Jordan Canonical Form

Suppose that A is an $n \times n$ matrix with characteristic polynomial.

$$
p(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{s}\right)^{m_{s}}
$$

and generalized eigenspaces $V_{j}=\operatorname{ker}\left(A-\lambda_{j} I\right)^{m_{j}}$.
Let L be the linear map defined by $L x=A x$ for all x.
The space V_{j} is mapped into itself by the linear map defined by L. There is a basis for the space V_{j} such that in that basis the map L has the matrix representation

$$
B_{j}=\lambda_{j} I+N_{j}
$$

and
N_{j} is a block matrix $\operatorname{diag}\left(N_{j, 1}, \ldots, N_{j, d_{j}}\right)$ where each $N_{j, k}$ is a square matrix whose only non-zero entries are $1^{\prime} s$ on the super-diagonal (i.e., just above the diagonal).

The matrix $B=\operatorname{diag}\left(B_{1}, \ldots, B_{s}\right)$ is unique up to a permutation of the $B_{k}^{\prime} s$ or $N_{j, k}^{\prime} s$.

This matrix B is called the Jordan canonical form of the matrix A.
If the eigenvalues of A are real, the matrix B can be chosen to be real. If some eigenvalues are complex, then the matrix B will have complex entries.

However, if A is real, then the complex eigenvalues come in complex conjugate pairs, and this can be used to give a real Jordan canonical form. In this form, if $\lambda_{j}=a_{j}+i b_{j}$ is a complex eigenvalue of A, then the matrix B_{j} will have the form

$$
B_{j}=D_{j}+N_{j}
$$

where $D_{j}=\operatorname{diag}\left(E_{j}, E_{j}, \ldots, E_{j}\right)$ and E_{j} is the 2×2 diagonal matrix

$$
\left[\begin{array}{rr}
a_{j} & -b_{j} \\
b_{j} & a_{j}
\end{array}\right]
$$

and N_{j} is a block matrix of the form $\operatorname{diag}\left(N_{j, 1}, \ldots, N_{j, d_{j}}\right)$ in which each $N_{j, k}$ is a square matrix whose only non-zero terms lie in blocks of 2×2 identity matrices in the super 2 -block diagonal.

For instance, in case $\lambda_{j}=2+i$ and $\bar{\lambda}_{j}=2-i$ has multiplicity 4 , one can have the following form for B_{j}.

$$
\left[\begin{array}{rrrrrrrr}
2 & -1 & 1 & 0 & & & & \\
1 & 2 & 0 & 1 & & & & \\
& & 2 & -1 & 1 & 0 & & \\
& & 1 & 2 & 0 & 1 & & \\
& & & & 2 & -1 & 1 & 0 \\
& & & & 1 & 2 & 0 & 1 \\
& & & & & & 2 & -1 \\
& & & & & & 1 & 2
\end{array}\right]
$$

Linear Periodic Systems

Consider the homogeneous linear periodic system

$$
\begin{equation*}
\dot{x}=A(t) x, \quad A(t+T)=A(t), \quad T>0 \tag{1}
\end{equation*}
$$

where $A(t)$ is a continuous $n \times n$ real or complex matrix which is periodic of period T in t.

Lemma 1.If C is an $n \times n$ complex matrix with $\operatorname{det} C \neq 0$, then there is a complex matrix B such that $C=e^{B}$.

Proof.
Since $\operatorname{det} C \neq 0$, the eigenvalues of C must all be non-zero.
Using the decomposition into generalized eigenspaces, it suffices to deal with a single generalized eigenspace and a single non-zero eigenvalue, say λ.

Thus, we may assume there is a non-singular matrix P such that

$$
P C P^{-1}=\lambda I+N \equiv C_{1}
$$

where $N^{r}=0$ for some $r>0$.
Let us first work with $C_{1}=\lambda I+N=\lambda\left(I+\frac{1}{\lambda} N\right)$.
Let $b=\log \lambda$ (complex if λ is not real and positive).
We claim: there is a matrix S such that $e^{S}=I+\frac{1}{\lambda} N$.
Assuming the claim, we get

$$
\begin{aligned}
C_{1} & =e^{b} e^{S} \\
& =e^{b I} e^{S} \\
& =e^{b I+S} \\
& =e^{B_{1}}
\end{aligned}
$$

with $B_{1}=b I+S$.
Then,

$$
P C P^{-1}=C_{1}=e^{B_{1}}
$$

and,

$$
C=P^{-1} C_{1} P=P^{-1} e^{B_{1}} P=e^{P^{-1} B_{1} P}
$$

so, it suffices to prove the claim.
We want S such that $e^{S}=I+\frac{1}{\lambda} N$.
The real power series for $\log (1+x)$ is

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
$$

So, we might try

$$
S=\log \left(I+\frac{1}{\lambda} N\right)=\frac{N}{\lambda}-\frac{N^{2}}{2 \lambda^{2}}+\frac{N^{3}}{3 \lambda^{3}}-\ldots
$$

Since N is nilpotent, this is a finite sum, and we leave it as an exercise to show that $e^{S}=C_{1}$ as required. QED.

