Dependence of Solutions to Differential Equations on Parameters

We now want to investigate the dependence of solutions to differential equations on parameters.

Lemma.(Gronwall Inequality). Suppose $f(t), a \leq t \leq b$ is a continuous non-negative real-valued function on the closed real interval [a, b] such that there are positive constants K_1, K_2 such that, for all $t \in [a, b]$,

$$f(t) \le K_1 + K_2 \int_a^t f(s) ds.$$

Then, for all $t \in [a, b]$,

$$f(t) \le K_1 exp(K_2(t-a)) \le K_1 exp(K_2(b-a))$$

Proof.

Let $U(t) = K_1 + K_2 \int_a^t f(s) ds$. Then, U is a strictly positive continuously differentiable function on [a, b] with

$$U'(t) = K_2 f(t) \le K_2 U(t)$$

for all t. Thus, $\frac{U'(t)}{U(t)} \leq K_2$. Integrating this last inequality over the interval [a, t] gives

$$logU(t) - logU(a) \le K_2(t-a)$$

or

$$logU(t) \le logU(a) + K_2(t-a)$$

and

$$f(t) \le U(t) \le U(a)exp(K_2(t-a)) = K_1exp(K_2(t-a))$$

QED.

Theorem 1 (Local continuity of solutions on parameters). Suppose $f(t, x, \lambda)$ is a continuous function defined in an open set $D \subseteq \mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^k$. Suppose that there are constants M > 0, K > 0 such that

1. for
$$(t, x, \lambda) \in D$$
, $|f(t, x, \lambda)| \leq M$
2. for $(t, x, \lambda), (t, y, \lambda) \in D$, $|f(t, x, \lambda) - f(t, y, \lambda)| \leq K |x - y|$.

Let $(t_0, x_0, \lambda_0) \in D$. Then, there are a positive number $\alpha > 0$ and a neighborhood V of (t_0, x_0, λ_0) such that for each $(u, y, \lambda) \in V$, the IVP $\dot{x} =$ $f(t, x, \lambda), x(u) = y$ has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u - \alpha, u + \alpha]$ and the function $\phi(t, u, y, \lambda)$ is a continuous function of the variables (t, u, y, λ) in $[t_0 - \alpha, t_0 + \alpha] \times V$.

Remark. This result says that for all (u, y, λ) near (t_0, x_0, λ_0) the solution to the IVP $\dot{x} = f(t, x, \lambda), x(u) = y$ is defined on the same sized interval (of length 2α) about the initial time u and the solution depends continuously on the initial time, value, and parameter.

Proof.

Let $I_{\alpha_0} = [t_0 - \alpha_0, t_0 + \alpha_0].$

First take a closed product neighborhood $\overline{V} = I_{\alpha_0} \times B_{\beta} \times C_{\gamma} \subset \mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^k$ where $\alpha_0 > 0, \beta > 0, \gamma > 0$ so that

 $\bar{V} \subseteq D$

Then, in \overline{V} , we have $|f(t, x, \lambda)| \leq M$ and $|f(t, x, \lambda) - f(t, y, \lambda)| \leq K |x - y|$.

Let $\alpha \in (0, \alpha_0/2)$ be such that

$$\alpha M \le \frac{\beta}{4} \tag{1}$$

and

$$\alpha K < 1. \tag{2}$$

Let $V = [t_0 - \alpha, t_0 + \alpha] \times B_{\frac{\beta}{2}} \times C\gamma$. Claim 1:

For $(u, y, \lambda) \in V$, the IVP, $\dot{x} = f(t, x, \lambda), x(u) = y$ has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u - \alpha, u + \alpha]$ and the vector $\phi(t, u, y, \lambda) \in B_{\beta}$.

This is proved exactly as the proof of the E-U Theorem and will be left as an exercise. Claim 2: The solution $\phi(t, u, y, \lambda)$ is a continuous function on $[t_0 - \alpha, t_0 + \alpha] \times V$.

To prove this, we write, for $t \ge u$,

$$| \phi(t, u, y, \lambda) - \phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda}) |$$

$$\leq |\phi(t, u, y, \lambda) - \phi(t, \bar{u}, \bar{y}, \bar{\lambda})| + |\phi(t, \bar{u}, \bar{y}, \bar{\lambda}) - \phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})|$$

$$\leq |\phi(t, u, y, \lambda) - \phi(t, \bar{u}, \bar{y}, \bar{\lambda})| + M||t - \bar{t}|.$$

