3. General Properties of Differential Equations

Let \mathbf{R}^{n+1} be the n + 1-dimensional Euclidean space and let (t, x) denote coordinates in \mathbf{R}^{n+1} with $x \in \mathbf{R}^n$. Write $\dot{x} = \frac{dx}{dt}$.

A first order ordinary differential equation in \mathbf{R}^n is an expression of the form

$$\dot{x} = f(t, x) \tag{1}$$

where f is a function from an open set $D \subseteq \mathbf{R}^{n+1}$ to \mathbf{R}^n . When f depends explicitly on t, the equation (1) is called *non-autonomous* or *time dependent*. If f is independent of t, it is called *autonomous* or *time-independent*.

A solution to (1) is a differentiable function x(t) from a real interval Iinto \mathbf{R}^n so that

- 1. $\{(t, x(t)) : t \in I\} \subseteq D$
- 2. For $t \in I, \dot{x}(t) = f(t, x(t))$.

If we fix a point $(t_0, x_0) \in D$, we are sometimes interested in solutions $x(\cdot)$ of (1) for which $x(t_0) = x_0$.

This leads us to the system of equations

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$
 (2)

which we will call the initial value problem of the differential equation (1) with initial value (t_0, x_0) or simply the initial value problem.

Remarks.

1. The n-th order scalar differential equation

$$\frac{d^n x}{dt^n} = g(t, x, \dot{x}, \frac{d^2 x}{dt^2}, \dots, \frac{d^{n-1} x}{dt^{n-1}})$$

can be written as the vector system

$$\begin{array}{rcl} x & = & x_1 \\ \frac{dx_1}{dt} & = & x_2 \end{array}$$

$$\frac{dx_{n-1}}{dt} = x_n \frac{dx_n}{dt} = g(t, x_1, \dots, x_n)$$

using the vector, (t, x_1, \ldots, x_n) with $x_i = \frac{d^{i-1}x}{dt^{i-1}}$ so it is usually not necessary to consider higher order differential equations for general properties.

2. In issues in which f(t, x) is very smooth, e.g. C^{∞} it is frequently useful to replace the non-autonomous equation (1) by the system $\dot{t} = 1, \dot{x} = f(t, x)$ and obtain an autonomous equation in one higher dimension.

Examples.

1. The first example shows that even if the right hand side of a differential equation is a polynomial, solutions to (1) may not be defined for all real time.

Let $D = \mathbf{R}^2$, $f(t, x) = x^2$. The initial value problem

$$\dot{x} = x^2, x(0) = x_0$$

has the unique solution $\phi(t) = \frac{-1}{t-x_0^{-1}}$ for $x_0 \neq 0$ and $\phi(t) = 0 \quad \forall t$ for $x_0 = 0$. For $x_0 \neq 0$, these solutions blow up in finite time.

2. The second example shows that the initial value problem of a continuous differential equation need not have a unique solution.

Let $D = \mathbf{R}^2$, $f(t, x) = \sqrt{x}$ for $x \ge 0$, f(t, x) = 0 for x < 0.

Fix a real number c > 0, and define the function $\phi_c(t) = \frac{(t-c)^2}{4}$ for $t \ge c$, $\phi(t) = 0$ for t < c. Then, each $\phi_c(t)$ is a solution to $\dot{x} = f(t, x)$ with value 0 at $t_0 = 0$.

888888 Draw figures 88888

Lemma. Suppose that f(t, x) is a continuous function on an open set D in \mathbb{R}^{n+1} . Let $(t_0, x_0) \in D$. Then, a continuous function x(t) is a solution to the single integral equation

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) \, ds.$$

if and only if it is a solution to the initial value problem (2). **Proof.**

Suppose that $x(\cdot)$ is a continuous function which solves the integral equation. Then, $x(t_0) = x_0$, and since f is continuous, the Fundamental Theorem of Calculus gives that x(t) is differentiable with

$$\dot{x} = f(t, x(t))$$

so that $x(\cdot)$ solves (2).

Conversely, suppose the $x(\cdot)$ is a solution to the problem (2). Then, $x(\cdot)$ is differentiable, hence continuous, on an interval about t_0 . Let $h(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$.

