Remark. The Variation of Parameters formula $\Phi v' = h$ for the function v giving the particular solution $x_p(t) = \Phi(t)v(t)$ should be treated as a system of linear equations with unknown vector v'. Thus, to find the solution $x_p(t)$, one simply solves this system for v'(t) and integrates to find v(t).

Some examples

We now consider some examples of linear differential equations with constant coefficients

1.

$$x' = -2x$$
$$y' = y$$

Here the matrix A is

$$\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$$
,

the eigenvalues are -2, 1, and the general solution is

$$\bar{x}(t) = e^{-2t} \begin{pmatrix} c_1 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} 0 \\ c_2 \end{pmatrix}$$

The critical point 0 is called a *saddle*.

The orbits near 0 are depicted in the figure below.

2.

$$x' = 2x - y$$
$$y' = x + y$$

The matrix A is

$$\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$$
,

The characteristic polynomial is $\lambda^2 - 3\lambda + 3$, and the eigenvalues are

$$\lambda = \frac{3}{2} \pm i \frac{\sqrt{3}}{2}$$

Letting $\lambda = \frac{3}{2} + i \frac{\sqrt{3}}{2}$, we have the matrix equation

$$(A - \lambda I) \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

This gives $(2 - \lambda)v_1 = v_2$, so that a complex eigenvalue is $(v_1, v_2) = (1, 2 - \lambda)$.

We get a complex solution of the form

$$\bar{x}_c(t) = e^{\lambda t} \begin{pmatrix} 1 \\ 2 - \lambda \end{pmatrix}$$

$$= e^{(\frac{3}{2} + i\frac{\sqrt{3}}{2}t)} \begin{pmatrix} 1 \\ \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}$$

$$= e^{(\frac{3}{2} + i\frac{\sqrt{3}}{2}t)} \begin{pmatrix} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} + i \begin{bmatrix} 0 \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \end{pmatrix}$$

The real and imaginary parts of this are

$$Re = e^{\frac{3}{2}t} \left(\cos(\frac{\sqrt{3}}{2}t) \begin{bmatrix} 1\\ \frac{1}{2} \end{bmatrix} - \sin(\frac{\sqrt{3}}{2}t) \begin{bmatrix} 0\\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right)$$

$$Im = e^{\frac{3}{2}t} \left(cos(\frac{\sqrt{3}}{2}t) \begin{bmatrix} 0 \\ -\frac{\sqrt{3}}{2} \end{bmatrix} + sin(\frac{\sqrt{3}}{2}t) \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \right)$$

See the figure.

3.

$$x' = 2x$$
$$y' = 2y$$

The matrix A is

$$\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right),$$

The characteristic polynomial is $(\lambda - 2)^2$, and the only eigenvalue is 2. The general solution is

$$\mathbf{x}(t) = c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

4.

$$x' = x + y$$
$$y' = y$$

The matrix is

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

We have

$$e^{tA} = \begin{pmatrix} e^t & 0 \\ 0 & e^t \end{pmatrix} \begin{bmatrix} I + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}$$

so the general solution is

$$\mathbf{x}(t) = e^{tA} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$= \begin{bmatrix} c_1 e^t + c_2 t e^t \\ c_2 e^t \end{bmatrix}$$

5.

$$x' = 3x + 11y + 5z$$

$$y' = -x - y - z$$

$$z' = 2x + z$$

The matrix is

$$A = \left(\begin{array}{rrr} 3 & 11 & 5 \\ -1 & -1 & -1 \\ 2 & 0 & 1 \end{array}\right)$$

The characteristic polynomial is

$$p(\lambda) = \lambda^3 - 3\lambda^2 + 4 = (\lambda - 2)^2(\lambda + 1).$$

Eigenvalue $\lambda = 2$:

Let N = A - 2I. Then,

$$N = \left[\begin{array}{rrr} 1 & 11 & 5 \\ -1 & -3 & -1 \\ 2 & 0 & -1 \end{array} \right]$$

rank(N) = 2.

$$N^2 = \left[\begin{array}{ccc} 0 & -22 & -11 \\ 0 & -2 & -1 \\ 0 & 22 & 11 \end{array} \right]$$

 $rank(N)^2 = 1.$

The vector

$$v = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

is in ker(N).

The vector

$$w = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

satisfies Nw = v.

