3. General Properties of Differential Equations

Let \mathbf{R}^{n+1} be the $n+1$-dimensional Euclidean space and let (t, x) denote coordinates in \mathbf{R}^{n+1} with $x \in \mathbf{R}^{n}$. Write $\dot{x}=\frac{d x}{d t}$.

A first order ordinary differential equation in \mathbf{R}^{n} is an expression of the form

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{1}
\end{equation*}
$$

where f is a function from an open set $D \subseteq \mathbf{R}^{n+1}$ to \mathbf{R}^{n}. When f depends explicitly on t, the equation (1) is called non-autonomous or time dependent. If f is independent of t, it is called autonomous or time-independent.

A solution to (1) is a differentiable function $x(t)$ from a real interval I into \mathbf{R}^{n} so that

1. $\{(t, x(t)): t \in I\} \subseteq D$
2. For $t \in I, \dot{x}(t)=f(t, x(t))$.

If we fix a point $\left(t_{0}, x_{0}\right) \in D$, we are sometimes interested in solutions $x(\cdot)$ of (1) for which $x\left(t_{0}\right)=x_{0}$.

This leads us to the system of equations

$$
\begin{equation*}
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0} \tag{2}
\end{equation*}
$$

which we will call the initial value problem of the differential equation (1) with initial value $\left(t_{0}, x_{0}\right)$ or simply the initial value problem.

Remarks.

1. The n-th order scalar differential equation

$$
\frac{d^{n} x}{d t^{n}}=g\left(t, x, \dot{x}, \frac{d^{2} x}{d t^{2}}, \ldots, \frac{d^{n-1} x}{d t^{n-1}}\right)
$$

can be written as the vector system

$$
\begin{aligned}
x & =x_{1} \\
\frac{d x_{1}}{d t} & =x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
\frac{d x_{n-1}}{d t} & =x_{n} \\
\frac{d x_{n}}{d t} & =g\left(t, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

using the vector, $\left(t, x_{1}, \ldots, x_{n}\right)$ with $x_{i}=\frac{d^{i-1} x}{d t^{-1}}$ so it is usually not necessary to consider higher order differential equations for general properties.
2. In issues in which $f(t, x)$ is very smooth, e.g. C^{∞} it is frequently useful to replace the non-autonomous equation (1) by the system $\dot{t}=1, \dot{x}=$ $f(t, x)$ and obtain an autonomous equation in one higher dimension.

Examples.

1. The first example shows that even if the right hand side of a differential equation is a polynomial, solutions to (1) may not be defined for all real time.
Let $D=\mathbf{R}^{2}, f(t, x)=x^{2}$. The initial value problem

$$
\dot{x}=x^{2}, x(0)=x_{0}
$$

has the unique solution $\phi(t)=\frac{-1}{t-x_{0}^{-1}}$ for $x_{0} \neq 0$ and $\phi(t)=0 \forall t$ for $x_{0}=0$. For $x_{0} \neq 0$, these solutions blow up in finite time.
2. The second example shows that the initial value problem of a continuous differential equation need not have a unique solution.
Let $D=\mathbf{R}^{2}, f(t, x)=\sqrt{x}$ for $x \geq 0, f(t, x)=0$ for $x<0$.
Fix a real number $c>0$, and define the function $\phi_{c}(t)=\frac{(t-c)^{2}}{4}$ for $t \geq$ $c, \phi(t)=0$ for $t<c$. Then, each $\phi_{c}(t)$ is a solution to $\dot{x}=f(t, x)$ with value 0 at $t_{0}=0$.

888888 Draw figures 88888
Lemma. Suppose that $f(t, x)$ is a continuous function on an open set D in \mathbf{R}^{n+1}. Let $\left(t_{0}, x_{0}\right) \in D$. Then, a continuous function $x(t)$ is a solution to the single integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s .
$$

if and only if it is a solution to the initial value problem (2).

Proof.

Suppose that $x(\cdot)$ is a continuous function which solves the integral equation. Then, $x\left(t_{0}\right)=x_{0}$, and since f is continuous, the Fundamental Theorem of Calculus gives that $x(t)$ is differentiable with

$$
\dot{x}=f(t, x(t))
$$

so that $x(\cdot)$ solves (2).
Conversely, suppose the $x(\cdot)$ is a solution to the problem (2). Then, $x(\cdot)$ is differentiable, hence continuous, on an interval about t_{0}. Let $h(t)=$ $x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s$.

Again the fundamental theorem of calculus gives that h is differentiable with derivative $f(t, x(t)$ at t. Thus, both $x(t)$ and $h(t)$ are differentiable functions with the same derivative on an interval about t_{0}. Hence, they differ by a constant. But they both have the value x_{0} at t_{0}, so the constant is 0 , and $x(t)$ solves the integral equation. QED.

