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Hyperbolic Periodic Orbits

Definition. A Ck hypersurface in Rn is a pair (ψ,U) in which

1. U is an open set in Rn−1.

2. ψ is a 1-1 Ck map from U into Rn.

3. Dψ(x) has rank n− 1 at each x ∈ U .

Given a Ck hypersurface (ψ,U) in Rn and a point p ∈ ψ(U), we let
Tpψ(U) denote the tangent space to ψ(U) at p. This is an affine hyperplane
in Rn passing through p.

Sometimes we call the image set ψ(U) the hypersurface, or we just say Σ
is a hypersurface in Rn when we mean that Σ is the image of a hypersurface,
and we call the defining map ψ a parametrization of Σ.

Suppose that X is a Ck vector field, k ≥ 1, in an open set in Rn. Let γ be
a non-critical orbit of X, and let p ∈ γ. A Ck hypersurface transverse to γ at
p is a Ck hypersurface (ψ,U) such that ψ(U)

⋂
γ = {p} and X(p) /∈ Tpψ(U).

Now suppose that γ is a non-critical periodic orbit of X and p ∈ γ. Let
(ψ,U) be a Ck transverse hypersurface to γ at p. Let φ(t, x) denote the
local flow of X. There is a neighborhood V of p in ψ(U) and a Ck function
τ : V → R such that

1. τ is bounded below; i.e., there is a constant c > 0 such that τ(x) > c
for all x ∈ V .

2. φ(τ(x), x) ∈ ψ(U) and φ(s, x) ∈ ψ(U) for 0 < s < τ(x).

The function τ is called the first-return time to ψ(U). It depends on the
choice of V .

Given such a V and τ as above there is a map Φ : V → ψ(U) defined by
Φ(x) = φ(τ(x), x). This is called the Poincare map (or first return map) of
X on V .

Facts:

1. There is a neighborhood V1 of p in V such that the map ψ−1 ◦Φ ◦ ψ is
a Ck diffeomorphism from ψ−1(V1) onto its image in Rn−1.

2. The eigenvalues of the derivative of ψ−1◦Φ◦ψ at ψ−1(p) are independent
of the choice of p ∈ γ, ψ and V1.
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These eigenvalues are called the characteristic multipliers of γ. If γ is
such that its characteristic multipliers have norm different from 1, then we
call γ a hyperbolic periodic orbit for X.

Remark. A sufficient condition that a periodic orbit be asymptotically
stable is that it characteristic multipliers all have norm less than 1.

We will leave the verification of the above remarks and facts to the exer-
cises.

Lyapunov Stability

It is frequently of interest to determine stability and asymptotic stability of
orbits of a vector field X. The method of Lyapunov (usually called Lya-
punov’s Direct Method) provides a tool for doing this without the need for
finding actual solutions (integral curves) ofX. It is mainly of use in analyzing
stability of critical points and periodic solutions.

We proceed to discuss first the case of critical points.
Let Ω ⊂ Rn be an open set in Rn, and let V : Rn → R be a function. We

say that x0 ∈ Ω is a strict relative minimum of V if there is a neighborhood
N of x0 in Ω such that, for x ∈ N \ {x0}, V (x) > V (x0).

If X is a C1 vector field in Ω, a function V : Ω → R is called a Lyapunov
function for X on Ω if

1. V is continuous on Ω.

2. V is non-increasing on orbits of X.

If in addition, V is strictly decreasing along non-critical orbits of X in Ω,
then V is called a strict Lyapunov function for X.

If x0 is a critical point of X, and V is a Lyapunov function defined in a
neighborhood of x0, we say that V is a Lyapunov function for X near x0.
Similarly, we define a strict Lyapunov function near x0.

Throughout the following, we assume that the vector field X is defined
and C1 in the open set Ω ⊆ Rn.

Theorem.(Stability Criterion) Suppose x0 is a critical point of X
and there is a Lyapunov function near x0 which has x0 as a strict relative
minumum. Then, x0 is a stable critical point of X. If x0 is an isolated
critical point of X and there is a strict Lyapunov function V for X near x0

having x0 as a strict relative minimum, then x0 is asymptotically stable.



November 21, 2005 19-3

Proof.
Let φ(t, x) denote the solution of ẋ = X(x), with φ(0, x) = x.
Let Bδ(x), B̄δ(x) denote, respectively, the open and closed balls of radius

δ centered at x.
Assume that V is a Lyapunov function for X near x0 having x0 as a strict

relative minimum, and let ε1 > 0 be small enough so that

B̄ε1(x0) ⊂ Ω (1)

V (x) is defined and continuous in B̄ε1(x0) (2)

and

V (x) > V (x0) for x ∈ B̄ε1(x0) \ {x0} (3)

Let ε ∈ (0, ε1) We wish to find δ > 0 so that if x ∈ Bδ(x0), and t ≥ 0,
then

φ(t, x) is defined for t ≥ 0 (4)

φ(t, x) ∈ Bε(x0) for t ≥ 0. (5)

Note that if I is a maximal interval on which the solution φ(t, x) is defined,
and, for t ∈ I ⋂

[0,∞), we have φ(t, x) ∈ Bε(x0), then condition (4) above will
be satisfied since X(φ(t, x)) cannot become unbounded and φ(t, x) cannot
approach the boundary of Ω.

