Hamiltonian Systems in $\mathbf{R}^{2 n}$

Let $H: \mathbf{R}^{2 n} \rightarrow \mathbf{R}$ be a C^{k} function, $k \geq 1$. Write coordinates $(q, p)=$ $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ on $\mathbf{R}^{2 n}$.

A system of differential equations of the form

$$
\begin{align*}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \tag{1}\\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{align*} \quad i=1, \ldots, n
$$

is called a Hamiltonian system with n degrees of freedom and Hamiltonian function H. We also write X_{H} for the vector field defined by (1).

Sometimes we write the shortened form of (1) as

$$
\begin{aligned}
\dot{q} & =\frac{\partial H}{\partial p} \\
\dot{p} & =-\frac{\partial H}{\partial q}
\end{aligned}
$$

where $q=\left(q_{1}, \ldots, q_{n}\right), p=\left(p_{1}, \ldots, p_{n}\right)$.
If we define $\nabla H=\left(\frac{\partial H}{\partial q_{1}}, \ldots, \frac{\partial H}{\partial q_{n}}, \frac{\partial H}{\partial p_{1}}, \ldots, \frac{\partial H}{\partial p_{n}}\right)$ and

$$
J=\left[\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right]
$$

where I is the $n \times n$ identity matrix, then (1) has the form

$$
\begin{equation*}
\dot{z}=J \nabla H(z) . \tag{2}
\end{equation*}
$$

The matrix J above is called the standard symplectic matrix. It is one of the normal forms of a non-degenerate alternating bilinear form on $\mathbf{R}^{2 n}$. Because of equation (2), one sometimes refers to a Hamiltonian system as a symplectic gradient. However, the orbit structure of a hamiltonian system is vastly different from that of a gradient system.

Proposition. If X_{H} is a Hamiltonian system with Hamiltonian H, then H is constant on orbits.

Proof.

For any solution curve $\gamma(t)=(q(t), p(t))$ we have

$$
\frac{d H(q(t), p(t))}{d t}=\sum_{i=1}^{n} \frac{\partial H}{\partial q_{i}} \dot{q}_{i}+\frac{\partial H}{\partial p_{i}} \dot{p}_{i}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} H_{q_{i}} H_{p_{i}}+H_{p_{i}}\left(-H_{q_{i}}\right) \\
& =0
\end{aligned}
$$

QED.

Classical Mechanical Systems in \mathbf{R}^{n}

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ denote points in \mathbf{R}^{n}, and let $U: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a C^{1} function. Let $m_{i}>0, i=1, \ldots, n$ be n positive real constants.

The system

$$
\begin{equation*}
m_{i} \ddot{x}_{i}=-\frac{\partial U}{\partial x_{i}}, i=1, \ldots, n \tag{3}
\end{equation*}
$$

is called a conservative mechanical system with potential function U in \mathbf{R}^{n}. The constants represent the masses of the system, and the function U plays the role of potential energy. The system (3) is a formulation of Newton's law of motion which, in words, says that mass times acceleration equals force and the force is the negative gradient of the potential energy function. Note that the potential function is a function of position alone (not velocity) and can be an arbitrary C^{1} function.

Let $c_{i}>0, i=1, \ldots, n$ denote some other constants.
The system

$$
\begin{equation*}
m_{i} \ddot{x}_{i}+c_{i} \dot{x}_{i}=-\frac{\partial U}{\partial x_{i}}, i=1, \ldots, n \tag{4}
\end{equation*}
$$

is called a dissipative mechanical system with potential function U and frictional constants c_{i}.

Given (3) or (4), we set $v=\left(v_{1}, \ldots, v_{n}\right)=\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)$ and form the function

$$
T(x, v)=\frac{1}{2} \sum_{i=1}^{n} m_{i} v_{i}^{2}+U(x)
$$

This is called the total energy function (or simply the energy function) of the system. The function $K(v)=\frac{1}{2} \sum_{i=1}^{n} m_{i} v_{i}^{2}$ is called the Kinetic Energy of the system. It is a function of velocity alone.

The equations (3), (4) are second order systems.

We can form the associated first order systems

$$
\begin{array}{rlr}
\dot{x}_{i} & = & v_{i} \tag{5}\\
m_{i} \dot{v}_{i} & = & -\frac{\partial U}{\partial x_{i}}
\end{array}
$$

and

$$
\begin{array}{rlr}
\dot{x}_{i} & = & v_{i} \tag{6}\\
m_{i} \dot{v}_{i} & = & -c_{i} v_{i}-\frac{\partial U}{\partial x_{i}}
\end{array}
$$

Proposition. There is a coordinate system on $\mathbf{R}^{2 n}$ in which the conservative system (3) becomes a Hamiltonian system.

Proof.

Let $q_{i}=x_{i}, p_{i}=m_{i} v_{i}$.
Then,

$$
H(q, p)=T(x, v)=\frac{1}{2} \sum_{i=1}^{n} \frac{p_{i}^{2}}{m_{i}}+U\left(q_{1}, \ldots, q_{n}\right)
$$

and (3) becomes

$$
\begin{aligned}
\dot{q}_{i} & =\frac{p_{i}}{m_{i}}= \\
\dot{p}_{i}=m_{i} \dot{v}_{i}=-\frac{\partial H}{\partial \partial_{i}} & -\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

QED.
Facts.

1. The critical points of a classical mechanical system are the points (x, v) with x a critical point of U and $v=0$.
2. The total energy function $T(x, v)$ is a Lyapunov function for a conservative mechanical system and a strict Lyapunov function for a dissipative mechanical system.
3. If x_{0} is a strict relative minimum of the potential function U, then $\left(x_{0}, 0\right)$ is a stable equilibrium of the system (5) and an asymptotically stable equilibrium of the system (6).

The fact that the energy function $T(x, v)$ is a Lyapunov function for a mechanical system frequently helps us to get a picture of the the solutions without solving the equation.

To illustrate this phenomenon, let us consider systems with one degree of freedom.

These have the form

$$
\begin{equation*}
\ddot{x}+f(x)=0 \tag{7}
\end{equation*}
$$

where $f: \mathbf{R} \rightarrow \mathbf{R}$ is a real-valued function of one real variable.
Writing $U(x)=\int_{0}^{x} f(s) d s$, we get a total energy function of the form

$$
T(x, v)=\frac{1}{2} v^{2}+U(x)
$$

Let us consider some examples.

1. Harmonic oscillator

$$
T(x, v)=\frac{v^{2}}{2}+\frac{x^{2}}{2}
$$

The orbits are circles around the origin $(0,0)$ which is a single stable equilibrium.
2. Pendulum

$$
T(x, v)=\frac{v^{2}}{2}+k(1-\cos (x))
$$

for some constant $k>0$.
The critical points are $(\pm n \pi, 0)$. The stable ones are $(2 \pi n, 0)$ and the saddles are $(\pi(2 n+1), 0)$.
3. Duffing equation

$$
T(x, v)=\frac{v^{2}}{2}+\frac{x^{4}}{4}-\frac{x^{2}}{2}
$$

There are three critical points at $(0,0),(-1,0),(1,0)$. The origin is a saddle and the others are centers (a center is a critical point surrounded by periodic orbits).

When one adds friction to each of the above equations, the orbits cross the level sets of T instead of lying in them.