We get two linearly independent solutions in $\ker(N^2)$ by

$$e^{2t}v, e^{2t}(w+tNw)$$

the eigenvalue $\lambda = -1$.

Let N = A + I.

Then,

$$N = \left[\begin{array}{rrr} 4 & 11 & 5 \\ -1 & 0 & -1 \\ 2 & 0 & 2 \end{array} \right]$$

Then, rank(N) = 2, and ker(N) is one-dimensional.

The vector

$$v = \left(\begin{array}{c} -1\\ -\frac{1}{11}\\ 1 \end{array}\right)$$

is in the kernel of N, so is an eigenvector for A associated to $\lambda = -1$. A fundamental set of solutions, then, is the set

$$e^{2t} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, e^{2t} (I+tN) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e^{-t} \begin{pmatrix} -1 \\ -\frac{1}{11} \\ 1 \end{pmatrix}$$

where

$$N = \left[\begin{array}{rrr} 1 & 11 & 5 \\ -1 & -3 & -1 \\ 2 & 0 & -1 \end{array} \right]$$

Definition. We say that an $n \times n$ matrix A is *hyperbolic* if all of its (possibly complex) eigenvalues have non-zero real parts.

Proposition. Let $gl(n, \mathbf{R})$ denote the set of $n \times n$ real matrices. The set of hyperbolic elements in $gl(n, \mathbf{R})$ is dense and open in $gl(n, \mathbf{R})$.

Proof.

Density:

Given a matrix A with eigenvalues $\lambda_1, \ldots, \lambda_n$, let $B = A + \epsilon I$ for small positive ϵ . The eigenvalues of B are $\lambda_j + \epsilon$. So, if $\epsilon > 0$ is sufficiently small and positive, then B is near A and hyperbolic.

Openness:

Suppose that B is a hyperbolic matrix with characteristic polynomial

$$p(\lambda) = \sum_{j=0}^{n-1} a_j \lambda^j + \lambda^n.$$

Let $\lambda_1, \ldots, \lambda_n$ be the roots of $p(\lambda)$. Let

$$\delta = \min_{j \neq k} |\lambda_j - \lambda_k|,$$

and let $0 < \epsilon < \delta$.

For a sequence b_j , $0 \le j < n$, let

$$q(\lambda) = \sum_{j=0}^{n-1} b_j \lambda^j + \lambda^n$$

Let K > 0 be such that for |z| > K, and $|b_j - a_j| < 1$, we have |q(z)| > 1.

Let $\epsilon > 0$ be small enough so that each open ball $B_{\epsilon}(\lambda_j)$ is disjoint from the imaginary axis in \mathbb{C} .

The function p(z) is non-zero on the compact set

$$E = (\{z : |z| \le K\}) \bigcap (\bigcup_{j} \mathbf{C} \setminus B_{\epsilon}(\lambda_{j}))$$

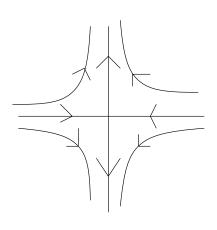
Since p(z) is continuous and non-zero on the compact set E, there is a constant c > 0 such that |p(z)| > c for all $z \in E$. If q is an n - th degree polynomial whose coeficients are close to those of p, then q has the properties that

1.
$$|q(z)| > \frac{c}{2}$$
 for $z \in E$

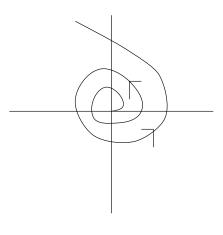
2.
$$|q(z)| > 1$$
 for $|z| > K$

This implies that the roots of q lie in $\bigcup_j B_{\epsilon}(\lambda_j)$. Now, if C is a matrix whose entries are close to those of B, the coefficients of the characteristic polynomial of C are close to those of B. Hence, C will be hyperbolic by the above observations. QED

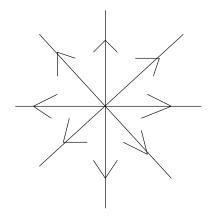
1.



2.



3.



4.

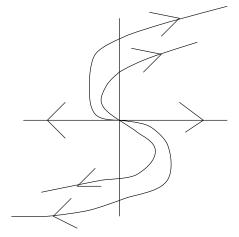


Figure 1: Figure for Examples 1-4