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3. General Properties of Differential Equa-

tions

Let Rn+1 be the n + 1−dimensional Euclidean space and let (t, x) denote
coordinates in Rn+1 with x ∈ Rn. Write ẋ = dx

dt
.

A first order ordinary differential equation in Rn is an expression of the
form

ẋ = f(t, x) (1)

where f is a function from an open set D ⊆ Rn+1 to Rn. When f depends
explicitly on t, the equation (1) is called non-autonomous or time dependent.
If f is independent of t, it is called autonomous or time-independent.

A solution to (1) is a differentiable function x(t) from a real interval I
into Rn so that

1. {(t, x(t)) : t ∈ I} ⊆ D

2. For t ∈ I, ẋ(t) = f(t, x(t)).

If we fix a point (t0, x0) ∈ D, we are sometimes interested in solutions
x(·) of (1) for which x(t0) = x0.

This leads us to the system of equations

ẋ = f(t, x), x(t0) = x0 (2)

which we will call the initial value problem of the differential equation (1)
with initial value (t0, x0) or simply the initial value problem.

Remarks.

1. The n−th order scalar differential equation

dnx

dtn
= g(t, x, ẋ,

d2x

dt2
, . . . ,

dn−1x

dtn−1
)

can be written as the vector system

x = x1

dx1

dt
= x2
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...
dxn−1

dt
= xn

dxn

dt
= g(t, x1, . . . , xn)

using the vector, (t, x1, . . . , xn) with xi = di−1x
dti−1 so it is usually not nec-

essary to consider higher order differential equations for general prop-
erties.

2. In issues in which f(t, x) is very smooth, e.g. C∞ it is frequently useful
to replace the non-autonomous equation (1) by the system ṫ = 1, ẋ =
f(t, x) and obtain an autonomous equation in one higher dimension.

Examples.

1. The first example shows that even if the right hand side of a differential
equation is a polynomial, solutions to (1) may not be defined for all
real time.

Let D = R2, f(t, x) = x2. The initial value problem

ẋ = x2, x(0) = x0

has the unique solution φ(t) = −1
t−x−1

0

for x0 6= 0 and φ(t) = 0 ∀t for

x0 = 0. For x0 6= 0, these solutions blow up in finite time.

2. The second example shows that the initial value problem of a continu-
ous differential equation need not have a unique solution.

Let D = R2, f(t, x) =
√
x for x ≥ 0, f(t, x) = 0 for x < 0.

Fix a real number c > 0, and define the function φc(t) = (t−c)2

4
for t ≥

c, φ(t) = 0 for t < c. Then, each φc(t) is a solution to ẋ = f(t, x) with
value 0 at t0 = 0.

888888 Draw figures 88888
Lemma. Suppose that f(t, x) is a continuous function on an open set D

in Rn+1. Let (t0, x0) ∈ D. Then, a continuous function x(t) is a solution to
the single integral equation
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x(t) = x0 +
∫ t

t0
f(s, x(s)) ds.

if and only if it is a solution to the initial value problem (2).
Proof.
Suppose that x(·) is a continuous function which solves the integral equa-

tion. Then, x(t0) = x0, and since f is continuous, the Fundamental Theorem
of Calculus gives that x(t) is differentiable with

ẋ = f(t, x(t))

so that x(·) solves (2).
Conversely, suppose the x(·) is a solution to the problem (2). Then,

x(·) is differentiable, hence continuous, on an interval about t0. Let h(t) =
x0 +

∫ t
t0
f(s, x(s))ds.

Again the fundamental theorem of calculus gives that h is differentiable
with derivative f(t, x(t) at t. Thus, both x(t) and h(t) are differentiable
functions with the same derivative on an interval about t0. Hence, they
differ by a constant. But they both have the value x0 at t0, so the constant
is 0, and x(t) solves the integral equation. QED.

We wish to show that differential equations with continuous right hand
sides have solutions at least on small intervals.

Theorem.(Peano Existence Theorem.) Suppose that f(t, x) is continu-
ous in the open set D ⊆ Rn+1. Then, for (t0, x0) in D, the initial value
problem (2) has at least one solution.

Proof.
We will give two proofs of this theorem. The first is shorter and depends

on a theorem in Functional Analysis.
Definition. Let E be a subset of a Banach space X. The closed convex

hull of E, c̄o(E) is the intersection of all closed convex sets which contain E.
This is clearly the smallest closed convex set containing E.

Theorem.(Mazur) The closed convex hull of a compact subset E of a
Banach space is itself compact.

Theorem.(Extended Schauder-Tychonov Theorem) Suppose A is a closed
bounded convex subset of a Banach space and T : A → A is a continuous
map such that the image TA of A has compact closure. Then, T has a fixed
point in A.
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Proof.
Let B = TA. The closure of B is compact, so, by Mazur’s theorem,

c̄o(B) = c̄o(Closure(B)) ≡ B1 is also compact.
Since B ⊆ A, we have closure(B) ⊂ A, since A is closed and B1 ⊆ A

since A is convex. Thus, TB1 ⊆ TA = B ⊆ B1, so we may apply the
Schauder Theorem to T on B1 to conclude that T has a fixed point in B1

which is, of course, also in A. QED
Proof 1 of Peano Theorem:
For α > 0, β > 0 let Iα = Iα(t0) = {t : | t− t0 | ≤ α} and let Bβ =

Bβ(x0) = {x : | x− x0 | ≤ β}.
Choose α, β small enough so that Iα ×Bβ ⊆ D.

