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Existence Uniqueness Theorem

We will now see that rather mild conditions on the right hand side of an ordi-
nary differential equation give us local existence and uniqueness of solutions.

Definition. Let f : D → Rn be a coninuous function defined in the open
set D ⊆ Rn+1. We say that f is locally Lipschitz in the Rn variable if for
each (t0, x0) ∈ D, there is an open set U ⊆ D containing (t0, x0) such that
there is a constant K > 0 such that if (t, x), (t, y) ∈ U , then

| f(t, x)− f(t, y) | ≤ K| x− y |

If we write f as f(t, x) with t ∈ R, x ∈ Rn, we also say that f is locally
Lipschitz in x.

Remark. If f(t, x) is C1 in x, with derivative depending continuously
on t, then it is locally Lipschitz in x.

Theorem (Existence and Uniqueness Theorem for ODE). Suppose f(t, x)
is continuous in the open set D ⊆ Rn+1 and is locally Lipschitz in x in D.
Let (t0, x0) ∈ D. Then, the initial value problem

ẋ = f(t, x), x(t0) = x0 (1)

has a unique solution defined in a small interval I about t0 in R.
Proof.
Let U be an open neighborhood about (t0, x0) in D so that

1. f is continuous in U and Lipschitz in x in U with Lipschitz constant
no larger than K > 0.

2. | f(t, x) | ≤M for (t, x) ∈ U .

Let Iα = {t : | t− t0 | ≤ α}, Bβ = {x : | x− x0 | ≤ β}. Choose α, β

small enough so that Iα ×Bβ ⊆ U .

Let α0 be small enough so that

α0M < β (2)

and

α0K < 1 (3)
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Now, consider the set A of continuous functions φ from Iα0 to Rn such
that for t ∈ Iα0

| φ(t)− x0 | ≤ β (4)

.
With the sup norm, A is a closed bounded subset of the Banach space of

continuous functions from Iα0 into Rn. Thus, A is a complete metric space
with the metric d(φ, ψ) = supt∈Iα0

| φ(t)− ψ(t) |.
Consider again the integral operator

Tφ(t) = x0 +
∫ t

t0
f(s, φ(s))ds

We claim:

1. T maps A into itself.

2. T is a contraction mapping on A.

Proof that T maps A into itself:
Let φ ∈ A. Then, clearly Tφ is a continuous map defined on all of Iα0 .

Also, for t ∈ Iα0 ,

| Tφ(t)− x0 | ≤M | t− t0 | ≤Mα0 < β

so Tφ ∈ A.
Proof that T is a contraction on A:
Let φ, ψ ∈ A. The continuous function | φ(s)− ψ(s) | assumes its maxi-

mum at some point s0 in Iα0 .
Let t ≥ t0.
Then,

| Tφ(t)− Tψ(t) | = |
∫ t
t0
f(s, φ(s))− f(s, ψ(s))ds |

≤
∫ t

t0
K| φ(s)− ψ(s) |ds

≤ K| φ(s0)− ψ(s0) |(t− t0)

≤ K| φ− ψ |α0
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The same inequality holds for t < t0, so,

| Tφ− Tψ | ≤ Kα0| φ− ψ |

Since, Kα0 < 1, this shows that T is a contraction as required.
Thus, T has a unique fixed point φ in A which is a solution of the IVP.
Now, if φ and ψ are two solutions of (1), defined on any subinterval J

about t0 in Iα0 , then they both are fixed points of the operator TJ corre-
sponding to the interval J . But, the above argument shows that TJ is a
contraction as well, and hence has a unique fixed point in AJ . Since TJ has
a unique fixed point, we must have φ = ψ. QED

Continuation of Solutions

Consider the differential equation

ẋ = f(t, x) (5)

If φ is a solution of 5 defined on an interval I, we say that φ̂ is a continua-
tion of φ or extension of φ if φ̂ is itself a solution of (5) defined on an interval
Î which properly contains I and φ̂ restricted to I equals φ. A solution is
non-continuable or maximal if no such extension exists; i.e., I is the maximal
interval on which a solution to (5) exists.

Lemma. If D is an open subset of Rn+1, and f(t, x) is continuous and
bounded on D, then any solution φ of (5) defined on an open interval (a, b)
is such that the left and right limits φ(a+) and φ(b−) exist. If f(b, φ(b−))
is or can be defined so that f(t, x) is continuous at (b, φ(b−)), then φ is
a solution on the interval (a, b] in the sense that the one-sided derivative

limt→b−
φ(t)−φ(b−)

t−b exists and equals f(b, φ(b−)). A similar remark holds for
the left endpoint a.

Proof. Let us first show that the left limit limt→b− φ(t) exists. Suppose
that | f(t, x) | ≤M for all (t, x) ∈ D.

For any t, t0 ∈ (a, b), we have

φ(t) = φ(t0) +
∫ t

t0
f(s, φ(s))ds

Thus, for t1, t2 ∈ (a, b),
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| φ(t1)− φ(t2) | ≤M | t2 − t1 |

which implies that as t1, t2 approach b from the left the norm | φ(t1)− φ(t2) |
approaches 0. This proves the existence of the desired left limit limt→b− φ(t).
A similar argument works for the right limit limt→a+ φ(t).

The last statement follows from the integral equation and the Fundamen-
tal Theorem of Calculus. QED.

Definition. A maximal solution φ to a differential equation ẋ = f(t, x)
is a solution defined on an interval I such that there is no solution defined
on an interval Î which properly contains I.

Theorem. Suppose that f(t, x) is defined, continuous, and locally Lips-
chitz in x in an open set D ⊆ Rn+1, and φ is a solution defined on an interval
I. Then, there is a maximal solution φ̂ on an interval Î which contains I.
As t approaches the boundary of Î, either f(t, φ̂(t)) becomes unbounded or
(t, φ̂(t)) approaches the boundary of D.

Proof. Let Î be the union of all intervals containining I on which a
solution exists. By uniqueness, they all patch together to give a maximal
soution. Suppose φ̂ is this solution. If Î has a right boundary point, say
b, and f(t, φ̂(t)) remains bounded as t → b, then by the previous lemma,
limt→b φ̂(t) = x0 exists. If x0 is in the interior of D, then patching φ̂ together
with a solution to the IVP ẋ, x(b) = x0, enables one to get a solution on an
interval strictly larger than Î which contradicts the defintion of Î. Thus, x0

must be in the boundary of D. QED.


