(t, u, y, λ)− φ(t, ū, ȳ, λ̄) |

≤ | y − ȳ |+ M | u− ū |+ 2αε

+
∫ t

u
K| φ(s, u, y, λ)− φ(s, ū, ȳ, λ̄) |ds

By the Gronwall inequality, we get

| φ(t, u, y, λ)− φ(t, ū, ȳ, λ̄) |

(| y − ȳ |+ M | u− ū |+ 2αε) exp(K2α)

which in turn gives

| φ(t, u, y, λ)− φ(t̄, ū, ȳ, λ̄) |

≤ (| y − ȳ |+ M | u− ū |+ 2αε) exp(K2α) + M | t− t̄ |.

This gives the desired continuity statement. QED
Theorem 2 (Global Continuity of solutions on parameters.) Suppose the

f(t, x, λ) is continuous and locally Lipschitz in x in an open set D ⊆ R ×
Rn ×Rk. If x(t, a, x0, λ0) is a solution of the IVP ẋ = f(t, x, λ0), x(a) = x0

which is defined on the closed interval [a, b] and (t, x(t, a, x0, λ0), λ0) ∈ D
for t ∈ [a, b], then there is a neighborhood V of (a, x0, λ0) in R × Rn × Rk

such that, for (u, y, λ) ∈ V , the IVP ẋ = f(t, x, λ), x(u) = y also has a
solution defined on the interval [u, b]. Moreover, the function x(t, u, y, λ) is
continuous on [u, b]× V .

Proof. Since [a, b] is a compact set and x(t, a, x0, λ0) is continuous, the set
A = {(t, x(t, a, x0, λ0), λ0) : t ∈ [a, b]} is a compact subset of D. Therefore,
there are constants M > 0, K > 0 for which the conditions of the theorem
hold with these constants throughout a neighborhood U of A.

Consider the set P of β′s less than or equal to b in R for which there is
a neighborhood Vβ of (a, x0, λ0) such that
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(*) for (u, y, λ) ∈ Vβ , the IVP ẋ = f(t, x, λ), x(u) = y has a solution

defined on the interval [u, β] which is continuous on [u, β]× Vβ .

Then, by the previous theorem, P contains an interval about a (actually
of size α

2
).

Let β0 be the least upper bound of the set P . If β0 < b, the previous
result can be used to get a contradiction. QED


