Dependence of Solutions to Differential Equations on Parameters

We now want to investigate the dependence of solutions to differential equations on parameters.

Lemma.(Gronwall Inequality). Suppose $f(t), a \leq t \leq b$ is a continuous non-negative real-valued function on the closed real interval $[a, b]$ such that there are positive constants K_{1}, K_{2} such that, for all $t \in[a, b]$,

$$
f(t) \leq K_{1}+K_{2} \int_{a}^{t} f(s) d s
$$

Then, for all $t \in[a, b]$,

$$
f(t) \leq K_{1} \exp \left(K_{2}(t-a)\right) \leq K_{1} \exp \left(K_{2}(b-a)\right)
$$

Proof.

Let $U(t)=K_{1}+K_{2} \int_{a}^{t} f(s) d s$. Then, U is a strictly positive continuously differentiable function on $[a, b]$ with

$$
U^{\prime}(t)=K_{2} f(t) \leq K_{2} U(t)
$$

for all t. Thus, $\frac{U^{\prime}(t)}{U(t)} \leq K_{2}$. Integrating this last inequality over the interval $[a, t]$ gives

$$
\log U(t)-\log U(a) \leq K_{2}(t-a)
$$

or

$$
\log U(t) \leq \log U(a)+K_{2}(t-a)
$$

and

$$
f(t) \leq U(t) \leq U(a) \exp \left(K_{2}(t-a)\right)=K_{1} \exp \left(K_{2}(t-a)\right)
$$

QED.
Theorem 1 (Local continuity of solutions on parameters). Suppose $f(t, x, \lambda)$ is a continuous function defined in an open set $D \subseteq \mathbf{R} \times \mathbf{R}^{n} \times$ \mathbf{R}^{k}. Suppose that there are constants $M>0, K>0$ such that

1. for $(t, x, \lambda) \in D,|f(t, x, \lambda)| \leq M$
2. for $(t, x, \lambda),(t, y, \lambda) \in D,|f(t, x, \lambda)-f(t, y, \lambda)| \leq K|x-y|$.

Let $\left(t_{0}, x_{0}, \lambda_{0}\right) \in D$. Then, there are a positive number $\alpha>0$ and a neighborhood V of $\left(t_{0}, x_{0}, \lambda_{0}\right)$ such that for each $(u, y, \lambda) \in V$, the IVP $\dot{x}=$ $f(t, x, \lambda), x(u)=y$ has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u-\alpha, u+\alpha]$ and the function $\phi(t, u, y, \lambda)$ is a continuous function of the variables (t, u, y, λ) in $\left[t_{0}-\alpha, t_{0}+\alpha\right] \times V$.

Remark. This result says that for all (u, y, λ) near $\left(t_{0}, x_{0}, \lambda_{0}\right)$ the solution to the IVP $\dot{x}=f(t, x, \lambda), x(u)=y$ is defined on the same sized interval (of length 2α) about the initial time u and the solution depends continuously on the initial time, value, and parameter.

Proof.

Let $I_{\alpha_{0}}=\left[t_{0}-\alpha_{0}, t_{0}+\alpha_{0}\right]$.
First take a closed product neighborhood $\bar{V}=I_{\alpha_{0}} \times B_{\beta} \times C_{\gamma} \subset \mathbf{R} \times$ $\mathbf{R}^{n} \times \mathbf{R}^{k}$ where $\alpha_{0}>0, \beta>0, \gamma>0$ so that

$$
\bar{V} \subseteq D
$$

Then, in \bar{V}, we have $|f(t, x, \lambda)| \leq M$ and $|f(t, x, \lambda)-f(t, y, \lambda)| \leq$ $K|x-y|$.

Let $\alpha \in\left(0, \alpha_{0} / 2\right)$ be such that

$$
\begin{equation*}
\alpha M \leq \frac{\beta}{4} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha K<1 . \tag{2}
\end{equation*}
$$

Let $V=\left[t_{0}-\alpha, t_{0}+\alpha\right] \times B_{\frac{\beta}{2}} \times C \gamma$.
Claim 1:
For $(u, y, \lambda) \in V$, the IVP, $\dot{x}=f(t, x, \lambda), x(u)=y$ has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u-\alpha, u+\alpha]$ and the vector $\phi(t, u, y, \lambda) \in$ B_{β}.

This is proved exactly as the proof of the E-U Theorem and will be left as an exercise.

Claim 2: The solution $\phi(t, u, y, \lambda)$ is a continuous function on $\left[t_{0}-\alpha, t_{0}+\right.$ $\alpha] \times V$.

