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Proofs of the Grobman-Hartman theorems -
Continued

We now develop the necessary results to prove the Main Step (A) above.

Lemma 1. Suppose H : V — V is a bounded linear self-map of the
Banach space V with | H| < 1. Let I denote the identity map, Iz = x.
Then, I — H is an isomorphism and

1

|(I_H)71|§m (1)

Proof.
Let T = 3°, H'. Then, T is a bounded linear operator, and
(I-H)T=T(I-H)=1.

Therefore, I — H is an isomorphism with inverse 7T
Moreover,

1

I—H) ' =|T|< ) —
| ( )M =T I<> |H| T H ]

1=0

QED.

Lemma 2.IfV = V) & V5 is a direct sum decomposition of the Banach
space V., and H : V. — V is an isomorphism such that H(V;) = V; for
i=1,2, |H|Vi|<1,and | H'|Vy| <1, then I — H is an isomorphism.
If V' is given the maximum norm, then

(2)

1 H-!
|(]—H)1|§max< | V2 | )

L—[H|Vi|[ 1-]H V|

Proof.

For u = uy + ue with u; € V;, define
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o0

Tw) = Tl + ) = 3 i) + (— 3 (1))

i=1

Then, (I — HYT =T(I — H) = 1. QED

Lemma 3. Suppose L : R" — R" is a linear map all of whose eigenvalues
have norm less than one. Let 71 = sup{| A | : X is an eigenvalue of L}. Let

T € (11,1). Then, there is a new norm || - || on R"™ such that || L(v) || <
T|| v || for all v € R™. That is, with respect to the norm ||| - ||| on L induced
by the norm || - ||, we have ||| L |||< T.

Proof. Using the fact that L = S + N where S is semi-simple (complex
diagonalizable) and N is nilpotent, one sees that there is a constant C' > 0
such that m > 0 implies that | L™v | < C(7™)| v | for all v € R". Thus,
for each v, the quantity a(v) = sup({| L™v |7~ : m > 0}) is finite. Set
|| v || = a(v). Then, it is easy to see that || - || is a norm on R".

On the other hand,

|| Lv || = sup({| L™Lv |77™ :m > 0})
= 77 'sup({| L™Lv |[77™ :m > 0})
= rsup({| L Lv |77t :m > 0})
= rsup({| L™ |77 m > 0})
= 71sup({| L™ |[T7™ :m > 1})
< 7llvll. QED

Remark. If we were dealing with a Banach space F instead of R", we
would just let 7; be the spectral radius of the operator L above.

Proposition 4. Suppose L : R" — R" is a linear hyperbolic isomor-
phism. That is, no eigenvalues of L have norm 1. Let 7 € (0,1) be such that
the eigenvalues of L inside the unit circle have norm < 1, and those outside
the unit circle have norm > 7=1. Then, there is a direct sum decomposition

R" =V, &V, and a new norm || - || on R™ such that
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L(Vi) =Vi, L(V2) = V3 (3)

and

LIVl <z [ L7 | Vall <7 (4)

Proof. Let R" = V; & V5 be the direct sum decomposition such that

L | V} has eigenvalues less than 7 in norm, and L | V; has eigenvalues greater
than 77! in norm. Note that L™ | V; has eigenvalues of norm less than 7. By
Lemma 3, there are norms || - ||, and || - ||, on V; and V5, respectively, such
that (4) holds. For v = (vy,vq) with v; € V;, let || v || = max(|| vy ||, || ve |])-
QED

Proof of Main Step (A).
We show that the equation

(L + ¢y) o (id +uy) = (id + uy) o (L + ¢y) with Lip(¢,) < € (5)
has a unique solution u; € Cf(R™, R™) for ¢ small.
Equation (5) is equivalent to

Loid+ Louy+ ¢yo(id+uy) =L+ ¢y +uso(L+ ¢y)
or,
up — L 'uy o (L+ ¢y) = Ly — L1, 0 (id + uy). (6)
Let H : C)(R™",R") — CY(R",R") be defined by
H(u) = L™ ouo (L +¢y),

and let H, = I — H with I the identity transformation of Cf(R", R").
Then, both H and H; are bounded linear maps, and equation (6) becomes

Hy(uy) = L™ ¢y — L', o (id + uy). (7)
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1
(1—=7)

Claim (B):  H; is an isomorphism and | H; ' | <

Exercise. (Lipschitz Inverse Function Theorem). Let (V.| |) be a Ba-
nach space, and suppose f :V — V is 1-1, onto, and Lipschitz with Lipschitz
inwverse. There is an € > 0 such that if g = f + ¢ where ¢ is Lipschitz with
| ¢ ||, <e and Lip(¢) < ¢, then g is 1-1, onto, and Lipschitz with Lipschitz
inverse.

Proof of Claim (B). Note that by the exercise, for & small, (L + ¢,)~*
exists and is Lipschitz. This gives that H is an isomorphism with inverse
u— Louo (L+ ¢y) L.

Let V; = CY(R™,V;) for i = 1,2. Then, CY(R",R") = Vi & Vs, H(V;) =
Vi, | H| Vo | <7, and| H™* | V| | < 7. Thus, H is hyperbolic on C?(R", R").
By Lemma 2, we have that H; is an isomorphism and | H; ' | < £~ which
is Claim (B).

Now, (6) becomes
Hy(ui) = L7 ¢y — L7'¢y 0 (id + uy)
or
uy = Hy (L7 gy — L7 ¢y 0 (id+w)) = Hy (L7 ¢y) = Hy (L™ ¢y 0 (id +un))
which means we want a fixed point in C{(R", R") of the map
T:u— H ' (L ¢y) — H YLy o (id + u))

We show that T is a contraction if € is small.
We have,

| Tu—Tuvlly, = || H (L7 ¢y) = Hy (L7 ¢y 0 (id + u))
—(H{ (L7 dy) — Hy (L7 ¢y o (id + v))) []o
= [ H{ (L7 ¢y 0 (id +v)) — Hy '(L7'¢y 0 (id +u)) ],
| Hi VL[] 6y o (id + u) — ¢y 0 (id +v) |l

<
< [HH LT [(Lip(o))]] w = v ],
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So, if
1
L L7'— <1
(o)) L7 2 <1,

then T is a contraction.

This completes the proofs of Theorems 1 and 2.



