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Remark. The Variation of Parameters formula ®v' = h for the function
v giving the particular solution z,(t) = ®(¢)v () should be treated as a system
of linear equations with unknown vector »’. Thus, to find the solution z,(t),
one simply solves this system for v/(¢) and integrates to find v(t).

Some examples

We now consider some examples of linear differential equations with constant

coefficients

1.

—2x

(5 0)

the eigenvalues are —2, 1, and the general solution is

:z(t):e—’”(gl ) +et<22>

The critical point 0 is called a saddle.

Here the matrix A is

The orbits near 0 are depicted in the figure below.

20—y
r+y

(7))

The matrix A is
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The characteristic polynomial is A — 3\ + 3, and the eigenvalues are

3 V3
=242
A= Eig

Letting A = % + i?, we have the matrix equation

U1 . 0
4 ()=(0)
This gives (2 — A)v; = v9, so that a complex eigenvalue is (v1,v9) =

(1,2 — ).

We get a complex solution of the form

z(t) = eAt<2_i>

The real and imaginary parts of this are

o[ 3]

Re = 7' (cos(?t) l

N =

See the figure.
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3.
o = 2
/
2y
The matrix A is
2 0
0 2 )’
The characteristic polynomial is (A — 2)2, and the only eigenvalue is 2.
The general solution is
1 0
x(t) = c,e* ( 0 ) + cpe® ( 1 >
4.
/
r = x+vy
y’ =Y

The matrix is

We have

t
tA e 0 01
= (o) (0o)
et
|0 €
so the general solution is

x(t) = e ( . )

| ciet + cote!
coe!
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5.
o = 3 + 11y + 5z
I = —r—y—=z
7= 2+z

The matrix is

3 11 5
A=| -1 -1 -1
2 0 1

The characteristic polynomial is

p(A) =2 =3\ +4=(A=22\+1).

Eigenvalue )\ = 2:
Let N = A — 2I. Then,

1 11 5
N=|-1 -3 -1
2 0 -1
rank(N) = 2.
0 —22 -11
N:=|0 -2 -1
0 22 11
rank(N)? = 1.
The vector
1
v=| —1
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is in ker(N).

The vector

satisfies Nw = v.

We get two linearly independent solutions in ker(N?) by

e*v, e?(w + tNw)

the eigenvalue A = —1.
Let N=A+ 1.
Then,
4 11 5
N=|-1 0 -1
2 0 2

Then, rank(N) = 2, and ker(N) is one-dimensional.

The vector
-1
_ 1
v i
1
is in the kernel of N, so is an eigenvector for A associated to A = —1.

A fundamental set of solutions, then, is the set

1 1 —1
| -1 |, e*I+tN)| 0 |,e*| —&
2 0 1

where
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1 11 5
N=|-1 -3 -1
2 0 -1

Definition. We say that an n x n matrix A is hyperbolic if all of its
(possibly complex) eigenvalues have non-zero real parts.

Proposition. Let gl(n,R) denote the set of n x n real matrices. The set
of hyperbolic elements in gl(n,R) is dense and open in gl(n,R).

Proof.

Density:

Given a matrix A with eigenvalues A{,..., \,, let B = A + el for small
positive e. The eigenvalues of B are \; 4+ €. So, if € > 0 is sufficiently small
and positive, then B is near A and hyperbolic.

Openness:

Suppose that B is a hyperbolic matrix with characteristic polynomial

n—1

p(A) =3 a; N + "

=0

Let A1, ..., A, be the roots of p(\).
Let

5=I]1_rl;£1]1€1|)\j—)\k|,

and let 0 < e < 9.
For a sequence b;,0 < j < n, let

n—1

g(A) =D bN + A"
=0
Let K > 0 be such that for |z | > K, and | b; —a; | < 1, we have
[q(2) | > 1.
Let € > 0 be small enough so that each open ball Be();) is disjoint from
the imaginary axis in C.
The function p(z) is non-zero on the compact set
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E={z:]2| SK})ﬂ(UC\Be(/\j))

Since p(z) is continuous and non-zero on the compact set E, there is a
constant ¢ > 0 such that | p(z) | > ¢ for all z € E. If ¢ is an n — th degree
polynomial whose coeficients are close to those of p, then ¢ has the properties
that

L. |q(z)|>5forze E

2. |q(z) | >1for |z|>K

This implies that the roots of ¢ lie in U; Be();). Now, if C'is a matrix
whose entries are close to those of B, the coeficients of the characteristic
polynomial of C' are close to those of B. Hence, C' will be hyperbolic by the
above observations. QED
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Figure 1: Figure for Examples 1-4
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