Proofs of the Grobman-Hartman theorems - Continued

We now develop the necessary results to prove the Main Step (A) above.

Lemma 1. Suppose $H: V \to V$ is a bounded linear self-map of the Banach space V with |H| < 1. Let I denote the identity map, Ix = x. Then, I - H is an isomorphism and

$$|(I - H)^{-1}| \le \frac{1}{1 - |H|}$$
 (1)

Proof.

Let $T = \sum_{i=0}^{\infty} H^i$. Then, T is a bounded linear operator, and

$$(I-H)T = T(I-H) = I.$$

Therefore, I - H is an isomorphism with inverse T. Moreover,

$$|(I - H)^{-1}| = |T| \le \sum_{i=0}^{\infty} |H|^{i} = \frac{1}{1 - |H|}$$
 QED.

Lemma 2. If $V = V_1 \oplus V_2$ is a direct sum decomposition of the Banach space V, and $H : V \to V$ is an isomorphism such that $H(V_i) = V_i$ for $i = 1, 2, |H| |V_1| < 1$, and $|H^{-1}| |V_2| < 1$, then I - H is an isomorphism. If V is given the maximum norm, then

$$|(I - H)^{-1}| \le \max\left(\frac{1}{1 - |H| |V_1|}, \frac{|H^{-1}| |V_2|}{1 - |H^{-1}| |V_2|}\right).$$
 (2)

Proof.

For $u = u_1 + u_2$ with $u_i \in V_i$, define

December 7, 2011

$$T(u) = T(u_1 + u_2) = \sum_{i=0}^{\infty} H^i(u_1) + \left(-\sum_{i=1}^{\infty} H^{-i}(u_2)\right).$$

Then, $(I - H)T = T(I - H) = I.$ QED

Lemma 3. Suppose $L : \mathbf{R}^n \to \mathbf{R}^n$ is a linear map all of whose eigenvalues have norm less than one. Let $\tau_1 = \sup\{|\lambda| : \lambda \text{ is an eigenvalue of } L\}$. Let $\tau \in (\tau_1, 1)$. Then, there is a new norm $|| \cdot ||$ on \mathbf{R}^n such that $|| L(v) || \leq \tau || v ||$ for all $v \in \mathbf{R}^n$. That is, with respect to the norm $||| \cdot |||$ on L induced by the norm $|| \cdot ||$, we have $||| L ||| < \tau$.

Proof. Using the fact that L = S + N where S is semi-simple (complex diagonalizable) and N is nilpotent, one sees that there is a constant C > 0 such that $m \ge 0$ implies that $|L^m v| \le C(\tau^m)|v|$ for all $v \in \mathbf{R}^n$. Thus, for each v, the quantity $\alpha(v) = \sup(\{|L^m v|\tau^{-m} : m \ge 0\})$ is finite. Set $||v|| = \alpha(v)$. Then, it is easy to see that $||\cdot||$ is a norm on \mathbf{R}^n .

On the other hand,

$$|Lv|| = \sup\{\{|L^mLv|\tau^{-m}: m \ge 0\}\}$$

= $\tau \tau^{-1} \sup\{\{|L^mLv|\tau^{-m}: m \ge 0\}\}$
= $\tau \sup\{\{|L^mLv|\tau^{-m-1}: m \ge 0\}\}$
= $\tau \sup\{\{|L^{m+1}v|\tau^{-m-1}: m \ge 0\}\}$
= $\tau \sup\{\{|L^mv|\tau^{-m}: m \ge 1\}\}$
 $\le \tau ||v||$. QED

Remark. If we were dealing with a Banach space E instead of \mathbb{R}^n , we would just let τ_1 be the spectral radius of the operator L above.

Proposition 4. Suppose $L : \mathbf{R}^n \to \mathbf{R}^n$ is a linear hyperbolic isomorphism. That is, no eigenvalues of L have norm 1. Let $\tau \in (0, 1)$ be such that the eigenvalues of L inside the unit circle have norm < 1, and those outside the unit circle have norm $> \tau^{-1}$. Then, there is a direct sum decomposition $\mathbf{R}^n = V_1 \oplus V_2$ and a new norm $|| \cdot ||$ on \mathbf{R}^n such that

$$L(V_1) = V_1, \ L(V_2) = V_2$$
 (3)

and

$$|| L | V_1 || < \tau, || L^{-1} | V_2 || < \tau$$
(4)

Proof. Let $\mathbf{R}^n = V_1 \oplus V_2$ be the direct sum decomposition such that $L \mid V_1$ has eigenvalues less than τ in norm, and $L \mid V_2$ has eigenvalues greater than τ^{-1} in norm. Note that $L^{-1} \mid V_2$ has eigenvalues of norm less than τ . By Lemma 3, there are norms $|| \cdot ||_1$ and $|| \cdot ||_2$ on V_1 and V_2 , respectively, such that (4) holds. For $v = (v_1, v_2)$ with $v_i \in V_i$, let $|| v || = \max(|| v_1 ||, || v_2 ||)$. QED

Proof of Main Step (A).

