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Hamiltonian Systems and Variational Problems

We have seen that Hamiltonian systems arise naturally in Classical Mechan-
ics. Now we will see that they also arise in general problems in the Calculus
of Variations.

Consider a real-valued function L(q, q̇, t) of the variables (q, q̇, t) ∈ R2n+1.
Let t1 < t2 be real numbers, a,b be two fixed elements in Rn, and suppose
we seek to find conditions on C2 curves γ : q = q(t) defined on the interval
[t1, t2] such that

q(t1) = a, q(t2) = b (1)

and

I(γ) =
∫ t2

t1
L(q(t), q̇(t), t)dt (2)

is stationary for nearby curves η with the same boundary conditions (1)
and q̇(t) is the derivative dq

dt
(t).

This means we consider one-parameter families q(t, α) of C2 curves with
q(t, 0) = γ(t) such that

q(t1, α) = a, q(t2, α) = b (3)

for all α and

dI

dα
|α=0= 0 (4)

for

I(α) =
∫ t2

t1
L(q(t, α), q̇(t, α), t)dt. (5)

One sometimes writes the condition (4) as

δ
∫ t2

t1
L(q(t), q̇(t), t)dt = 0

The operator δ is used to denote the fact that we are not considering an
ordinary derivative, but rather, a stationary value of the integral as a family
of curves changes.
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Note that if γ were a curve for which the integral (2) assumed a minimum
for all nearby curves with the given boundary conditions, then it would be
stationary in the sense of condition (4).

To express the derivative dI
dα more conveniently, we introduce some no-

tation. Write q = (q1, . . . , qn), q̇ = (q̇1, . . . , q̇n), Lqk
for the partial derivative

of L with respect to qk, Lq̇k
for the partial derivative of L with respect to q̇k

with 1 ≤ k ≤ n. Also, we denote differentiation with respect to t by ’dot’
and that with respect to α by ’prime’.

Consider the condition dI
dα |α=0= 0.

We have

0 = I′(α) =
∫ t2

t1
Lq · q′ + Lq̇ · q̇′dt (6)

where Lq · q′, Lq̇ · q̇′ respectively stand for

n∑
k=1

Lqk
q′k

and

n∑
k=1

Lq̇k
q̇′k

The constraints of our variation curves make q(t, α) constant in α at the
boundary points t1, t2. So, we have the dot product

s(t, α) = Lq̇ · q′ =
n∑

k=1

Lq̇k
q′k

vanishes at t1, t2.
Hence,

0 =
∫ t2

t1

ds

dt
dt (7)

which gives

0 =
∫ t2

t1

dLq̇

dt
· q′ + Lq̇ · q̇′dt (8)

Subtracting (8) from (6), we get
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0 =
dI

dα
|α=0=

∫ t2

t1
(Lq −

d

dt
Lq̇)q

′dt (9)

Now, the ’prime’ derivatives q′ can be made arbitrary, so, (9) implies

Lq −
d

dt
Lq̇ = 0 (10)

or, written out completely,

d

dt
Lq̇k

= Lqk
, k = 1, . . . , n (11)

The equations (11) are called the Euler-Lagrange equations.
At a curve (q(t), q̇(t), t) which makes the integral (2) stationary, we have

that (q(t), q̇(t)) satisfies

d

dt
Lq̇k

(q(t), q̇(t), t) = Lqk
(q(t), q̇(t), t)

for k = 1, . . . , n.
Note that these are second order differential equations.
Examples.

1. Suppose that we consider the problem of finding the curve γ of shortest
length shortest joining two points a,b ∈ R2

Writing γ(t) = (x(t), y(t)), t1 ≤ t ≤ t2, we seek to minimize the
function

I(γ) =
∫ t2

t1

√
ẋ2 + ẏ2dt

over all such curves. Let L(x, y, ẋ, ẏ, t) =
√

ẋ2 + ẏ2.

The Euler-Lagrange equations become

d

dt
Lẋ = Lx,

d

dt
Lẏ = Ly

Since, L is independent of x, y, t, we get

d

dt
Lẋ = 0,

d

dt
Lẏ = 0, Lt = 0
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These equations become

d

dt
Lẋ =

d

dt

ẋ

L

=
Lẍ− ẋLt

L2

=
ẍ

L
= 0,

and

d

dt
Lẏ =

d

dt

ẏ

L

=
Lÿ − ẏLt

L2

=
ÿ

L
= 0.

Using that L is never zero, we see the only solutions are those (x(t), y(t))
for which ẍ = 0, ÿ = 0. That is, the only solutions are straight lines.
With the above boundary condition, we get a unique line segment join-
ing a to b.