To prove this, we write, for $t \geq u$,

$$
\begin{gathered}
|\phi(t, u, y, \lambda)-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})| \\
\leq|\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})|+|\phi(t, \bar{u}, \bar{y}, \bar{\lambda})-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})| \\
\leq|\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})|+M|t-\bar{t}| .
\end{gathered}
$$

Also, we have

$$
\begin{aligned}
& |\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \\
& \leq \mid y+\int_{u}^{t} f(s, \phi(s, u, y, \lambda), \lambda) d s \\
& -\bar{y}-\int_{\bar{u}}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s \mid \\
& \leq|y-\bar{y}|+\int_{u}^{t}|f(s, \phi(s, u, y, \lambda), \lambda)-f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda})| d s \\
& +\left|\int_{u}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s-\int_{\bar{u}}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right| \\
& \leq|y-\bar{y}|+M|u-\bar{u}| \\
& +\int_{u}^{t}|f(s, \phi(s, u, y, \lambda), \lambda)-f(s, \phi(s, u, y, \lambda), \bar{\lambda})| d s \\
& +\int_{u}^{t}|f(s, \phi(s, u, y, \lambda), \bar{\lambda})-f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda})| d s
\end{aligned}
$$

For $(s, u, y, \lambda) \in I_{\alpha_{0}} \times I_{\alpha_{0}} \times B_{\beta} \times C \gamma$, the vectors $(s, \phi(s, u, y, \lambda), \lambda),(s, \phi(s, u, y, \lambda), \bar{\lambda})$ are in \bar{V}. Since f is coninuous on \bar{V} and \bar{V} is compact, it is uniformly continuous on \bar{V}.

Let $\epsilon>0$. Then, there is a $\delta>0$ such that for $|\lambda-\bar{\lambda}|<\delta$ and any $u \in I_{\alpha_{0}}, y \in B_{\beta}$, we have

$$
|f(u, y, \lambda)-f(u, y, \bar{\lambda})|<\epsilon
$$

Thus, for $|\lambda-\bar{\lambda}|<\delta$, the first integral in the above inequality is bounded above by $2 \alpha \epsilon$.

Thus, for $|\lambda-\bar{\lambda}|<\delta$, and using that f is y-Lipschitz, we have

$$
\begin{aligned}
& |\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \\
& \leq|y-\bar{y}|+M|u-\bar{u}|+2 \alpha \epsilon \\
& \quad+\int_{u}^{t} K|\phi(s, u, y, \lambda)-\phi(s, \bar{u}, \bar{y}, \bar{\lambda})| d s
\end{aligned}
$$

By the Gronwall inequality, we get

$$
\begin{gathered}
|\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \\
(|y-\bar{y}|+M|u-\bar{u}|+2 \alpha \epsilon) \exp (K 2 \alpha)
\end{gathered}
$$

which in turn gives

$$
\begin{gathered}
|\phi(t, u, y, \lambda)-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})| \\
\leq(|y-\bar{y}|+M|u-\bar{u}|+2 \alpha \epsilon) \exp (K 2 \alpha)+M|t-\bar{t}| .
\end{gathered}
$$

This gives the desired continuity statement. QED
Theorem 2 (Global Continuity of solutions on parameters.) Suppose the $f(t, x, \lambda)$ is continuous and locally Lipschitz in x in an open set $D \subseteq \mathbf{R} \times$ $\mathbf{R}^{n} \times \mathbf{R}^{k}$. If $x\left(t, a, x_{0}, \lambda_{0}\right)$ is a solution of the IVP $\dot{x}=f\left(t, x, \lambda_{0}\right), x(a)=x_{0}$ which is defined on the closed interval $[a, b]$ and $\left(t, x\left(t, a, x_{0}, \lambda_{0}\right), \lambda_{0}\right) \in D$ for $t \in[a, b]$, then there is a neighborhood V of $\left(a, x_{0}, \lambda_{0}\right)$ in $\mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R}^{k}$ such that, for $(u, y, \lambda) \in V$, the IVP $\dot{x}=f(t, x, \lambda), x(u)=y$ also has a solution defined on the interval $[u, b]$. Moreover, the function $x(t, u, y, \lambda)$ is continuous on $[u, b] \times V$.

Proof. Since $[a, b]$ is a compact set and $x\left(t, a, x_{0}, \lambda_{0}\right)$ is continuous, the set $A=\left\{\left(t, x\left(t, a, x_{0}, \lambda_{0}\right), \lambda_{0}\right): t \in[a, b]\right\}$ is a compact subset of D. Therefore, there are constants $M>0, K>0$ for which the conditions of the theorem hold with these constants throughout a neighborhood U of A.

Consider the set P of $\beta^{\prime} s$ less than or equal to b in \mathbf{R} for which there is a neighborhood V_{β} of $\left(a, x_{0}, \lambda_{0}\right)$ such that
$\left.{ }^{*}\right)$ for $(u, y, \lambda) \in V_{\beta}$, the IVP $\dot{x}=f(t, x, \lambda), x(u)=y$ has a solution defined on the interval $[u, \beta]$ which is continuous on $[u, \beta] \times V_{\beta}$.
Then, by the previous theorem, P contains an interval about a (actually of size $\frac{\alpha}{2}$).

Let β_{0} be the least upper bound of the set P. If $\beta_{0}<b$, the previous result can be used to get a contradiction. QED

