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The Grobman-Hartman theorem

Now that we have studied the structure of solutions to linear differential
equations in general, we wish to use that theory to study the local structure
of the solutions to non-linear systems. If X is a C" vector field, r > 1,
defined in an open set U C R™, and zy € U is a non-singular point (i.e.,
X(zg) # 0), then we have seen that there is a C" change of coordinates
which takes solutions near xy to straight lines. Thus, it remains to describe
the solutions near a critical point. If the derivative A = DX,, of X at z,
has eigenvalues with real parts different from zero, we will see, that after a
continuous change of coordinates, the structure of solutions of X near z; is
the same as that of the linear system y = Ay near 0.

We now make the relevant definitions.

Let X be a C" vector field as above with » > 1 with a critical point at x,
(i.e., X(x9) = 0). Let A be the derivative of X at xy. Thus, A: R" - R" is
a linear map whose matrix in the standard coordinates on R" is the Jacobian
matrix of X at z.

Definition. The critical point zy of X is called hyperbolic if the eigen-
values of A all have non-zero real parts.

If X is a C" vector field, recall that the local flow of X near zy is the
function 7(t,z) defined in a neighborhood V of (0, ) in R"™! such that

1. n(0,z) =z for (0,z) € V

2. t — n(t,z) is a solution to the differential equation £ = X (x) defined
in a neighborhood of ¢t = 0.

We also use the notation 7, for the local flow 7n(t,z). We sometimes call
n: the local flow of the differential equation & = X (x) as well. We will also
use the term integral curve of the vector field X for a solution curve.
Definition. A linear map L : RY — R is called hyperbolic if its
(possibly complex) eigenvalues have norm different from one.
Examples:

1. L is the map induced by the 2 x 2 matrix [ f i ]

2. L = e* where A is a linear map whose eigenvalues have non-zero real
parts.
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If L is a hyperbolic linear map of R", then there is a direct sum decom-
position RN = E* @ E* such that

1. L(E*) = E* and L(E*) = E*

2. the eigenvalues of L | E® have norm < 1 and those of L | E* have norm
> 1

Definition Let X be a C" vector field defined in a neighborhood of xg
in RY having x4 as a critical point. Let DX, be the derivative of X at x.
A CY linearization of X near z; is a homeomorphism % from a neighborhood
U of 2o in RY to a neighborhood of 0 such that if 7, is the local flow of
X near x, then hnh ! is the local flow of the linear differential equation
y= DX, -y near 0.

One may similarly define C* linearizations of a C" vector field X for
1 < k < r by requiring that & be a C* diffeomorphism from a neighborhood
of zy to a neighborhood of 0.

Theorem 1. (Grobman-Hartman). Suppose xq is a hyperbolic critical
point of the C* vector field X. Then X has a C° linearization near ;.

Remark. For smooth linearizations, one has the following result.

Theorem. Suppose that L is linear map on R™. Let A\, o, ..., )\, be
the eigenvalues of L. For each positive integer k, there is a positive inte-
ger N(k) with the following property. Suppose that for each 1 < i < n
and each n—tuple (my,ma, ..., my,) of non-negative integers satisfying 2 <
Yi<i<n ™y < N(k), we have Nj # X1<jcn MjA;.

Then, any CN®) yector field X with X (z9) = 0 and DX,, = L has a
local C* linearization near .

Note that as a corollary of the Grobman-Hartman theorem, we have

Corollary. Let xy be a hyperbolic critical point of a C* vector field X
in R™. If all the eigenvalues of the derivative L = DX, have negative real
parts, then xq 1s asymptotically stable. If L has at least one eigenvalue with
positive real part, then xq is unstable.

We will proceed toward the proof of Theorem 1. Note that we may assume
that both X and L have local flows defined for | ¢ | < 1.
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In the course of the proof, it will be necessary to first linearize the time-
one map 7; of X near xy. So, we first study the relevant linearization theorem
for local diffeomorphisms.

Definition. Let f be a C! diffeomorphism from a neighborhood U of z
in R™ into R™ with f(zo) = x¢. The fixed point zy is called hyperbolic if all
the eigenvalues of D f,, have absolute values with norm different from one;
i.e, D fy is a hyperbolic linear map.