2. Consider the open unit disk D in the complex plane, D = {z ∈ C :
| z | < 1}. Define the function

I(γ) =
∫
γ

2| dz |
1− | z |2

Then, the curves which make this integral a minimum are the straight
lines through the origin and the circles orthogonal to the boundary of
D. In elementary differential geometry, it is proved that the above
functional I gives the arclength of the curve γ with the Riemannian
metric on D with constant Gaussian curvature equal to -1. The simplest
way to prove that the minimizing curves are as indicated is to use a
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Linear Fractional Transformation T (e.g. z → −i(z−1)
z+1

) to map D to
the upper half-plane H. The integrals are transformed to

I(T (γ)) =
∫

T (γ)

| dz |
Im z

(12)

The integrand (12) is preserved by transformations of the form S(z) =
az+b
cz+d

where a, b, c, d are real and ad−bc > 0. Also, such transformations
map circles and lines orthogonal to the real axis into other such curves.
Given a pair of points, a 6= b in C, we can find an S which maps a,b
into the same vertical line. It is easy to see that a minimizing curve for
(12) connecting points on the same vertical line must be a curve along
that vertical line. Thus, minimizing curves in H must be pieces of lines
and circles orthogonal to the real axis. Pulling back to D by T−1 gives
the desired result for D.

We now show that, in an open set G in R2n+1 in which the matrix function

Lq̇k,q̇`
(q, q̇, t) (13)

is non-singular, we can choose coordinates in which the Euler-Lagrange
equations become a Hamiltonian system. This is one of the main reasons
that Hamiltonian systems are important.

So, assume that we have the independent coordinates (q, q̇, t) in an open
set G in R2n+1, that L(q, q̇, t) is a C2 real-valued function in G, and that the
matrix function (13) is non-singular in G.

Consider the set of equations

pk = Lq̇k
(q, q̇, t), k = 1, . . . , n (14)

Because of the assumption that (13) is non-singular, the Implicit Function
Theorem gives us a set of C2 functions Sk(q, p, t) for k = 1, . . . , n, such that
(14) holds if and only if

q̇k = Sk(q, p, t), k = 1, . . . , n (15)

Let

H(q, p, t) =
∑
k

pkq̇k − L(q, q̇, t)

=
∑
k

pkSk(q, p, t)− L(q, S(q, p, t), t)
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Then, for ` = 1, . . . , n,

∂H

∂p`

= S`(q, p, t) +
∑
k

pk
∂Sk(q, p, t)

∂p`

−
∑
k

Lq̇k

∂Sk

∂p`

= S`(q, p, t) = q̇`

since pk = Lq̇k
(q, q̇, t).

Also,

−∂H

∂q`

= −
∑
k

pk
∂Sk(q, p, t)

∂q`

+ Lq`
+

∑
k

Lq̇k

∂Sk

∂q`

= Lq`

=
d

dt
Lq̇`

by Euler-Lagrange

=
d

dt
p` by definition of p`

In the (q, p, t), coordinates, we therefore have a Hamiltonian system with
Hamiltonian function H. If L(q, q̇, t) = L(q, q̇) is independent of time t, then
so is H. However, in the general case, both L and H are time dependent.
Note that if H is time-dependent, then the function H is not constant on
solutions to the Hamiltonian system.

Let us now return to the Conservative Mechanical system with potential
energy U we studied in the last section.

Using, position q and momentum p as coordinates, we saw that the equa-
tions of motion were a (time-independent) Hamiltonian system with Hamil-
tonian function

H(q, p) =
1

2

∑
k

p2
k

mk

+ U(q1, . . . , qn)

and the velocity q̇ satisfied q̇k = pk

mk
.

If we assume that this Hamiltonian system comes from a variational prob-
lem as above, we are led to write

H =
∑
k

pkq̇k − L(q, p)

or
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L =
∑
k

pkq̇k −H

=
∑
k

pkq̇k −
1

2

∑
k

p2
k

mk

− U

=
∑
k

pk
pk

mk

− 1

2

∑
k

p2
k

mk

− U

=
1

2

∑
k

p2
k

mk

− U

= K − U

where K denotes the kinetic energy. The function L = K−U is called the
Lagrangian function or action function, as opposed to the function T = K+U
which was called the Energy function.

From the above, we are led to guess that conservative mechanical systems
would satisfy the Euler-Lagrange equations for the function L = K−U . This
is indeed the case as can be easily verified. In this case, it can be verified
that the integral ∫

L(q, q̇)dt

is actually minimized by the solution curves (q, q̇), not just made station-
ary. This is known as Hamilton’s Principal of Least Action.