Also, we have

$$|\phi(t, u, y, \lambda) - \phi(t, \bar{u}, \bar{y}, \bar{\lambda})|$$

$$\leq |y + \int_{u}^{t} f(s, \phi(s, u, y, \lambda), \lambda) ds - \bar{y} - \int_{\bar{u}}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) ds |$$

$$\leq |y - \bar{y}| + \int_{u}^{t} |f(s, \phi(s, u, y, \lambda), \lambda) - f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda})| ds + |\int_{u}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) ds - \int_{\bar{u}}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) ds |$$

$$\leq |y - \bar{y}| + M| u - \bar{u} |$$

$$+ \int_{u}^{t} |f(s, \phi(s, u, y, \lambda), \lambda) - f(s, \phi(s, u, y, \lambda), \bar{\lambda})| ds$$

$$+ \int_{u}^{t} |f(s, \phi(s, u, y, \lambda), \bar{\lambda}) - f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda})| ds$$

For $(s, u, y, \lambda) \in I_{\alpha_0} \times I_{\alpha_0} \times B_{\beta} \times C_{\gamma}$, the vectors $(s, \phi(s, u, y, \lambda), \lambda), (s, \phi(s, u, y, \lambda), \bar{\lambda})$ are in \bar{V} . Since f is continuous on \bar{V} and \bar{V} is compact, it is uniformly continuous on \bar{V} .

Let $\epsilon > 0$. Then, there is a $\delta > 0$ such that for $|\lambda - \overline{\lambda}| < \delta$ and any $u \in I_{\alpha_0}, y \in B_{\beta}$, we have

$$|f(u, y, \lambda) - f(u, y, \overline{\lambda})| < \epsilon.$$

Thus, for $|\lambda - \overline{\lambda}| < \delta$, the first integral in the above inequality is bounded above by $2\alpha\epsilon$.

Thus, for $|\lambda - \bar{\lambda}| < \delta$, and using that f is y-Lipschitz, we have

$$\begin{aligned} \mid \phi(t, u, y, \lambda) - \phi(t, \bar{u}, \bar{y}, \bar{\lambda}) \mid \\ \leq \quad \mid y - \bar{y} \mid + M \mid u - \bar{u} \mid + 2\alpha\epsilon \\ \quad + \int_{u}^{t} K \mid \phi(s, u, y, \lambda) - \phi(s, \bar{u}, \bar{y}, \bar{\lambda}) \mid ds \end{aligned}$$

By the Gronwall inequality, we get

$$|\phi(t, u, y, \lambda) - \phi(t, \bar{u}, \bar{y}, \bar{\lambda})|$$

$$(|y - \bar{y}| + M| u - \bar{u}| + 2\alpha\epsilon) \exp(K2\alpha)$$

which in turn gives

$$\begin{aligned} \mid \phi(t, u, y, \lambda) - \phi(\bar{t}, \bar{u}, \bar{y}, \lambda) \mid \\ \leq (\mid y - \bar{y} \mid + M \mid u - \bar{u} \mid + 2\alpha\epsilon) \exp(K2\alpha) + M \mid t - \bar{t} \mid. \end{aligned}$$

This gives the desired continuity statement. QED

Theorem 2 (Global Continuity of solutions on parameters.) Suppose the $f(t, x, \lambda)$ is continuous and locally Lipschitz in x in an open set $D \subseteq \mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^k$. If $x(t, a, x_0, \lambda_0)$ is a solution of the IVP $\dot{x} = f(t, x, \lambda_0)$, $x(a) = x_0$ which is defined on the closed interval [a, b] and $(t, x(t, a, x_0, \lambda_0), \lambda_0) \in D$ for $t \in [a, b]$, then there is a neighborhood V of (a, x_0, λ_0) in $\mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^k$ such that, for $(u, y, \lambda) \in V$, the IVP $\dot{x} = f(t, x, \lambda)$, x(u) = y also has a solution defined on the interval [u, b]. Moreover, the function $x(t, u, y, \lambda)$ is continuous on $[u, b] \times V$.

Proof. Since [a, b] is a compact set and $x(t, a, x_0, \lambda_0)$ is continuous, the set $A = \{(t, x(t, a, x_0, \lambda_0), \lambda_0) : t \in [a, b]\}$ is a compact subset of D. Therefore, there are constants M > 0, K > 0 for which the conditions of the theorem hold with these constants throughout a neighborhood U of A.

Consider the set P of $\beta' s$ less than or equal to b in \mathbf{R} for which there is a neighborhood V_{β} of (a, x_0, λ_0) such that (*) for $(u, y, \lambda) \in V_{\beta}$, the IVP $\dot{x} = f(t, x, \lambda)$, x(u) = y has a solution defined on the interval $[u, \beta]$ which is continuous on $[u, \beta] \times V_{\beta}$.

Then, by the previous theorem, P contains an interval about a (actually of size $\frac{\alpha}{2}$).

Let β_0 be the least upper bound of the set P. If $\beta_0 < b$, the previous result can be used to get a contradiction. QED