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Proofs of the Grobman-Hartman theorems

We will reduce the proofs of Theorems 1 and 2 to one main step, and then
we will complete the proof of that step. We let id denote the identity map
on R", and we let || ¢ ||, denote the C° norm of a mapping.

(A) MAIN STEP. Suppose L : R™ — R" is a hyperbolic linear map.
There is an € > 0 depending on L such that the following holds.

If ¢, : R™ - R", ¢, : R® — R"™ are Lipschitz maps such that

@5 llg <€ (1)

and

Lip(¢;) <, (2)
then, there is a unique continuous map h¢ 6, R"” — R" such that
172
h¢ b, ~ 1d 1s a bounded continuous map and
172

(L+d)ohy g =hg g o(L+¢,). (3)

Assuming (A), let us prove Theorems 1 and 2.
Proof of Theorem 2.

We may assume f = L+ ¢ where L = Dyf, Lip(¢) < ¢, and ¢(z) = 0 for
| z | > € and ¢ is as small as we wish. Let ¢ denote the zero map ({(z) =0
for all z).

By (A), there are unique maps h¢< and hC¢ of bounded distance from

the identity such that

e =gl 0

and

Lheg = hegf. (5)
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This gives us fh'¢ChC¢ = h¢<Lh<¢ = hqbchggbf'

So, h(ﬁghg is a continuous map and h¢<h<¢ —1d is bounded. By unique-
ness of the solution h to fh = hf, we have h¢ch<¢ = id. Similarly, h<¢h¢<L =
Lh@h(ﬁg. By uniqueness of the solutions of hL = Lh, we have hg¢h¢g = 1id.

Thus, h¢< is a homeomorphism and Theorem 2 is proved. O

Proof of Theorem 1.

This proof illustrates a general principle of the theory of linearizations.
To linearize a vector field near a critical point xg, it is sufficient to linearize
its time one map near .

We will reduce the proof of Theorem 1, to the statement we proved in
Theorem 2.

We may assume that X = Dy X + ¢ with ¢(z) = 0 for |z | > € and
Lip(¢) < e with € small. Let v, be the time ¢ map of X, and let n; be the
time ¢ map of DyX. Then, 11 = n; +~ where v = 0 off a small neighborhood
of 0, and Lip(7) is small. By the above proof of Theorem 2, we know there
is a unique continuous map h : R™ — R" such that A — id is bounded and
h='nih =+ which is equivalent to mh = ht), and nih_; = h.

Let

1
Hz) = [ (s (z) d. ©)
Then, for 0 < s <1,
1
nsHY ;= / Ns+th_(145) dt  (since each 7, is linear).
0

Making the change of variable u = s+t —1, we get the last integral equal
to

s 0 s
[ msibtoradu= [ mupihtosadu+ [ty du

Now set v = u + 1 in the first integral of the preceding equation and use
the fact that n1hY_1 = h in the second one.
We get the sum of integrals to be

[ motdo+ [ du= B
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Thus we have obtained that for 0 < s <1,

nsH¢—s =H. (7)

Thus, H conjugates each 7, to ¥s. We would like to show that H is a
homeomorphism.

Let us first show that H is continuous and H — id is bounded.

Continuity is easy since if y is near z, the functions t — mhtp_4(z) and
t — mhip_4(y) are uniformly close.

Let us now see that H — id is bounded.

We have

H(z)—z= /01 mhap_y(z)dt — /01 xdt

For each ¢ € [0, 1], we have

| mhp_y(z) —2 | = [ nh_i(z) — Yp_(z) |
= | mh(u) = i(u) | for u = 1_4(x)
= | mh(u) — ne(u) +n:(u) — i (u) |

But, n;(u) = ¥y(u) for all | ¢t | < 1if | u | is large.
Hence, if we let Ly = Dy X, then n; = e*o. Thus,

| nehyp_i(x) — 2 | < sup ‘eSLO ||| h—id ||o+01
0<s<1

uniformly in ¢
where

Ci=  sup  [n(u) = Pi(u) |,
| t |<1uern

This gives us that H — id is bounded.
Now,
H — id is continuous and bounded , (8)

and, for s =1,
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an = le (9)

But, h also satisfies (8) and (9), and we showed that there was a unique
map satisfying these conditions. Thus, H = h, and the map h constructed
for the time-one maps actually satisfies (7) for 0 < s < 1.

We also want n;htp_s = h for —1 < s < 0.

But, for s € [—1, 0], we have —s € [0, 1], so n_shtp_(_y) = h. Now compose
on the left with 7, and on the right with ¢_; and we get h = n,ht)_;.

This proves Theorem 1. O



