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Jordan Canonical Form

Suppose that A is an n× n matrix with characteristic polynomial.

p(λ) = (λ− λ1)
m1 . . . (λ− λs)

ms

and generalized eigenspaces Vj = ker(A− λjI)mj .
Let L be the linear map defined by Lx = Ax for all x.
The space Vj is mapped into itself by the linear map defined by L. There

is a basis for the space Vj such that in that basis the map L has the matrix
representation

Bj = λjI + Nj

and
Nj is a block matrix diag(Nj,1, . . . , Nj,dj

) where each Nj,k is a square
matrix whose only non-zero entries are 1′s on the super-diagonal (i.e., just
above the diagonal).

The matrix B = diag(B1, . . . , Bs) is unique up to a permutation of the
B′

ks or N ′
j,ks.

This matrix B is called the Jordan canonical form of the matrix A.
If the eigenvalues of A are real, the matrix B can be chosen to be real. If

some eigenvalues are complex, then the matrix B will have complex entries.
However, if A is real, then the complex eigenvalues come in complex

conjugate pairs, and this can be used to give a real Jordan canonical form.
In this form, if λj = aj + ibj is a complex eigenvalue of A, then the matrix
Bj will have the form

Bj = Dj + Nj

where Dj = diag(Ej, Ej, . . . , Ej) and Ej is the 2× 2 diagonal matrix[
aj −bj

bj aj

]

and Nj is a block matrix of the form diag(Nj,1, . . . , Nj,dj
) in which each

Nj,k is a square matrix whose only non-zero terms lie in blocks of 2 × 2
identity matrices in the super 2-block diagonal.

For instance, in case λj = 2 + i and λ̄j = 2− i has multiplicity 4, one can
have the following form for Bj.
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

2 −1 1 0
1 2 0 1

2 −1 1 0
1 2 0 1

2 −1 1 0
1 2 0 1

2 −1
1 2



Linear Periodic Systems

Consider the homogeneous linear periodic system

ẋ = A(t)x, A(t + T ) = A(t), T > 0 (1)

where A(t) is a continuous n×n real or complex matrix which is periodic
of period T in t.

Lemma 1.If C is an n× n complex matrix with det C 6= 0, then there is
a complex matrix B such that C = eB.

Proof.
Since det C 6= 0, the eigenvalues of C must all be non-zero.
Using the decomposition into generalized eigenspaces, it suffices to deal

with a single generalized eigenspace and a single non-zero eigenvalue, say λ.
Thus, we may assume there is a non-singular matrix P such that

PCP−1 = λI + N ≡ C1

where N r = 0 for some r > 0.
Let us first work with C1 = λI + N = λ(I + 1

λN).

Let b = log λ (complex if λ is not real and positive).
We claim: there is a matrix S such that eS = I + 1

λN .
Assuming the claim, we get

C1 = ebeS

= ebIeS

= ebI+S

= eB1
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with B1 = bI + S.
Then,

PCP−1 = C1 = eB1

and,

C = P−1C1P = P−1eB1P = eP−1B1P

so, it suffices to prove the claim.
We want S such that eS = I + 1

λN .

The real power series for log(1 + x) is

x− x2

2
+

x3

3
− . . .

So, we might try

S = log(I +
1

λ
N) =

N

λ
− N2

2λ2 +
N3

3λ3 − . . .

Since N is nilpotent, this is a finite sum, and we leave it as an exercise
to show that eS = C1 as required. QED.

Remark. Note that even if C were a real matrix with det(C) 6= 0, the
above lemma may only yield a complex matrix S such that eS = C. It is
interesting to ask for the conditions under which the matrix S can also be
chose to be real. The next lemma provides the answer.

Lemma 2.If C is an n×n real matrix, then there is a real matrix S such
that C = eS if and only if det(C) 6= 0 and C is a square (i.e., there is a real
matrix A such that C = A2.

Proof. The necessity is easy since we simply take A = e
1
2
S, and observe

that det(eS) 6= 0 for any S.
For sufficiency, again we have that all the eigenvalues of C are non-zero.

Since C is real, each complex eigenvalue λ its complex conjugate λ̄ occurs
with the same multiplicity. Also, since C = A2, the real negative eigenvalues
must have even multiplicity. Identifying C with its associated linear operator
as usual, and taking the direct sum decomposition of Rn = V1⊕V2⊕ . . .⊕Vk

into generalized eigenspaces of C, we can express C as the sum

C = A1 + A2 + . . . + Ak

where
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1. AiAj is the zero matrix for i 6= j,

2. for each 1 ≤ i ≤ k, dim(Vi) is even, and

3. Ai | Vi is non-singular and has either a single non-zero real eigenvalue
or a single pair of non-zero complex conjugate eigenvalues; the negative
real eigenvalues have even multiplicity.

It then suffices to show that there is a real matrix Si such that Ai = eSi

for each i. We leave this last part as an exercise. QED.
Theorem.(Floquet) Every fundamental matrix Φ(t) for (1) has the form

Φ(t) = P (t)eBt (2)

where P (t) is a periodic matrix of period T and B is a constant matrix
(which may by complex). We may always obtain (1) with a real matrix B
where P (t) has period 2T .

Proof.
Let Φ(t) be a fundamental matrix for (1).
Then, letting u = u(t) = t + T , and using A(t + T ) = A(t), we get

d

dt
Φ(t + T ) =

d

du
Φ(u)

= A(u)Φ(u)

= A(t + T )Φ(t + T )

= A(t)Φ(t + T )

so, Φ(t + T ) is also a solution matrix. Since it is non-singular, it is
a fundamental matrix. Thus, there is a non-singular matrix C (possibly
comples) such that

Φ(t + T ) = Φ(t)C (3)

By Lemma 1, there is a (possibly complex) matrix B such that eBT = C.
Now, letting P (t) = Φ(t)e−Bt we get Φ(t) = P (t)eBt and

P (t + T ) = Φ(t + T )e−B(t+T ) = Φ(t)e−Bt = P (t).

In order to choose B to be real, we simply need the matrix C to be a
square of some real matrix. But by (3), we have
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Φ(t + 2T ) = Φ(t + T + T ) = Φ(t + T )C = Φ(t)C2.

Thus, replacing T by 2T in (3), we may obtain a real matrix B such that
eB2T = C2. Repeating the above argument then gives the result. QED

Corollary. There is a nonsingular periodic transformation of variables
(of period T or 2T ) taking (1) into a linear differential equation with constant
coefficients.

Proof.
Let P (t), B be as above, and set x = P (t)y.
We may choose P (t) to be of period T or 2T as above.
Then,

ẋ = Ṗ y + P ẏ

= Ax

= APy

So,

APy = Ṗ y + P ẏ

But, P = Φe−Bt, or PeBt = Φ, so

Ṗ eBt + PBeBt = APeBt

or
Ṗ + PB = AP

or
APy = (AP − PB)y + P ẏ

or
PBy = P ẏ

or By = ẏ since P is non-singular. QED


