Proofs of the Grobman-Hartman theorems Continued

We now develop the necessary results to prove the Main Step (A) above.
Lemma 1. Suppose $H: V \rightarrow V$ is a bounded linear self-map of the Banach space V with $|H|<1$. Let I denote the identity map, $I x=x$. Then, $I-H$ is an isomorphism and

$$
\begin{equation*}
\left|(I-H)^{-1}\right| \leq \frac{1}{1-|H|} \tag{1}
\end{equation*}
$$

Proof.

Let $T=\sum_{i=0}^{\infty} H^{i}$. Then, T is a bounded linear operator, and

$$
(I-H) T=T(I-H)=I .
$$

Therefore, $I-H$ is an isomorphism with inverse T.
Moreover,

$$
\left|(I-H)^{-1}\right|=|T| \leq \sum_{i=0}^{\infty}|H|^{i}=\frac{1}{1-|H|} \quad Q E D .
$$

Lemma 2.If $V=V_{1} \oplus V_{2}$ is a direct sum decomposition of the Banach space V, and $H: V \rightarrow V$ is an isomorphism such that $H\left(V_{i}\right)=V_{i}$ for $i=1,2,|H| V_{1} \mid<1$, and $\left|H^{-1}\right| V_{2} \mid<1$, then $I-H$ is an isomorphism. If V is given the maximum norm, then

$$
\begin{equation*}
\left|(I-H)^{-1}\right| \leq \max \left(\frac{1}{1-|H| V_{1} \mid}, \frac{\left|H^{-1}\right| V_{2} \mid}{1-\left|H^{-1}\right| V_{2} \mid}\right) . \tag{2}
\end{equation*}
$$

Proof.
For $u=u_{1}+u_{2}$ with $u_{i} \in V_{i}$, define

$$
T(u)=T\left(u_{1}+u_{2}\right)=\sum_{i=0}^{\infty} H^{i}\left(u_{1}\right)+\left(-\sum_{i=1}^{\infty} H^{-i}\left(u_{2}\right)\right) .
$$

Then, $(I-H) T=T(I-H)=I$.
QED
Lemma 3. Suppose $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear map all of whose eigenvalues have norm less than one. Let $\tau_{1}=\sup \{|\lambda|: \lambda$ is an eigenvalue of $L\}$. Let $\tau \in\left(\tau_{1}, 1\right)$. Then, there is a new norm $\|\cdot\|$ on \mathbf{R}^{n} such that $\|L(v)\| \leq$ $\tau\|v\|$ for all $v \in \mathbf{R}^{n}$. That is, with respect to the norm $\|\|\cdot\|\|$ on L induced by the norm $\|\cdot\|$, we have $\|\|\|\|<\tau$.

Proof. Using the fact that $L=S+N$ where S is semi-simple (complex diagonalizable) and N is nilpotent, one sees that there is a constant $C>0$ such that $m \geq 0$ implies that $\left|L^{m} v\right| \leq C\left(\tau^{m}\right)|v|$ for all $v \in \mathbf{R}^{n}$. Thus, for each v, the quantity $\alpha(v)=\sup \left(\left\{\left|L^{m} v\right| \tau^{-m}: m \geq 0\right\}\right)$ is finite. Set $\|v\|=\alpha(v)$. Then, it is easy to see that $\|\cdot\|$ is a norm on \mathbf{R}^{n}.

On the other hand,

$$
\begin{aligned}
\|L v\| & =\sup \left(\left\{\left|L^{m} L v\right| \tau^{-m}: m \geq 0\right\}\right) \\
& =\tau \tau^{-1} \sup \left(\left\{\left|L^{m} L v\right| \tau^{-m}: m \geq 0\right\}\right) \\
& =\tau \sup \left(\left\{\left|L^{m} L v\right| \tau^{-m-1}: m \geq 0\right\}\right) \\
& =\tau \sup \left(\left\{\left|L^{m+1} v\right| \tau^{-m-1}: m \geq 0\right\}\right) \\
& =\tau \sup \left(\left\{\left|L^{m} v\right| \tau^{-m}: m \geq 1\right\}\right) \\
& \leq \tau\|v\| . \quad Q E D
\end{aligned}
$$

Remark. If we were dealing with a Banach space E instead of \mathbf{R}^{n}, we would just let τ_{1} be the spectral radius of the operator L above.

Proposition 4. Suppose $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear hyperbolic isomorphism. That is, no eigenvalues of L have norm 1. Let $\tau \in(0,1)$ be such that the eigenvalues of L inside the unit circle have norm <1, and those outside the unit circle have norm $>\tau^{-1}$. Then, there is a direct sum decomposition $\mathbf{R}^{n}=V_{1} \oplus V_{2}$ and a new norm $\|\cdot\|$ on \mathbf{R}^{n} such that

$$
\begin{equation*}
L\left(V_{1}\right)=V_{1}, L\left(V_{2}\right)=V_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|L\left|V_{1}\|<\tau,\| L^{-1}\right| V_{2}\right\|<\tau \tag{4}
\end{equation*}
$$

Proof. Let $\mathbf{R}^{n}=V_{1} \oplus V_{2}$ be the direct sum decomposition such that $L \mid V_{1}$ has eigenvalues less than τ in norm, and $L \mid V_{2}$ has eigenvalues greater than τ^{-1} in norm. Note that $L^{-1} \mid V_{2}$ has eigenvalues of norm less than τ. By Lemma 3, there are norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on V_{1} and V_{2}, respectively, such that (4) holds. For $v=\left(v_{1}, v_{2}\right)$ with $v_{i} \in V_{i}$, let $\|v\|=\max \left(\left\|v_{1}\right\|,\left\|v_{2}\right\|\right)$.