So, it suffices to obtain condition (5).
Since, V (u) > V (x0) for u ∈ ∂Bε(x0) and V is continuous, there is a

C > 0 such that

V (u) > V (x0) + C

for u ∈ ∂Bε(x0) where ∂E denotes the boundary of a set E.
Since V is continuous in Ω, there is a δ ∈ (0, ε) such that if x ∈ Bδ(x0),

then V (x) < V (x0) + C.
Now, since V is non-increasing along solutions, it follows that if t ≥ 0,

then V (φ(t, x)) ≤ V (x) < V (x0)+C, so φ(t, x) can never meet the boundary
∂Bε(x0).

This implies (5) and proves that x0 is stable.
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Now, suppose that V is a strict Lyapunov function for X near x0, x0 is
an isolated critical point of X, and a strict relative minimum of V .

Let ε, δ be as above. We wish to show that

(*) if x ∈ Bδ(x0) then φ(t, x) → x0 as t→∞.

If (*) fails, then there is an ω−limit point, say y, in Bε(x0) \ {x0}.
Thus, there is a sequence 0 < t1 < t2 < . . . with ti+1 − ti → ∞ and

φ(ti, x) → y as i→∞.
Since x0 is an isolated critical point of X, we may assume that X has no

critical points in Bε(x0) except x0. Thus, X(y) 6= 0.
Since t→ V (φ(t, y)) is strictly decreasing, there is a constant C1 > 0 and

a time t̄ > 0 such that

V (φ(t̄, y)) < V (y)− C1 (6)

By continuity of solutions on initial conditions, and continuity of V , there
is an i0 > 0 such that if i ≥ i0, then

V (φ(t̄+ ti, x)) < V (y)− C1

2
(7)

and,

V (φ(ti, x)) > V (y)− C1

2
(8)

Now, take s > i0 such that ts+1 − ts > t̄.
Since t→ V (φ(t, x)) is strictly decreasing, we have

V (y)− C1

2
< V (φ(ts+1, x)) < V (φ(t̄+ ts, x)) < V (y)− C1

2

which is a contradiction.
Hence, (*) holds. QED

Suppose now that X is C1 and V is a C1 function, both on the open set
Ω.

If φ(t, x) is the solution starting at x as above, then

d

dt
V (φ(t, x)) = (grad V )(φ(t, x)) ·X(φ(t, x))
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where (grad V )(x) is the vector ( ∂V
∂x1

(x), . . . , ∂V
∂xn

(x)).
So, a sufficient condition for V to be a Lyapunov function is

(grad V )(x) ·X(x) ≤ 0

at each x ∈ Ω.
Similarly,

(grad V )(x) ·X(x) < 0

at each non-critical x is sufficient for V to be a strict Lyapunov function.
The next result shows that a Lyapunov function is constant on ω−limit

sets of bounded orbits.
Theorem. Suppose that V is a Lyapunov function for a C1 vector field

X and V is continuous on a closed set G ⊆ Rn which is invariant for X
(i.e., X−orbits starting in G stay there for all time). Suppose that x ∈ G
and the forward orbit of x is bounded. Then, V is constant on the ω−limit
set of x.

Proof.
Let φ(t, x) denote the orbit of X with φ(0, x) = x as usual.
The function V (φ(t, x)) is non-increasing in t. Since, o+(x) is bounded

and in G, , {V (φ(t, x)), t ≥ 0} is bounded, so

lim
t→∞

V (φ(t, x)) ≡ c

exists.
Let y ∈ ω(x). Since G is closed, y ∈ G and V is defined at y. By

continuity of t→ V (φ(t, x)), V (y) = c. Thus, ω(x) ⊆ {y : V (y) = c} QED.

We give a final result which guarantees global stability of a critical point.

Theorem 0.1 Suppose X is a C1 vector field on all of Rn with a critical
point at x0, and that V is a C1 Lyapunov function for X having x0 as a strict
absolute minimum and such that

V (x) →∞ as | x | → ∞ (9)

and

(grad V )(x) ·X(x) < 0 (10)
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for each x 6= x0. Then, x0 is globally asymptotically stable. That is, x0 is
asymptotically stable, and, for any x ∈ Rn, φ(t, x) → x0 as t→∞.

Proof.
Since V has x0 as a strict minimum and (10) holds, we see that V is a

strict Lyapunov function and x0 is the only critical point of X in Rn. It
follows that x0 is asymptotically stable.

It remains to show that, for x ∈ Rn,

φ(t, x) → x0 as t→∞. (11)

Fix x ∈ Rn.
By (9), and the fact that V decreases along the curve φ(t, x), there is a

constant C > 0 such that φ(t, x) ∈ BC(x0) for all t ≥ 0.
Then, the positive orbit of x, o+(x) is bounded.
Let y ∈ ω(x). Then, V is constant on the orbit of y by the previous

theorem.
It follows from condition (10) that y = x0. This proves (11). QED.
Some special Lyapunov functions
For critical points of certain vector fields, one can explicity construct

Lyapunov functions. Although this is fairly rare, it is worthwhile to descbibe
some conditions when it is possible.

Let m,n > 0 be positive even integers, and let a, b > 0 be positive real
numbers. Consider the function V : R2 → R defined by V (x, y) = axm+byn.
This is clearly a smooth function with (0, 0) as a strict absolute minimum.

Let

X(x, y) = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be a C1 planar vector field having (0, 0) as a critical point.
The function V , the vector field X, and the critical point x0 = (0, 0) will

satisfy the conditions of Theorem 0.1 provided that

VxP + VyQ < 0 (12)

for each (x, y) near (0, 0) and different from (0, 0).
Exercise. Use this method (i.e., find appropriate a, b,m, n) to prove that

(0, 0) is globally asymptotically stable for

P (x, y) = −x3 + 3xy3, Q(x, y) = −x2 − y3.


