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Hamiltonian Systems in R2n

Let H : R2n → R be a Ck function, k ≥ 1. Write coordinates (q, p) =
(q1, . . . , qn, p1, . . . , pn) on R2n.

A system of differential equations of the form

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

i = 1, . . . , n (1)

is called a Hamiltonian system with n degrees of freedom and Hamiltonian
function H. We also write XH for the vector field defined by (1).

Sometimes we write the shortened form of (1) as

q̇ = ∂H
∂p

ṗ = −∂H
∂q

where q = (q1, . . . , qn), p = (p1, . . . , pn).
If we define ∇H = ( ∂H

∂q1
, . . . , ∂H

∂qn
, ∂H

∂p1
, . . . , ∂H

∂pn
) and

J =

[
0 I
−I 0

]
,

where I is the n× n identity matrix,
then (1) has the form

ż = J∇H(z). (2)

The matrix J above is called the standard symplectic matrix. It is one
of the normal forms of a non-degenerate alternating bilinear form on R2n.
Because of equation (2), one sometimes refers to a Hamiltonian system as a
symplectic gradient. However, the orbit structure of a hamiltonian system is
vastly different from that of a gradient system.

Proposition. If XH is a Hamiltonian system with Hamiltonian H, then
H is constant on orbits.

Proof.
For any solution curve γ(t) = (q(t), p(t)) we have

dH(q(t), p(t))

dt
=

n∑
i=1

∂H

∂qi

q̇i +
∂H

∂pi

ṗi
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=
n∑

i=1

Hqi
Hpi

+ Hpi
(−Hqi

)

= 0

QED.

Classical Mechanical Systems in Rn

Let x = (x1, . . . , xn) denote points in Rn, and let U : Rn → R be a C1

function. Let mi > 0, i = 1, . . . , n be n positive real constants.
The system

miẍi = −∂U

∂xi

, i = 1, . . . , n (3)

is called a conservative mechanical system with potential function U in
Rn. The constants represent the masses of the system, and the function
U plays the role of potential energy. The system (3) is a formulation of
Newton’s law of motion which, in words, says that mass times acceleration
equals force and the force is the negative gradient of the potential energy
function. Note that the potential function is a function of position alone
(not velocity) and can be an arbitrary C1 function.

Let ci > 0, i = 1, . . . , n denote some other constants.
The system

miẍi + ciẋi = −∂U

∂xi

, i = 1, . . . , n (4)

is called a dissipative mechanical system with potential function U and
frictional constants ci.

Given (3) or (4), we set v = (v1, . . . , vn) = (ẋ1, . . . , ẋn) and form the
function

T (x, v) =
1

2

n∑
i=1

miv
2
i + U(x)

This is called the total energy function (or simply the energy function) of
the system. The function K(v) = 1

2

∑n
i=1 miv

2
i is called the Kinetic Energy

of the system. It is a function of velocity alone.
The equations (3), (4) are second order systems.
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We can form the associated first order systems

ẋi = vi

miv̇i = − ∂U
∂xi

(5)

and

ẋi = vi

miv̇i = −civi − ∂U
∂xi

(6)

Proposition. There is a coordinate system on R2n in which the conser-
vative system (3) becomes a Hamiltonian system.

Proof.
Let qi = xi, pi = mivi.
Then,

H(q, p) = T (x, v) =
1

2

n∑
i=1

p2
i

mi

+ U(q1, . . . , qn)

and (3) becomes

q̇i = pi

mi
= ∂H

∂pi

ṗi = miv̇i = −∂H
∂qi

QED.
Facts.

1. The critical points of a classical mechanical system are the points (x, v)
with x a critical point of U and v = 0.

2. The total energy function T (x, v) is a Lyapunov function for a conserva-
tive mechanical system and a strict Lyapunov function for a dissipative
mechanical system.

3. If x0 is a strict relative minimum of the potential function U , then
(x0, 0) is a stable equilibrium of the system (5) and an asymptotically
stable equilibrium of the system (6).

The fact that the energy function T (x, v) is a Lyapunov function for a
mechanical system frequently helps us to get a picture of the the solutions
without solving the equation.
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To illustrate this phenomenon, let us consider systems with one degree of
freedom.

These have the form

ẍ + f(x) = 0 (7)

where f : R→ R is a real-valued function of one real variable.
Writing U(x) =

∫ x
0 f(s)ds, we get a total energy function of the form

T (x, v) =
1

2
v2 + U(x)

Let us consider some examples.

1. Harmonic oscillator

T (x, v) =
v2

2
+

x2

2

The orbits are circles around the origin (0, 0) which is a single stable
equilibrium.

2. Pendulum

T (x, v) =
v2

2
+ k(1− cos(x))

for some constant k > 0.

The critical points are (±nπ, 0). The stable ones are (2πn, 0) and the
saddles are (π(2n + 1), 0).

3. Duffing equation

T (x, v) =
v2

2
+

x4

4
− x2

2

There are three critical points at (0, 0), (−1, 0), (1, 0). The origin is a
saddle and the others are centers ( a center is a critical point surrounded
by periodic orbits).

When one adds friction to each of the above equations, the orbits cross
the level sets of T instead of lying in them.


