1 Introduction

This course will cover basic material about ordinary differential equations. The main reference for the initial parts are the First 3 chapters of Hale, Ordinary Differential Equations, 2nd. ed.

Definition. A real normed linear (vector) space is a pair $(\mathcal{X}, |\cdot|)$ where \mathcal{X} is a real vector space and $|\cdot|: \mathcal{X} \to \mathbf{R}$ is a real-valued function on \mathcal{X} such that

(i) $|x| \ge 0 \forall x \text{ and } |x| = 0 \text{ iff } x = 0 \text{ for } x \in \mathcal{X}$

(ii)
$$|\alpha x| = |\alpha| |x|$$
 for $\alpha \in \mathbf{R}, x \in \mathcal{X}$

(iii) $|x+y| \leq |x|+|y| \forall x, y \in \mathcal{X}$

If \mathcal{X} is a complex vector space and (ii) holds for all $\alpha \in \mathbf{C}$, then we call $(\mathcal{X}, |\cdot|)$ a complex normed linear space.

Sometimes we say simply that \mathcal{X} is a normed linear space where we understand that the norm $|\cdot|$ is given implicitly.

If $(\mathcal{X}, |\cdot|)$ is a normed linear space, then the function d(x, y) = |x - y| is a (topological) metric in \mathcal{X} .

This means that the pair (\mathcal{X}, d) satisfies the following properties:

- (i) $d(x,y) \ge 0$ for all $x, y \in \mathcal{X}$, and d(x,y) = 0 iff x = y
- (ii) d(x,y) = d(y,x)
- (iii) $d(x,z) \le d(x,y) + d(y,z)$

As usual, we say that a sequence $(x_1, x_2, ...)$ in (\mathcal{X}, d) is a *Cauchy sequence* if, for every $\epsilon > 0$, there is an N > 0 such that

$$n, m \ge N \Rightarrow d(x_n, x_m) < \epsilon$$

The metric space (\mathcal{X}, d) is *complete* if every Cauchy sequence in \mathcal{X} converges to a point of \mathcal{X} .

Recall that every closed subset of a complete metric space is again complete. The normed linear space $(\mathcal{X}, |\cdot|)$ is called a *Banach Space* if it is a complete metric space with respect to the metric d(x, y) = |x - y| induced by the norm.

Let us give some examples of normed linear spaces and Banach Spaces.

Examples.

1. Let $\mathcal{X} = \mathbb{R}^n$ or $\mathcal{X} = \mathbb{C}^n$ denote the sets of n-tuples of real and complex numbers, respectively. Define the following norms $|\cdot|$ in \mathcal{X} .

(a)
$$|x|_{p} = (\sum_{1 \le i \le n} |x_{i}|^{p})^{\frac{1}{p}}$$

(b) $|x| = \max_{1 \le i \le n} |x_{i}|$

where $x = (x_1, \ldots, x_n)$ in the above.

With any one of these norms, \mathcal{X} becomes a Banach space. The *usual* norm is $|\cdot|_2$ above.

It is instructive to consider the geometric pictures of the unit balls in each of the above Banach Spaces.

- 2. A linear subspace V of a Banach Space \mathcal{X} is itself a Banach space if and only if it is closed.
- 3. Let D be a compact subset of \mathbf{R}^n . The set $\mathcal{C}(D, \mathbf{R}^n)$ of continuous functions from D to \mathbf{R}^n becomes a Banach Space with the norm

$$\mid f \mid = \sup_{x \in D} \mid f(x) \mid$$

4. Let X, Y be Banach spaces. Let B(X, Y) be the set of bounded functions from X to Y with the *sup* norm.

$$\mid f \mid = \sup_{x \in X} \mid fx \mid$$

Then, $(B(X, Y), |\cdot|)$ is itself Banach space. The set of Bounded continuous functions BC(X, Y) with the sup norm is a closed subspace of B(X, Y). A function $F: X \to Y$ between metric spaces if called *Lipschitz* if there is a constant L > 0 such that

$$d(Fx, Fy) \le Ld(x, y)$$

for all $x, y \in X$. The smallest such constant,

$$\sup_{x \neq y \in X} \frac{d(Fx, Fy)}{d(x, y)}$$

is called the Lipschitz constant of F.

Let X, Y be Banach spaces, let L > 0, and let $\mathcal{L}_L(X, Y)$ be the set of bounded functions from X to Y which are Lipschitz with Lipschitz constant less than or equal to L. Then, with the *sup* norm, $\mathcal{L}_L(X, Y)$ is a closed subset of BC(X, Y).

Exercises:

1. Suppose that E is a finite dimensional linear vector space. Let $|\cdot|_1, |\cdot|_2$ be two norms on E. Show that there are constants $C_1, C_2 > 0$ such that, for all $x \in E$,

$$C_1 |x|_1 \le |x|_2 \le C_2 |x|_1$$

2. Let I be the real unit interval, and let $\mathcal{C}(I, \mathbf{R})$ be the space of continuous real-valued functions on I with the norm

$$\mid f \mid = \int_{I} \mid f(x) \mid dx$$

Show that this makes $(\mathcal{C}(I, \mathbf{R}), |\cdot|)$ a normed linear space, but that it is not complete. What is the completion of this space?

Definition. Let \mathcal{X} be a compact metric space, and let \mathcal{F} be a collection of continuous functions from \mathcal{X} to the separable Banach space \mathcal{Y} (e.g. \mathbb{R}^n). We say that the family \mathcal{F} is *equicontinuous* if, for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$x, y \in \mathcal{X}$$
 and $d(x, y) < \delta \Rightarrow |fx - fy| < \epsilon \ \forall f \in \mathcal{F}$

We say the family \mathcal{F} is *bounded* if there is a constant C > 0 such that |fx| < C for all $f \in \mathcal{F}, x \in \mathcal{X}$.

Theorem. (Arzela-Ascoli) The family \mathcal{F} of functions as above is compact in the uniform topology if and only if it is closed, bounded and equicontinuous.

Example. Let D be a closed bounded subset of the Euclidean space \mathbb{R}^n , and let \mathcal{Y} be a Banach space. Let K.L > 0 and let $\mathcal{L}_{L,K}(D, \mathcal{Y})$ be the space of Lipschitz functions from D to \mathcal{Y} with norm less than or equal to K and Lipschitz constant less than or equal to L. Then, $\mathcal{L}_{L,K}(D, \mathcal{Y})$ is a compact metric space. In particular, every sequence in $\mathcal{L}_{L,K}(D, \mathcal{Y})$ has a subsequence which converges to an element of $\mathcal{L}_{L,K}(D, \mathcal{Y})$.