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Hamiltonian Systems and Variational Problems

We have seen that Hamiltonian systems arise naturally in Classical Mechan-
ics. Now we will see that they also arise in general problems in the Calculus
of Variations.

Consider a real-valued function L(q, ¢,t) of the variables (¢, ¢,t) € R*"**,
Let t; < ty be real numbers, a, b be two fixed elements in R", and suppose
we seek to find conditions on C? curves v : ¢ = ¢(t) defined on the interval
[t1, 1] such that

q(t1) = a, q(t2) =b (1)

and

16) = [ Blate) o). &)

t1
is stationary for nearby curves n with the same boundary conditions (1)
and ¢(t) is the derivative %(¢).
This means we consider one-parameter families (¢, a) of C? curves with

q(t,0) = ~(t) such that

q(ti,a) =a, q(tz, ) =b (3)

for all o and

dl
o la=0=0 (4)

for

10) = [ Lla(t,a) (¢, o), 1)t (5)

t1

One sometimes writes the condition (4) as

5 % Lig(t), d(t), )t = 0

t1

The operator § is used to denote the fact that we are not considering an
ordinary derivative, but rather, a stationary value of the integral as a family
of curves changes.
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Note that if v were a curve for which the integral (2) assumed a minimum
for all nearby curves with the given boundary conditions, then it would be
stationary in the sense of condition (4).

To express the derivative % more conveniently, we introduce some no-
tation. Write ¢ = (q1,...,¢n), 4 = (d1,-..,4n), Ly, for the partial derivative
of L with respect to qx, Lg, for the partial derivative of L with respect to ¢
with 1 < k < n. Also, we denote differentiation with respect to t by ’dot’
and that with respect to a by 'prime’.

Consider the condition % la=0= 0.

We have

0= = ["L.-d+ L. dd 6
= mw—t ¢'q +Lg-qdt (6)

where L, - q, Ly - ¢ respectively stand for
- /
Z qu Ay
k=1
and
n y
Z Ldk dx
k=1

The constraints of our variation curves make ¢(t, ) constant in « at the
boundary points t1,ts. So, we have the dot product

S(t7 Ot) = Lq ' q, = Z Lékqllf

k=1
vanishes at ¢, ts.
Hence,
t2 ds
= —dt 7
t1 dt ( )
which gives
to dL
0= =2.¢+L, ddt (8)
t1 dt

Subtracting (8) from (6), we get
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dl t2 d /
= — |a=o= L,— —Lg)q dt
0= lazo= [ (L~ ZLo)g (9)

Now, the ’prime’ derivatives ¢’ can be made arbitrary, so, (9) implies

d

L, — %Lq- =0 (10)
or, written out completely,
d
ank:qu, E=1,....n (11)

The equations (11) are called the Euler-Lagrange equations.
At a curve (q(t), §(t),t) which makes the integral (2) stationary, we have
that (q(t), ¢(t)) satisfies

d . .

g Lae(a(0),4(8),1) = Lg, (4(t), 4(2), 1)
for k=1,...,n.
Note that these are second order differential equations.
Examples.

1. Suppose that we consider the problem of finding the curve v of shortest
length shortest joining two points a,b € R?

Writing v(t) = (z(t),y(t)), t1 < t < ty, we seek to minimize the
function

to
1) = [ a2+ gt
(7) VAt

over all such curves. Let L(x,y,&,9,t) = V22 + 9°.

The Euler-Lagrange equations become

d d
—L;=L,, —L,=1L
dt a7
Since, L is independent of x,y,t, we get
d d
L;E:O fLy:O, Lt:O

dt T dt
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These equations become

d d
—L, = —=
dt dt L
Li — zL,
5
P— 7:0
L )
and
d dy
L. = —Z
dt Y dt L
Ly —yly
— iE
i
= 2 =0.
L

Using that L is never zero, we see the only solutions are those (x(t), y(t))
for which & = 0, § = 0. That is, the only solutions are straight lines.
With the above boundary condition, we get a unique line segment join-
ing a to b.