Theorem 2.(Grobman-Hartman theorem for local diffeomorphisms). Sup-
pose o is a hyperbolic fizred point of the local C* diffeomorphism f defined
on a neighborhood U of o in R". Let L = Df,,. There is a neighborhood
Uy CU of zo and a homeomorphism h from Uy into R™ such that h(xy) =0
and hf(z) = Lh(z) forx € U N f~'U;.

Note that an equivalent formulation of
hf(z) = Lh(z) for x € Ui (\ f'Uh
is
hfh™Hy) = L(y) for h™'(y) € U () f'Uh

so the formulas in both theorems are analogous.
Remark.

1. The proofs we will give of the above theorems are valid if R" is replaced
by a Banach space.

2. A map h as in Theorem 2 is called a C° linearization of f. One may
define C* linearizations analogously for k > 1.

Definition. Let U be an open subset of R® and let ¢ : U — R"™ be
a mapping. We say ¢ is Lipschitz (or Lipschitz continuous) if there is a
constant K > 0 such that



November 8, 1995 16-4

| g(x) —g(y) |

and we call it
|z —y |

When g is Lipschitz, we let Lip(g) = sup, .,

the Lipschitz constant of g.

Note that if g is C' and M = sup,| D,g |, then g is Lipschitz and
Lip(g) = M. That is, the maximum of the norms of the derivatives of a
C! map g equals the Lipschitz constant of g.

We will develop some machinery to prove Theorem 2. Then we will prove
Theorem 1.

Let us first note that, replacing f by = — f(z + z¢) — o, We may assume
Ty = 0.
Lemma 3. There is a C* function o : R — [0, 1] such that

1. afu) =1for u < 3.

2. a(u) =0 for u > 1.

Proof.
Let 1 1
o(u) = | P Ga) forz<u<i
0 otherwise

Then, ¢ is C*°.
Let

i o(s)ds

p(u) = L= 2)
Jooo ®(5)ds

Then, v is C'* and

0 foruﬁ%

@b(u):{ 1 foru>1

and 9 (u) € [0, 1] for all u.
Let a(u) = 1 —9(u). Then, « has the required properties. (Details left
as an exercise.)

Let f be as in the statement of Theorem 2. Our next lemma will show
that we may assume there is a 6 > 0 such that f is defined on all of R",
f(z) = L(z) for | z | > 6 and Lip(f — L) (on all of R") is small.
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Lemma 4. Let & > 0. There are a § > 0 and a C! diffeomorphism
fi : R™ — R" such that

1. fi(z) =L(z) for |z | >

2. fi(z) = f(z) for |z | < g

3. Lip(fi—L)<eand || 1 —L||, <e.

(Here, || fi = L ||y = sup,ern | fi(z) — L(2) [.)

Proof. Let €1 € (0,1), and let §; € (0,1) be small enough so that
(a) f is defined for | z | < §;

(b) || Du(f = L) || <&
and

(¢) | f(z) — L(x) | < &6y for |z | <4y

Let  be as in Lemma 3, and let K = sup,cg | &/(u) |

Let y(x) = oz(‘gj—‘). Note that | D,y | < (551 for all .

1

Now,

1 for\x\g%
v(z) =
0 for|xz|>d

Let

file) = (@) f(x) + (1 —7())L(z)
= L(z) +~(z)(f(2)

Note that f; is the y—average of f and L.
Now, (fi — L)(z) = (z)(f(z) — L(z)), so
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I fi—=L

sup | y(2)(f(2) — L(z)) |

< sup [ f(z)-L(@)|< &
|z [<b

Also,

| Do(fr = L) || | Doy - (f(2) — L(z)) + 7(2)(Dof — L) |

| Doy || f(2) = L(z) [+ [| Daf = L [

K
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Note that we use the notation D,y - (f(z) — L(x)) for the map v —
Dyry(v)(f(z) = L(z)).

Now, given ¢ € (0,1), choose &1 € (0,1) small enough so that
max(e, Ke; +¢61) <e. O



