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1 Introduction

This course will cover basic material about ordinary differential equations.
The main reference for the initial parts are the First 3 chapters of Hale,
Ordinary Differential Equations, 2nd. ed.

Definition. A real normed linear (vector) space is a pair (X , | · |) where
X is a real vector space and | · |: X → R is a real-valued function on X such
that

(i) | x | ≥ 0 ∀x and | x | = 0 iff x = 0 for x ∈ X

(ii) | αx | = | α || x | for α ∈ R, x ∈ X

(iii) | x + y | ≤ | x |+ | y | ∀ x, y ∈ X

If X is a complex vector space and (ii) holds for all α ∈ C, then we call
(X , | · |) a complex normed linear space.

Sometimes we say simply that X is a normed linear space where we
understand that the norm | · | is given implicitly.

If (X , | · |) is a normed linear space, then the function d(x, y) = | x− y |
is a (topological) metric in X .

This means that the pair (X , d) satisfies the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X , and d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

As usual, we say that a sequence (x1, x2, . . .) in (X , d) is a Cauchy sequence
if, for every ε > 0, there is an N > 0 such that

n, m ≥ N ⇒ d(xn, xm) < ε

The metric space (X , d) is complete if every Cauchy sequence in X con-
verges to a point of X .

Recall that every closed subset of a complete metric space is again com-
plete.
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The normed linear space (X , | · |) is called a Banach Space if it is a
complete metric space with respect to the metric d(x, y) = | x− y | induced
by the norm.

Let us give some examples of normed linear spaces and Banach Spaces.

Examples.

1. Let X = Rn or X = Cn denote the sets of n−tuples of real and complex
numbers, respectively. Define the following norms | · | in X .

(a) | x |p = (
∑

1≤i≤n | xi |p)
1
p

(b) | x | = max1≤i≤n | xi |

where x = (x1, . . . , xn) in the above.

With any one of these norms, X becomes a Banach space. The usual
norm is | · |2 above.

It is instructive to consider the geometric pictures of the unit balls in
each of the above Banach Spaces.

2. A linear subspace V of a Banach Space X is itself a Banach space if
and only if it is closed.

3. Let D be a compact subset of Rn. The set C(D,Rn) of continuous
functions from D to Rn becomes a Banach Space with the norm

| f | = sup
x∈D

| f(x) |

4. Let X, Y be Banach spaces. Let B(X, Y ) be the set of bounded func-
tions from X to Y with the sup norm.

| f | = sup
x∈X

| fx |

Then, (B(X, Y ), | · |) is itself Banach space. The set of Bounded con-
tinuous functions BC(X, Y ) with the sup norm is a closed subspace of
B(X, Y ).
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A function F : X → Y between metric spaces if called Lipschitz if there
is a constant L > 0 such that

d(Fx, Fy) ≤ Ld(x, y)

for all x, y ∈ X. The smallest such constant,

supx 6=y∈X
d(Fx, Fy)

d(x, y)

is called the Lipschitz constant of F .

Let X, Y be Banach spaces, let L > 0, and let LL(X, Y ) be the set
of bounded functions from X to Y which are Lipschitz with Lipschitz
constant less than or equal to L. Then, with the sup norm, LL(X, Y )
is a closed subset of BC(X, Y ).

Exercises:

1. Suppose that E is a finite dimensional linear vector space. Let | · |1, | · |2
be two norms on E. Show that there are constants C1, C2 > 0 such
that, for all x ∈ E,

C1| x |1 ≤ | x |2 ≤ C2| x |1

2. Let I be the real unit interval, and let C(I,R) be the space of continuous
real-valued functions on I with the norm

| f | =
∫

I
| f(x) | dx

Show that this makes (C(I,R), | · |) a normed linear space, but that it
is not complete. What is the completion of this space?

Definition. Let X be a compact metric space, and let F be a collection
of continuous functions from X to the separable Banach space Y (e.g. Rn).
We say that the family F is equicontinuous if, for every ε > 0 there is a δ > 0
such that

x, y ∈ X and d(x, y) < δ ⇒ | fx− fy | < ε ∀ f ∈ F
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We say the family F is bounded if there is a constant C > 0 such that
| fx | < C for all f ∈ F , x ∈ X .

Theorem. (Arzela-Ascoli) The family F of functions as above is compact
in the uniform topology if and only if it is closed, bounded and equicontinuous.

Example. Let D be a closed bounded subset of the Euclidean space Rn,
and let Y be a Banach space. Let K.L > 0 and let LL,K(D,Y) be the space
of Lipschitz functions from D to Y with norm less than or equal to K and
Lipschitz constant less than or equal to L. Then, LL,K(D,Y) is a compact
metric space. In particular, every sequence in LL,K(D,Y) has a subsequence
which converges to an element of LL,K(D,Y).


