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Jordan Canonical Form
Suppose that A is an n x n matrix with characteristic polynomial.
pA) = (A=) (A= A)™

and generalized eigenspaces V; = ker(A — \;1)™.

Let L be the linear map defined by Lz = Ax for all x.

The space V; is mapped into itself by the linear map defined by L. There
is a basis for the space V; such that in that basis the map L has the matrix
representation

Bj :>\]]+N]

and

Nj is a block matrix diag(Njy,...,Njq;) where each Njj is a square
matrix whose only non-zero entries are 1's on the super-diagonal (i.e., just
above the diagonal).

The matrix B = diag(By, ..., Bs) is unique up to a permutation of the
Bys or Njys.

This matrix B is called the Jordan canonical form of the matrix A.

If the eigenvalues of A are real, the matrix B can be chosen to be real. If
some eigenvalues are complex, then the matrix B will have complex entries.

However, if A is real, then the complex eigenvalues come in complex
conjugate pairs, and this can be used to give a real Jordan canonical form.
In this form, if \; = a; 4 ib; is a complex eigenvalue of A, then the matrix
Bj will have the form

where D; = diag(Ej;, Ej, ..., E;) and E; is the 2 x 2 diagonal matrix

aj —b
bj  a
and Nj is a block matrix of the form diag(Nj, ..., N;q4,) in which each
N;j is a square matrix whose only non-zero terms lie in blocks of 2 x 2
identity matrices in the super 2-block diagonal.
For instance, in case \; = 2414 and Xj = 2 — 4 has multiplicity 4, one can
have the following form for B;.
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2 -1 1 0
1 20 1
2 =11 0
1 20 1
2 =11 0
1 20 1
2 —1
- 1 2 -
Linear Periodic Systems
Consider the homogeneous linear periodic system
T=A(t)xr, At+T)=At), T>0 (1)

where A(t) is a continuous n X n real or complex matrix which is periodic
of period T in t.

Lemma 1.1f C is an n X n complex matriz with det C' # 0, then there is
a complex matriz B such that C = eP.

Proof.

Since det C' # 0, the eigenvalues of C' must all be non-zero.

Using the decomposition into generalized eigenspaces, it suffices to deal
with a single generalized eigenspace and a single non-zero eigenvalue, say A.

Thus, we may assume there is a non-singular matrix P such that

POP'=X+N=(C

where N” = 0 for some r > 0.

Let us first work with C} = A\ + N = \({ + iN)

Let b =log A (complex if A is not real and positive).
We claim: there is a matrix S such that e¥ = I + iN :
Assuming the claim, we get

C, = ebe’
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with By = bl + S.
Then,
PCP ' =C =P
and,
C=PlC,P=pPleip=cl'BP

so, it suffices to prove the claim.
We want S such that e = I + iN.

The real power series for log(1 + z) is

r? 2P
Ty tE T
So, we might try
1 N N? N3
S=logll+-N)=— — —+——...
sl N =T ot gy

Since N is nilpotent, this is a finite sum, and we leave it as an exercise
to show that e® = C; as required. QED.

Remark. Note that even if C' were a real matrix with det(C') # 0, the
above lemma may only yield a complex matrix S such that e = C. It is
interesting to ask for the conditions under which the matrix S can also be
chose to be real. The next lemma provides the answer.

Lemma 2.If C is an n X n real matriz, then there is a real matriz S such
that C' = e if and only if det(C) # 0 and C is a square (i.e., there is a real
matriz A such that C = A2,

Proof. The necessity is easy since we simply take A = e%S, and observe
that det(e®) # 0 for any S.

For sufficiency, again we have that all the eigenvalues of C' are non-zero.
Since C' is real, each complex eigenvalue A its complex conjugate A occurs
with the same multiplicity. Also, since C' = A2, the real negative eigenvalues
must have even multiplicity. Identifying C' with its associated linear operator
as usual, and taking the direct sum decomposition of R" =V, & Vo ®... BV,
into generalized eigenspaces of C', we can express C' as the sum

C=A1+Ar+ ...+ 4

where



October 26, 2005 15-4

1. A;A; is the zero matrix for ¢ # j,
2. for each 1 <i <k, dim(V}) is even, and

3. A; | V; is non-singular and has either a single non-zero real eigenvalue
or a single pair of non-zero complex conjugate eigenvalues; the negative
real eigenvalues have even multiplicity.

It then suffices to show that there is a real matrix S; such that A; = e%
for each ¢. We leave this last part as an exercise. QED.
Theorem.(Floquet) Every fundamental matriz ®(t) for (1) has the form

®(t) = P(t)e” (2)

where P(t) is a periodic matriz of period T and B is a constant matriz
(which may by complex). We may always obtain (1) with a real matriz B
where P(t) has period 2T .

Proof.

Let ®(t) be a fundamental matrix for (1).

Then, letting v = u(t) =t + T, and using A(t + T) = A(t), we get

d d

a@(t%—T) = %(I)(u)
= Au)®(u)
= At+T)®(t+1T)
= A@)®(t+T)

so, ®(t + T') is also a solution matrix. Since it is non-singular, it is
a fundamental matrix. Thus, there is a non-singular matrix C' (possibly
comples) such that
O(t+T)=o(t)C (3)
By Lemma 1, there is a (possibly complex) matrix B such that e?7 = C.
Now, letting P(t) = ®(t)e B! we get ®(t) = P(t)eP! and
Pt+T) =0t +T)e B = o(t)e P = P(1).

In order to choose B to be real, we simply need the matrix C' to be a
square of some real matrix. But by (3), we have
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Pt +2T) =Pt +T+T)=d(t+T)C = d(t)C*

Thus, replacing T by 27" in (3), we may obtain a real matrix B such that
= C?. Repeating the above argument then gives the result. QED

Corollary. There is a nonsingular periodic transformation of variables
(of period T' or 2T ) taking (1) into a linear differential equation with constant

coefficients.

or

Proof.
Let P(t), B be as above, and set x = P(t)y.

We may choose P(t) to be of period T or 271" as above.

Then,
i = Py+ Py
= Ax
APy
So,

APy = Py + Py
But, P = ®e B! or PeP! = @, so

PeBt 1 PBePt = ApPePt

P+ PB= AP

or

APy = (AP — PB)y + Py

or
PBy = Py

or By = y since P is non-singular. QED