Since Iα ×Bβ is compact and f is continuous on Iα ×Bβ , the quantity

M = sup{| f(t, x) | : (t, x) ∈ Iα ×Bβ}

is finite.
Let α1 be positive and small enough so that Mα1 ≤ β.
Let A be the set of continuous functions φ from the interval Iα1 into Rn

such that

1. φ(t0) = x0

2. | φ(t)− x0 | ≤ β for all t ∈ Iα1

Clearly A is a closed bounded convex subset of the Banach space of
coninuous maps from Iα1 into Rn with the sup norm.

Let Tφ be defined by

(Tφ)(t) = x0 +
∫ t

t0
f(s, φ(s))ds

Claim:

1. T maps A into itself.

2. T is continuous

3. TA has compact closure.
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Once these are established, we have that the extended Schauder-Tychonov
Theorem gives us a fixed point ψ of T isA. This fixed point solves the integral
equation (), so it provides a solution to the IVP (2).

Proof that T maps A into itself:
Clearly, φ ∈ A implies that Iα1 × φ(Iα1) ⊆ D so T is well-defined. Also,

Tφ(t0) = x0.
Next, for t ∈ Iα1 , | φ(t)− x0 | ≤ |

∫ t
t0
f(s, φ(s))ds | ≤ Mα1 ≤ β, giving

statement 1.
Proof of 2. For continuity, suppose that ε > 0. We know that f is uni-

formly continuous on Iα1×Bβ . Let δ > 0 be such that if | (t, x)− (s, y) | < δ

and (t, x), (s, y) ∈ Iα1 ×Bβ , then, | f(t, x)− f(s, y) | < ε.

Now, suppose that φ, ψ ∈ A are such that | φ− ψ | < δ. This means
that, for each t ∈ Iα1 , | φ(t)− ψ(t) | < δ.

Thus, for t ∈ Iα1 ,

| Tφ(t)− Tψ(t) | ≤ |
∫ t
t0
f(s, φ(s))− f(s, ψ(s))ds |

≤ ε| t− t0 |
≤ εα1

and it follows that T is continuous on A.
It remains to show that TA has compact closure. Note that if we show

that TA is equicontinuous, it follows that the closure of TA is also equicontin-
uous. Since it is also bounded, it will follow from the Arzela-Ascoli theorem
that TA is compact closure as required.

Equicontinuity of TA:
For φ ∈ A, t, u ∈ Iα1 , we have

| φ(t)− φ(u) | ≤ |
∫ t
u f(s, φ(s))ds | ≤M | t− u |

which gives equicontinuity. QED.
Proof 2 of Peano Theorem.
Let Iα, Iα1 , Bβ be as in Proof 1.

Let h = hn = α1

n
for n ≥ 1.

We will consider the Euler polygonal approximations φh for solutions
defined in the following way.

First, let x1 = x0 + f(t0, x0)h. Then, letting ti+1 = ti + h = t0 + ih, set
xi+1 = xi + f(ti, xi)h, for 0 ≤ i ≤ n− 1.
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This is a discrete sequence of vectors. Interpolate linearly between (ti, xi)
and (ti+1, xi+1) to form the function

φh(t) = xi + f(ti, xi)(t− ti) for ti ≤ t ≤ ti+1

Claim 1. The sequence of functions φn = φhn
is equicontinuous.

First note that they all have the same Lipschitz constant M .
Let Ij = [t0 + jh, t0 + (j + 1)h]. Then, for s < t, s ∈ Ij, t ∈ Il with l ≥ j,

we have

| φh(t)− φh(s) | ≤ | φh(t)− φh(tl) |+ | φh(tl)− φh(tl−1) |
+ . . .+ | φh(tj+1)− φh(s) |

≤ M(t− s)

Next note that, inductively, if | xi − x0 | ≤Mih ≤Mα1 < β, then

| xi+1 − xi | ≤Mh

so

| xi+1 − x0 | ≤ | xi+1 − xi |+ | xi − x0 |
≤ Mh+Mih

≤ M(i+ 1)h

≤ Mα1

for i < n.
Similarly, | φhn

(t)− x0 | ≤Mα1 ≤ β, so the φhn
are uniformly bounded.

Thus, by the Arzela-Ascoli theorem, there is a sequence φhnj
which con-

verges to a function ψ(t) of Iα1 .
We leave it as an exercise that as hn → 0,

| φhn
(t)− x0 −

∫ t
t0
f(s, φhn

(s))ds | → 0

Thus, for the limit function, ψ, we have

ψ(t) =
∫ t

t0
f(s, ψ(s))ds

giving us that ψ is a solution. QED.