Again the fundamental theorem of calculus gives that h is differentiable with derivative f(t, x(t) at t. Thus, both x(t) and h(t) are differentiable functions with the same derivative on an interval about t_0 . Hence, they differ by a constant. But they both have the value x_0 at t_0 , so the constant is 0, and x(t) solves the integral equation. QED.

We wish to show that differential equations with continuous right hand sides have solutions at least on small intervals.

Theorem.(Peano Existence Theorem.) Suppose that f(t, x) is continuous in the open set $D \subseteq \mathbf{R}^{n+1}$. Then, for (t_0, x_0) in D, the initial value problem (2) has at least one solution.

Proof.

We will give two proofs of this theorem. The first is shorter and depends on a theorem in Functional Analysis.

Definition. Let E be a subset of a Banach space X. The closed convex hull of $E, \bar{co}(E)$ is the intersection of all closed convex sets which contain E. This is clearly the smallest closed convex set containing E.

Theorem.(Mazur) The closed convex hull of a compact subset E of a Banach space is itself compact.

Theorem. (Extended Schauder-Tychonov Theorem) Suppose \mathcal{A} is a closed bounded convex subset of a Banach space and $T : \mathcal{A} \to \mathcal{A}$ is a continuous map such that the image $T\mathcal{A}$ of \mathcal{A} has compact closure. Then, T has a fixed point in \mathcal{A} .

Proof.

Let $B = T\mathcal{A}$. The closure of B is compact, so, by Mazur's theorem, $\bar{co}(B) = \bar{co}(Closure(B)) \equiv B_1$ is also compact.

Since $B \subseteq \mathcal{A}$, we have $closure(B) \subset \mathcal{A}$, since \mathcal{A} is closed and $B_1 \subseteq \mathcal{A}$ since \mathcal{A} is convex. Thus, $TB_1 \subseteq T\mathcal{A} = B \subseteq B_1$, so we may apply the Schauder Theorem to T on B_1 to conclude that T has a fixed point in B_1 which is, of course, also in \mathcal{A} . QED

Proof 1 of Peano Theorem:

For $\alpha > 0, \beta > 0$ let $I_{\alpha} = I_{\alpha}(t_0) = \{t : |t - t_0| \le \alpha\}$ and let $B_{\beta} = B_{\beta}(x_0) = \{x : |x - x_0| \le \beta\}.$

Choose α, β small enough so that $I_{\alpha} \times B_{\beta} \subseteq D$.

Since $I_{\alpha} \times B_{\beta}$ is compact and f is continuous on $I_{\alpha} \times B_{\beta}$, the quantity

$$M = \sup\{|f(t,x)| : (t,x) \in I_{\alpha} \times B_{\beta}\}$$

is finite.

Let α_1 be positive and small enough so that $M\alpha_1 \leq \beta$.

Let \mathcal{A} be the set of continuous functions ϕ from the interval I_{α_1} into \mathbb{R}^n such that

1. $\phi(t_0) = x_0$

2.
$$|\phi(t) - x_0| \leq \beta$$
 for all $t \in I_{\alpha_1}$

Clearly \mathcal{A} is a closed bounded convex subset of the Banach space of coninuous maps from I_{α_1} into \mathbb{R}^n with the sup norm.

Let $T\phi$ be defined by

$$(T\phi)(t) = x_0 + \int_{t_0}^t f(s,\phi(s))ds$$

Claim:

- 1. T maps \mathcal{A} into itself.
- 2. T is continuous
- 3. $T\mathcal{A}$ has compact closure.

Once these are established, we have that the extended Schauder-Tychonov Theorem gives us a fixed point ψ of T is \mathcal{A} . This fixed point solves the integral equation (), so it provides a solution to the IVP (2).

Proof that T maps \mathcal{A} into itself:

Clearly, $\phi \in \mathcal{A}$ implies that $I_{\alpha_1} \times \phi(I_{\alpha_1}) \subseteq D$ so T is well-defined. Also, $T\phi(t_0) = x_0$.

Next, for $t \in I_{\alpha_1}$, $|\phi(t) - x_0| \leq |\int_{t_0}^t f(s, \phi(s)) ds| \leq M \alpha_1 \leq \beta$, giving statement 1.

