Proofs of the Grobman-Hartman theorems

We will reduce the proofs of Theorems 1 and 2 to one main step, and then we will complete the proof of that step. We let id denote the identity map on \mathbf{R}^n , and we let $||\phi||_0$ denote the C^0 norm of a mapping.

(A) MAIN STEP. Suppose $L: \mathbb{R}^n \to \mathbb{R}^n$ is a hyperbolic linear map. There is an $\varepsilon > 0$ depending on L such that the following holds.

If $\phi_1: \mathbf{R}^n \to \mathbf{R}^n, \phi_2: \mathbf{R}^n \to \mathbf{R}^n$ are Lipschitz maps such that

$$||\phi_i||_0 \le \varepsilon \tag{1}$$

and

$$Lip(\phi_i) < \varepsilon,$$
 (2)

then, there is a unique continuous map $h_{\phi_1\phi_2}: \mathbf{R}^n \to \mathbf{R}^n$ such that $h_{\phi_1\phi_2} - id$ is a bounded continuous map and

$$(L + \phi_1) \circ h_{\phi_1 \phi_2} = h_{\phi_1 \phi_2} \circ (L + \phi_2).$$
 (3)

Assuming (A), let us prove Theorems 1 and 2.

Proof of Theorem 2.

We may assume $f = L + \phi$ where $L = D_0 f$, $Lip(\phi) < \varepsilon$, and $\phi(x) = 0$ for $|x| \ge \varepsilon$ and ε is as small as we wish. Let ζ denote the zero map $(\zeta(x) = 0$ for all x).

By (A), there are unique maps $h_{\phi\zeta}$ and $h_{\zeta\phi}$ of bounded distance from the identity such that

$$fh_{\phi\zeta} = h_{\phi\zeta}L\tag{4}$$

and

$$Lh_{\zeta\phi} = h_{\zeta\phi}f. \tag{5}$$

This gives us $f h_{\phi\zeta} h_{\zeta\phi} = h_{\phi\zeta} L h_{\zeta\phi} = h_{\phi\zeta} h_{\zeta\phi} f$.

So, $h_{\phi\zeta}h_{\zeta\phi}$ is a continuous map and $h_{\phi\zeta}h_{\zeta\phi}-id$ is bounded. By uniqueness of the solution h to fh=hf, we have $h_{\phi\zeta}h_{\zeta\phi}=id$. Similarly, $h_{\zeta\phi}h_{\phi\zeta}L=Lh_{\zeta\phi}h_{\phi\zeta}$. By uniqueness of the solutions of hL=Lh, we have $h_{\zeta\phi}h_{\phi\zeta}=id$. Thus, $h_{\phi\zeta}$ is a homeomorphism and Theorem 2 is proved. \Box

Proof of Theorem 1.

This proof illustrates a general principle of the theory of linearizations. To linearize a vector field near a critical point x_0 , it is sufficient to linearize its time one map near x_0 .

We will reduce the proof of Theorem 1, to the statement we proved in Theorem 2.

We may assume that $X = D_0 X + \phi$ with $\phi(x) = 0$ for $|x| \ge \varepsilon$ and $Lip(\phi) < \varepsilon$ with ε small. Let ψ_t be the time t map of X, and let η_t be the time t map of $D_0 X$. Then, $\psi_1 = \eta_1 + \gamma$ where $\gamma = 0$ off a small neighborhood of 0, and $Lip(\gamma)$ is small. By the above proof of Theorem 2, we know there is a unique continuous map $h: \mathbf{R}^n \to \mathbf{R}^n$ such that h - id is bounded and $h^{-1}\eta_1 h = \psi_1$ which is equivalent to $\eta_1 h = h\psi_1$ and $\eta_1 h\psi_{-1} = h$.

Let

$$H(x) = \int_0^1 (\eta_t h \psi_{-t})(x) dt.$$
 (6)

Then, for $0 \le s \le 1$,

$$\eta_s H \psi_{-s} = \int_0^1 \eta_{s+t} h \psi_{-(t+s)} dt$$
 (since each η_s is linear).

Making the change of variable u = s + t - 1, we get the last integral equal to

$$\int_{s-1}^{s} \eta_{u+1} h \psi_{-1-u} \, du = \int_{s-1}^{0} \eta_{u+1} h \psi_{-1-u} \, du + \int_{0}^{s} \eta_{u} \eta_{1} h \psi_{-1} \psi_{-u} \, du$$

Now set v = u + 1 in the first integral of the preceding equation and use the fact that $\eta_1 h \psi_{-1} = h$ in the second one.

We get the sum of integrals to be

$$\int_{s}^{1} \eta_{v} h \psi_{-v} \, dv + \int_{0}^{s} \eta_{u} h \psi_{-u} \, du = H$$

.

Thus we have obtained that for $0 \le s \le 1$,

$$\eta_s H \psi_{-s} = H. \tag{7}$$

Thus, H conjugates each η_s to ψ_s . We would like to show that H is a homeomorphism.

Let us first show that H is continuous and H - id is bounded.

Continuity is easy since if y is near x, the functions $t \to \eta_t h \psi_{-t}(x)$ and $t \to \eta_t h \psi_{-t}(y)$ are uniformly close.

Let us now see that H - id is bounded.

We have

$$H(x) - x = \int_0^1 \eta_t h \psi_{-t}(x) dt - \int_0^1 x dt$$

For each $t \in [0, 1]$, we have

$$| \eta_t h \psi_{-t}(x) - x | = | \eta_t h \psi_{-t}(x) - \psi_t \psi_{-t}(x) |$$

$$= | \eta_t h(u) - \psi_t(u) | \text{ for } u = \psi_{-t}(x)$$

$$= | \eta_t h(u) - \eta_t(u) + \eta_t(u) - \psi_t(u) |$$

But, $\eta_t(u) = \psi_t(u)$ for all $|t| \le 1$ if |u| is large. Hence, if we let $L_0 = D_0 X$, then $\eta_t = e^{tL_0}$. Thus,

$$|\eta_t h \psi_{-t}(x) - x| \le \sup_{0 \le s \le 1} |e^{sL_0}| \cdot ||h - id||_0 + C_1$$

uniformly in t where

$$C_1 = \sup_{|t| < 1, u \in \mathbf{R}^n} |\eta_t(u) - \psi_t(u)|.$$

This gives us that H - id is bounded.

Now,

$$H - id$$
 is continuous and bounded, (8)

and, for s=1,

$$\eta_1 H = H \psi_1 \tag{9}$$

But, h also satisfies (8) and (9), and we showed that there was a *unique* map satisfying these conditions. Thus, H = h, and the map h constructed for the time-one maps actually satisfies (7) for $0 \le s \le 1$.

We also want $\eta_s h \psi_{-s} = h$ for $-1 \le s \le 0$.

But, for $s \in [-1, 0]$, we have $-s \in [0, 1]$, so $\eta_{-s}h\psi_{-(-s)} = h$. Now compose on the left with η_s and on the right with ψ_{-s} and we get $h = \eta_s h\psi_{-s}$.

This proves Theorem 1. \square