Remark. Note that even if C were a real matrix with $\operatorname{det}(C) \neq 0$, the above lemma may only yield a complex matrix S such that $e^{S}=C$. It is interesting to ask for the conditions under which the matrix S can also be chose to be real. The next lemma provides the answer.

Lemma 2.If C is an $n \times n$ real matrix, then there is a real matrix S such that $C=e^{S}$ if and only if $\operatorname{det}(C) \neq 0$ and C is a square (i.e., there is a real matrix A such that $C=A^{2}$.

Proof. The necessity is easy since we simply take $A=e^{\frac{1}{2} S}$, and observe that $\operatorname{det}\left(e^{S}\right) \neq 0$ for any S.

For sufficiency, again we have that all the eigenvalues of C are non-zero. Since C is real, each complex eigenvalue λ its complex conjugate $\bar{\lambda}$ occurs with the same multiplicity. Also, since $C=A^{2}$, the real negative eigenvalues must have even multiplicity. Identifying C with its associated linear operator as usual, and taking the direct sum decomposition of $\mathbf{R}^{n}=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$ into generalized eigenspaces of C, we can express C as the sum

$$
C=A_{1}+A_{2}+\ldots+A_{k}
$$

where

1. $A_{i} A_{j}$ is the zero matrix for $i \neq j$,
2. for each $1 \leq i \leq k, \operatorname{dim}\left(V_{i}\right)$ is even, and
3. $A_{i} \mid V_{i}$ is non-singular and has either a single non-zero real eigenvalue or a single pair of non-zero complex conjugate eigenvalues; the negative real eigenvalues have even multiplicity.

It then suffices to show that there is a real matrix S_{i} such that $A_{i}=e^{S_{i}}$ for each i. We leave this last part as an exercise. QED.

Theorem.(Floquet) Every fundamental matrix $\Phi(t)$ for (1) has the form

$$
\begin{equation*}
\Phi(t)=P(t) e^{B t} \tag{2}
\end{equation*}
$$

where $P(t)$ is a periodic matrix of period T and B is a constant matrix (which may by complex). We may always obtain (1) with a real matrix B where $P(t)$ has period $2 T$.

Proof.

Let $\Phi(t)$ be a fundamental matrix for (1).
Then, letting $u=u(t)=t+T$, and using $A(t+T)=A(t)$, we get

$$
\begin{aligned}
\frac{d}{d t} \Phi(t+T) & =\frac{d}{d u} \Phi(u) \\
& =A(u) \Phi(u) \\
& =A(t+T) \Phi(t+T) \\
& =A(t) \Phi(t+T)
\end{aligned}
$$

so, $\Phi(t+T)$ is also a solution matrix. Since it is non-singular, it is a fundamental matrix. Thus, there is a non-singular matrix C (possibly comples) such that

$$
\begin{equation*}
\Phi(t+T)=\Phi(t) C \tag{3}
\end{equation*}
$$

By Lemma 1, there is a (possibly complex) matrix B such that $e^{B T}=C$.
Now, letting $P(t)=\Phi(t) e^{-B t}$ we get $\Phi(t)=P(t) e^{B t}$ and

$$
P(t+T)=\Phi(t+T) e^{-B(t+T)}=\Phi(t) e^{-B t}=P(t)
$$

In order to choose B to be real, we simply need the matrix C to be a square of some real matrix. But by (3), we have

$$
\Phi(t+2 T)=\Phi(t+T+T)=\Phi(t+T) C=\Phi(t) C^{2}
$$

Thus, replacing T by $2 T$ in (3), we may obtain a real matrix B such that $e^{B 2 T}=C^{2}$. Repeating the above argument then gives the result. QED

Corollary. There is a nonsingular periodic transformation of variables (of period T or $2 T$) taking (1) into a linear differential equation with constant coefficients.

Proof.

Let $P(t), B$ be as above, and set $x=P(t) y$.
We may choose $P(t)$ to be of period T or $2 T$ as above.
Then,

$$
\begin{aligned}
\dot{x} & =\dot{P} y+P \dot{y} \\
& =A x \\
& =A P y
\end{aligned}
$$

So,

$$
A P y=\dot{P} y+P \dot{y}
$$

But, $P=\Phi e^{-B t}$, or $P e^{B t}=\Phi$, so

$$
\dot{P} e^{B t}+P B e^{B t}=A P e^{B t}
$$

or

$$
\dot{P}+P B=A P
$$

or

$$
A P y=(A P-P B) y+P \dot{y}
$$

or

$$
P B y=P \dot{y}
$$

or $B y=\dot{y}$ since P is non-singular. QED