Proof of Main Step (A).

We show that the equation

$$
\begin{equation*}
\left(L+\phi_{1}\right) \circ\left(i d+u_{1}\right)=\left(i d+u_{1}\right) \circ\left(L+\phi_{2}\right) \text { with } \operatorname{Lip}\left(\phi_{i}\right)<\varepsilon \tag{5}
\end{equation*}
$$

has a unique solution $u_{1} \in C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ for ε small.
Equation (5) is equivalent to

$$
L \circ i d+L \circ u_{1}+\phi_{1} \circ\left(i d+u_{1}\right)=L+\phi_{2}+u_{1} \circ\left(L+\phi_{2}\right)
$$

or,

$$
\begin{equation*}
u_{1}-L^{-1} u_{1} \circ\left(L+\phi_{2}\right)=L^{-1} \phi_{2}-L^{-1} \phi_{1} \circ\left(i d+u_{1}\right) . \tag{6}
\end{equation*}
$$

Let $H: C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \rightarrow C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ be defined by

$$
H(u)=L^{-1} \circ u \circ\left(L+\phi_{2}\right),
$$

and let $H_{1}=I-H$ with I the identity transformation of $C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. Then, both H and H_{1} are bounded linear maps, and equation (6) becomes

$$
\begin{equation*}
H_{1}\left(u_{1}\right)=L^{-1} \phi_{2}-L^{-1} \phi_{1} \circ\left(i d+u_{1}\right) . \tag{7}
\end{equation*}
$$

$$
\text { Claim }(B): \quad H_{1} \text { is an isomorphism and }\left|H_{1}^{-1}\right| \leq \frac{1}{(1-\tau)}
$$

Exercise. (Lipschitz Inverse Function Theorem). Let $(V,|\cdot|)$ be a Banach space, and suppose $f: V \rightarrow V$ is 1-1, onto, and Lipschitz with Lipschitz inverse. There is an $\varepsilon>0$ such that if $g=f+\phi$ where ϕ is Lipschitz with $\|\phi\|_{0}<\varepsilon$ and $\operatorname{Lip}(\phi)<\varepsilon$, then g is 1-1, onto, and Lipschitz with Lipschitz inverse.

Proof of Claim (B). Note that by the exercise, for ε small, $\left(L+\phi_{2}\right)^{-1}$ exists and is Lipschitz. This gives that H is an isomorphism with inverse $u \rightarrow L \circ u \circ\left(L+\phi_{2}\right)^{-1}$.

Let $\bar{V}_{i}=C_{b}^{0}\left(\mathbf{R}^{n}, V_{i}\right)$ for $i=1,2$. Then, $C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)=\bar{V}_{1} \oplus \bar{V}_{2}, H\left(\bar{V}_{i}\right)=$ $\bar{V}_{i},|H| \bar{V}_{2} \mid<\tau$, and $\left|H^{-1}\right| \bar{V}_{1} \mid<\tau$. Thus, H is hyperbolic on $C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. By Lemma 2, we have that H_{1} is an isomorphism and $\left|H_{1}^{-1}\right| \leq \frac{1}{1-\tau}$ which is Claim (B).

Now, (6) becomes

$$
H_{1}\left(u_{1}\right)=L^{-1} \phi_{2}-L^{-1} \phi_{1} \circ\left(i d+u_{1}\right)
$$

or
$u_{1}=H_{1}^{-1}\left(L^{-1} \phi_{2}-L^{-1} \phi_{1} \circ\left(i d+u_{1}\right)\right)=H_{1}^{-1}\left(L^{-1} \phi_{2}\right)-H_{1}^{-1}\left(L^{-1} \phi_{1} \circ\left(i d+u_{1}\right)\right)$
which means we want a fixed point in $C_{b}^{0}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ of the map

$$
T: u \rightarrow H_{1}^{-1}\left(L^{-1} \phi_{2}\right)-H_{1}^{-1}\left(L^{-1} \phi_{1} \circ(i d+u)\right)
$$

We show that T is a contraction if ε is small.
We have,

$$
\begin{aligned}
\|T u-T v\|_{0}= & \| H_{1}^{-1}\left(L^{-1} \phi_{2}\right)-H_{1}^{-1}\left(L^{-1} \phi_{1} \circ(i d+u)\right) \\
& -\left(H_{1}^{-1}\left(L^{-1} \phi_{2}\right)-H_{1}^{-1}\left(L^{-1} \phi_{1} \circ(i d+v)\right)\right) \|_{0} \\
= & \left\|H_{1}^{-1}\left(L^{-1} \phi_{1} \circ(i d+v)\right)-H_{1}^{-1}\left(L^{-1} \phi_{1} \circ(i d+u)\right)\right\|_{0} \\
\leq & \mid H_{1}^{-1}\left\|L^{-1}\right\| \phi_{1} \circ(i d+u)-\phi_{1} \circ(i d+v) \|_{0} \\
\leq & \left|H_{1}^{-1}\left\|L^{-1} \mid\left(\operatorname{Lip}\left(\phi_{1}\right)\right)\right\| u-v \|_{0} .\right.
\end{aligned}
$$

So, if

$$
\operatorname{Lip}\left(\phi_{1}\right)\left|L^{-1}\right| \frac{1}{1-\tau}<1
$$

then T is a contraction.
This completes the proofs of Theorems 1 and 2.