Proof of 2. For continuity, suppose that $\epsilon > 0$. We know that f is uniformly continuous on $I_{\alpha_1} \times B_{\beta}$. Let $\delta > 0$ be such that if $|(t, x) - (s, y)| < \delta$ and $(t, x), (s, y) \in I_{\alpha_1} \times B_{\beta}$, then, $|f(t, x) - f(s, y)| < \epsilon$.

Now, suppose that $\phi, \psi \in \mathcal{A}$ are such that $|\phi - \psi| < \delta$. This means that, for each $t \in I_{\alpha_1}, |\phi(t) - \psi(t)| < \delta$.

Thus, for $t \in I_{\alpha_1}$,

$$|T\phi(t) - T\psi(t)| \leq |\int_{t_0}^t f(s, \phi(s)) - f(s, \psi(s))ds|$$

$$\leq \epsilon |t - t_0|$$

$$< \epsilon \alpha_1$$

and it follows that T is continuous on \mathcal{A} .

It remains to show that $T\mathcal{A}$ has compact closure. Note that if we show that $T\mathcal{A}$ is equicontinuous, it follows that the closure of $T\mathcal{A}$ is also equicontinuous. Since it is also bounded, it will follow from the Arzela-Ascoli theorem that $T\mathcal{A}$ is compact closure as required.

Equicontinuity of TA:

For $\phi \in \mathcal{A}, t, u \in I_{\alpha_1}$, we have

$$|\phi(t) - \phi(u)| \leq |\int_u^t f(s,\phi(s))ds| \leq M |t-u|$$

which gives equicontinuity. QED.

Proof 2 of Peano Theorem.

Let $I_{\alpha}, I_{\alpha_1}, B_{\beta}$ be as in Proof 1.

Let $h = h_n = \frac{\alpha_1}{n}$ for $n \ge 1$.

We will consider the Euler polygonal approximations ϕ_h for solutions defined in the following way.

First, let $x_1 = x_0 + f(t_0, x_0)h$. Then, letting $t_{i+1} = t_i + h = t_0 + ih$, set $x_{i+1} = x_i + f(t_i, x_i)h$, for $0 \le i \le n - 1$.

This is a discrete sequence of vectors. Interpolate linearly between (t_i, x_i) and (t_{i+1}, x_{i+1}) to form the function

$$\phi_h(t) = x_i + f(t_i, x_i)(t - t_i) \text{ for } t_i \le t \le t_{i+1}$$

Claim 1. The sequence of functions $\phi_n = \phi_{h_n}$ is equicontinuous. First note that they all have the same Lipschitz constant M. Let $I_j = [t_0 + jh, t_0 + (j+1)h]$. Then, for $s < t, s \in I_j, t \in I_l$ with $l \ge j$,

we have

$$|\phi_{h}(t) - \phi_{h}(s)| \leq |\phi_{h}(t) - \phi_{h}(t_{l})| + |\phi_{h}(t_{l}) - \phi_{h}(t_{l-1})| + \dots + |\phi_{h}(t_{j+1}) - \phi_{h}(s)| \leq M(t-s)$$

Next note that, inductively, if $|x_i - x_0| \leq Mih \leq M\alpha_1 < \beta$, then

$$|x_{i+1} - x_i| \le Mh$$

 \mathbf{SO}

$$|x_{i+1} - x_0| \leq |x_{i+1} - x_i| + |x_i - x_0|$$

$$\leq Mh + Mih$$

$$\leq M(i+1)h$$

$$\leq M\alpha_1$$

for i < n.

Similarly, $|\phi_{h_n}(t) - x_0| \leq M\alpha_1 \leq \beta$, so the ϕ_{h_n} are uniformly bounded. Thus, by the Arzela-Ascoli theorem, there is a sequence $\phi_{h_{n_j}}$ which converges to a function $\psi(t)$ of I_{α_1} .

We leave it as an exercise that as $h_n \to 0$,

$$| \phi_{h_n}(t) - x_0 - \int_{t_0}^t f(s, \phi_{h_n}(s)) ds | \to 0$$

Thus, for the limit function, ψ , we have

$$\psi(t) = \int_{t_0}^t f(s, \psi(s)) ds$$

giving us that ψ is a solution. QED.