. Consider the open unit disk D in the complex plane, D = {z € C :
| z | < 1}. Define the function

2| dz |
10)= [ =0
y1-|z |

Then, the curves which make this integral a minimum are the straight
lines through the origin and the circles orthogonal to the boundary of
D. In elementary differential geometry, it is proved that the above
functional I gives the arclength of the curve v with the Riemannian
metric on D with constant Gaussian curvature equal to -1. The simplest
way to prove that the minimizing curves are as indicated is to use a
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Linear Fractional Transformation 7' (e.g. z — ﬂ'z(_:l)) to map D to

the upper half-plane H. The integrals are transformed to

ey = [T

(y Im z

(12)

The integrand (12) is preserved by transformations of the form S(z) =
Zjis where a, b, ¢, d are real and ad—bc > 0. Also, such transformations
map circles and lines orthogonal to the real axis into other such curves.
Given a pair of points, a # b in C, we can find an S which maps a, b
into the same vertical line. It is easy to see that a minimizing curve for
(12) connecting points on the same vertical line must be a curve along
that vertical line. Thus, minimizing curves in H must be pieces of lines
and circles orthogonal to the real axis. Pulling back to D by 7! gives

the desired result for D.

We now show that, in an open set G in R?"*! in which the matrix function

Ldkm(%(jat) (13)

is non-singular, we can choose coordinates in which the Euler-Lagrange

equations become a Hamiltonian system. This is one of the main reasons
that Hamiltonian systems are important.

So, assume that we have the independent coordinates (g, ¢, t) in an open
set G in R* "1 that L(q, q,t) is a C? real-valued function in G, and that the
matrix function (13) is non-singular in G.

Consider the set of equations

pk:Ldk(%Q:t)a k=1...,n (14>

Because of the assumption that (13) is non-singular, the Implicit Function

Theorem gives us a set of C? functions Sy(q,p,t) for k =1,...,n, such that
(14) holds if and only if

(jk:Sk(qaput)7 ]{?:1,...,71 (]‘5>
Let

k

k
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Then, for £ =1,...,n,

— = Sig,pt)+ — =) Ly ———
o o(q,p,t) Zk:pk O, Xk: " B,
= Sé(qapa t) = Qz
since Pr = Ldk (qa Q7 t)
Also,
T AR SRV L. ==F
= ng
d
= %Lde by Euler-Lagrange

= (jtpg by definition of p,

In the (g, p, t), coordinates, we therefore have a Hamiltonian system with
Hamiltonian function H. If L(q,q,t) = L(q, ¢) is independent of time ¢, then
so is H. However, in the general case, both L and H are time dependent.
Note that if H is time-dependent, then the function H is not constant on
solutions to the Hamiltonian system.

Let us now return to the Conservative Mechanical system with potential
energy U we studied in the last section.

Using, position ¢ and momentum p as coordinates, we saw that the equa-
tions of motion were a (time-independent) Hamiltonian system with Hamil-
tonian function

1 i
k

and the velocity ¢ satisfied ¢, = £=

mg
If we assume that this Hamiltonian system comes from a variational prob-

lem as above, we are led to write
H => prge — L(q,p)
k

or
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L = > pin—H
k

_ Z -_}Zﬁ_(]
= kpqu kak

1 2
_ Zpk&_, Pe
A mig 2 kmk

1 2

= ,Z&_U
kak

= K-U

where K denotes the kinetic energy. The function L = K —U is called the
Lagrangian function or action function, as opposed to the function T'= K+U
which was called the Energy function.

From the above, we are led to guess that conservative mechanical systems
would satisfy the Euler-Lagrange equations for the function L = K —U. This
is indeed the case as can be easily verified. In this case, it can be verified
that the integral

[ La

is actually minimized by the solution curves (g, ¢), not just made station-
ary. This is known as Hamilton’s Principal of Least Action.