We wish to show that differential equations with continuous right hand sides have solutions at least on small intervals.

Theorem.(Peano Existence Theorem.) Suppose that $f(t, x)$ is continuous in the open set $D \subseteq \mathbf{R}^{n+1}$. Then, for $\left(t_{0}, x_{0}\right)$ in D, the initial value problem (2) has at least one solution.

Proof.

We will give two proofs of this theorem. The first is shorter and depends on a theorem in Functional Analysis.

Definition. Let E be a subset of a Banach space X. The closed convex hull of $E, \overline{c o}(E)$ is the intersection of all closed convex sets which contain E. This is clearly the smallest closed convex set containing E.

Theorem.(Mazur) The closed convex hull of a compact subset E of a Banach space is itself compact.

Theorem.(Extended Schauder-Tychonov Theorem) Suppose \mathcal{A} is a closed bounded convex subset of a Banach space and $T: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous map such that the image $T \mathcal{A}$ of \mathcal{A} has compact closure. Then, T has a fixed point in \mathcal{A}.

Proof.

Let $B=T \mathcal{A}$. The closure of B is compact, so, by Mazur's theorem, $\overline{\operatorname{co}}(B)=\overline{\operatorname{co}}(\operatorname{Closure}(B)) \equiv B_{1}$ is also compact.

Since $B \subseteq \mathcal{A}$, we have closure $(B) \subset \mathcal{A}$, since \mathcal{A} is closed and $B_{1} \subseteq \mathcal{A}$ since \mathcal{A} is convex. Thus, $T B_{1} \subseteq T \mathcal{A}=B \subseteq B_{1}$, so we may apply the Schauder Theorem to T on B_{1} to conclude that T has a fixed point in B_{1} which is, of course, also in \mathcal{A}. QED

Proof 1 of Peano Theorem:

For $\alpha>0, \beta>0$ let $I_{\alpha}=I_{\alpha}\left(t_{0}\right)=\left\{t:\left|t-t_{0}\right| \leq \alpha\right\}$ and let $B_{\beta}=$ $B_{\beta}\left(x_{0}\right)=\left\{x:\left|x-x_{0}\right| \leq \beta\right\}$.

Choose α, β small enough so that $I_{\alpha} \times B_{\beta} \subseteq D$.
Since $I_{\alpha} \times B_{\beta}$ is compact and f is continuous on $I_{\alpha} \times B_{\beta}$, the quantity

$$
M=\sup \left\{|f(t, x)|:(t, x) \in I_{\alpha} \times B_{\beta}\right\}
$$

is finite.
Let α_{1} be positive and small enough so that $M \alpha_{1} \leq \beta$.
Let \mathcal{A} be the set of continuous functions ϕ from the interval $I_{\alpha_{1}}$ into \mathbf{R}^{n} such that

1. $\phi\left(t_{0}\right)=x_{0}$
2. $\left|\phi(t)-x_{0}\right| \leq \beta$ for all $t \in I_{\alpha_{1}}$

Clearly \mathcal{A} is a closed bounded convex subset of the Banach space of coninuous maps from $I_{\alpha_{1}}$ into \mathbf{R}^{n} with the sup norm.

Let $T \phi$ be defined by

$$
(T \phi)(t)=x_{0}+\int_{t_{0}}^{t} f(s, \phi(s)) d s
$$

Claim:

1. T maps \mathcal{A} into itself.
2. T is continuous
3. $T \mathcal{A}$ has compact closure.

Once these are established, we have that the extended Schauder-Tychonov Theorem gives us a fixed point ψ of T is \mathcal{A}. This fixed point solves the integral equation (), so it provides a solution to the IVP (2).

Proof that T maps \mathcal{A} into itself:

Clearly, $\phi \in \mathcal{A}$ implies that $I_{\alpha_{1}} \times \phi\left(I_{\alpha_{1}}\right) \subseteq D$ so T is well-defined. Also, $T \phi\left(t_{0}\right)=x_{0}$.

Next, for $t \in I_{\alpha_{1}},\left|\phi(t)-x_{0}\right| \leq\left|\int_{t_{0}}^{t} f(s, \phi(s)) d s\right| \leq M \alpha_{1} \leq \beta$, giving statement 1.

Proof of 2. For continuity, suppose that $\epsilon>0$. We know that f is uniformly continuous on $I_{\alpha_{1}} \times B_{\beta}$. Let $\delta>0$ be such that if $|(t, x)-(s, y)|<\delta$ and $(t, x),(s, y) \in I_{\alpha_{1}} \times B_{\beta}$, then, $|f(t, x)-f(s, y)|<\epsilon$.