We show that the equation

$$(L + \phi_1) \circ (id + u_1) = (id + u_1) \circ (L + \phi_2) \text{ with } Lip(\phi_i) < \varepsilon$$
(5)

has a unique solution $u_1 \in C_b^0(\mathbf{R}^n, \mathbf{R}^n)$ for ε small.

Equation (5) is equivalent to

$$L \circ id + L \circ u_1 + \phi_1 \circ (id + u_1) = L + \phi_2 + u_1 \circ (L + \phi_2)$$

or,

$$u_1 - L^{-1}u_1 \circ (L + \phi_2) = L^{-1}\phi_2 - L^{-1}\phi_1 \circ (id + u_1).$$
(6)

Let $H: C_b^0(\mathbf{R}^n, \mathbf{R}^n) \to C_b^0(\mathbf{R}^n, \mathbf{R}^n)$ be defined by

$$H(u) = L^{-1} \circ u \circ (L + \phi_2),$$

and let $H_1 = I - H$ with I the identity transformation of $C_b^0(\mathbf{R}^n, \mathbf{R}^n)$. Then, both H and H_1 are bounded linear maps, and equation (6) becomes

$$H_1(u_1) = L^{-1}\phi_2 - L^{-1}\phi_1 \circ (id + u_1).$$
(7)

Claim (B): H_1 is an isomorphism and $|H_1^{-1}| \le \frac{1}{(1-\tau)}$.

Exercise. (Lipschitz Inverse Function Theorem). Let $(V, |\cdot|)$ be a Banach space, and suppose $f: V \to V$ is 1-1, onto, and Lipschitz with Lipschitz inverse. There is an $\varepsilon > 0$ such that if $g = f + \phi$ where ϕ is Lipschitz with $|| \phi ||_0 < \varepsilon$ and $Lip(\phi) < \varepsilon$, then g is 1-1, onto, and Lipschitz with Lipschitz inverse.

Proof of Claim (B). Note that by the exercise, for ε small, $(L + \phi_2)^{-1}$ exists and is Lipschitz. This gives that H is an isomorphism with inverse $u \to L \circ u \circ (L + \phi_2)^{-1}$.

Let $\bar{V}_i = C_b^0(\mathbf{R}^n, V_i)$ for i = 1, 2. Then, $C_b^0(\mathbf{R}^n, \mathbf{R}^n) = \bar{V}_1 \oplus \bar{V}_2$, $H(\bar{V}_i) = \bar{V}_i$, $|H| |\bar{V}_2| < \tau$, and $|H^{-1}| |\bar{V}_1| < \tau$. Thus, H is hyperbolic on $C_b^0(\mathbf{R}^n, \mathbf{R}^n)$. By Lemma 2, we have that H_1 is an isomorphism and $|H_1^{-1}| \leq \frac{1}{1-\tau}$ which is Claim (B).

Now, (6) becomes

$$H_1(u_1) = L^{-1}\phi_2 - L^{-1}\phi_1 \circ (id + u_1)$$

or

$$u_1 = H_1^{-1}(L^{-1}\phi_2 - L^{-1}\phi_1 \circ (id + u_1)) = H_1^{-1}(L^{-1}\phi_2) - H_1^{-1}(L^{-1}\phi_1 \circ (id + u_1))$$

which means we want a fixed point in $C_b^0(\mathbf{R}^n, \mathbf{R}^n)$ of the map

$$T: u \to H_1^{-1}(L^{-1}\phi_2) - H_1^{-1}(L^{-1}\phi_1 \circ (id+u))$$

We show that T is a contraction if ε is small. We have,

$$\begin{split} || \ Tu - Tv \ ||_{0} &= \ || \ H_{1}^{-1}(L^{-1}\phi_{2}) - H_{1}^{-1}(L^{-1}\phi_{1}\circ(id+u)) \\ &- (H_{1}^{-1}(L^{-1}\phi_{2}) - H_{1}^{-1}(L^{-1}\phi_{1}\circ(id+v))) \ ||_{0} \\ &= \ || \ H_{1}^{-1}(L^{-1}\phi_{1}\circ(id+v)) - H_{1}^{-1}(L^{-1}\phi_{1}\circ(id+u)) \ ||_{0} \\ &\leq \ | \ H_{1}^{-1} \ || \ L^{-1} \ ||| \ \phi_{1}\circ(id+u) - \phi_{1}\circ(id+v) \ ||_{0} \\ &\leq \ | \ H_{1}^{-1} \ || \ L^{-1} \ |(Lip(\phi_{1}))|| \ u - v \ ||_{0}. \end{split}$$

December 7, 2011

So, if

$$Lip(\phi_1)| \ L^{-1} \ |\frac{1}{1-\tau} < 1,$$

then T is a contraction.

This completes the proofs of Theorems 1 and 2.