Now, suppose that $\phi, \psi \in \mathcal{A}$ are such that $|\phi-\psi|<\delta$. This means that, for each $t \in I_{\alpha_{1}},|\phi(t)-\psi(t)|<\delta$.

Thus, for $t \in I_{\alpha_{1}}$,

$$
\begin{aligned}
|T \phi(t)-T \psi(t)| & \leq\left|\int_{t_{0}}^{t} f(s, \phi(s))-f(s, \psi(s)) d s\right| \\
& \leq \epsilon\left|t-t_{0}\right| \\
& \leq \epsilon \alpha_{1}
\end{aligned}
$$

and it follows that T is continuous on \mathcal{A}.
It remains to show that $T \mathcal{A}$ has compact closure. Note that if we show that $T \mathcal{A}$ is equicontinuous, it follows that the closure of $T \mathcal{A}$ is also equicontinuous. Since it is also bounded, it will follow from the Arzela-Ascoli theorem that $T \mathcal{A}$ is compact closure as required.

Equicontinuity of $T \mathcal{A}$:
For $\phi \in \mathcal{A}, t, u \in I_{\alpha_{1}}$, we have

$$
|\phi(t)-\phi(u)| \leq\left|\int_{u}^{t} f(s, \phi(s)) d s\right| \leq M|t-u|
$$

which gives equicontinuity. QED.

Proof 2 of Peano Theorem.

Let $I_{\alpha}, I_{\alpha_{1}}, B_{\beta}$ be as in Proof 1 .
Let $h=h_{n}=\frac{\alpha_{1}}{n}$ for $n \geq 1$.
We will consider the Euler polygonal approximations ϕ_{h} for solutions defined in the following way.

First, let $x_{1}=x_{0}+f\left(t_{0}, x_{0}\right) h$. Then, letting $t_{i+1}=t_{i}+h=t_{0}+i h$, set $x_{i+1}=x_{i}+f\left(t_{i}, x_{i}\right) h$, for $0 \leq i \leq n-1$.

This is a discrete sequence of vectors. Interpolate linearly between $\left(t_{i}, x_{i}\right)$ and $\left(t_{i+1}, x_{i+1}\right)$ to form the function

$$
\phi_{h}(t)=x_{i}+f\left(t_{i}, x_{i}\right)\left(t-t_{i}\right) \text { for } t_{i} \leq t \leq t_{i+1}
$$

Claim 1. The sequence of functions $\phi_{n}=\phi_{h_{n}}$ is equicontinuous.
First note that they all have the same Lipschitz constant M.
Let $I_{j}=\left[t_{0}+j h, t_{0}+(j+1) h\right]$. Then, for $s<t, s \in I_{j}, t \in I_{l}$ with $l \geq j$, we have

$$
\begin{aligned}
\left|\phi_{h}(t)-\phi_{h}(s)\right| \leq & \left|\phi_{h}(t)-\phi_{h}\left(t_{l}\right)\right|+\left|\phi_{h}\left(t_{l}\right)-\phi_{h}\left(t_{l-1}\right)\right| \\
& +\ldots+\left|\phi_{h}\left(t_{j+1}\right)-\phi_{h}(s)\right| \\
\leq & M(t-s)
\end{aligned}
$$

Next note that, inductively, if $\left|x_{i}-x_{0}\right| \leq M i h \leq M \alpha_{1}<\beta$, then

$$
\left|x_{i+1}-x_{i}\right| \leq M h
$$

so

$$
\begin{aligned}
\left|x_{i+1}-x_{0}\right| & \leq\left|x_{i+1}-x_{i}\right|+\left|x_{i}-x_{0}\right| \\
& \leq M h+M i h \\
& \leq M(i+1) h \\
& \leq M \alpha_{1}
\end{aligned}
$$

for $i<n$.
Similarly, $\left|\phi_{h_{n}}(t)-x_{0}\right| \leq M \alpha_{1} \leq \beta$, so the $\phi_{h_{n}}$ are uniformly bounded.
Thus, by the Arzela-Ascoli theorem, there is a sequence $\phi_{h_{n_{j}}}$ which converges to a function $\psi(t)$ of $I_{\alpha_{1}}$.

We leave it as an exercise that as $h_{n} \rightarrow 0$,

$$
\left|\phi_{h_{n}}(t)-x_{0}-\int_{t_{0}}^{t} f\left(s, \phi_{h_{n}}(s)\right) d s\right| \rightarrow 0
$$

Thus, for the limit function, ψ, we have

$$
\psi(t)=\int_{t_{0}}^{t} f(s, \psi(s)) d s
$$

giving us that ψ is a solution. QED.

