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Linear Differential Equations with Constant
Coefficients

We now consider differential equations of the form

T = Ax (1)

with A an n x n real or complex matrix.
If A were a scalar, then we know the general solution has the form

z(t) = e
S0, it is tempting to try to obtain a similar formula for the matrix case.
Consider the matrix power series
2 A3

A
T+ At Spdgr+ o (2)

Because of the inequality | AB | < | A || B | for n x n matrices, the series
(2) converges to a unique matrix. We call this matrix e or exp(A).
It is easy to see that if A and B commute (i.e., AB = BA), then eA*? =
A, B
et e”.
Then, we can see that the matrix function e defines a smooth function
of t and, for any constant vector xg, the function

z(t) = ey (3)

solves the initial value problem & = Ax, z(0) = zy.

The matrix e is a fundamental matrix for (1), since its columns con-
sist of solutions (with initial values e;, the standard unit vectors), and its
determinant is nowhere zero.

The form (3) of the solution to (1) is useful for many purposes, but in
some contexts it is useful to have other forms for the solutions to (1).

Suppose that the matrix A is real and diagonalizable over the reals
with distinct real eigenvalues Aqy,...,\,. This means that there is a basis

{vi,...,v,} for R" in which v; is an eigenvector corresponding to A;.
Then, it is easy to see that the function z;(t) = et v; is a solution, and

these form a fundamental set of solutions. Thus, the general solution has the
form
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x(t) = Zajeﬁ‘jvj (4)

Now suppose that the eigenvalues of A are all real, but that they are not
necessarily distinct.
Write the characteristic polynomial of A, p(\) = det(A — A) as

pA) = (A=) (A= A)™

Thus, the real numbers Aq, ..., A\, are the distinct eigenvalues of A, and
>_;m; =n. From linear algebra, we know that there is a direct sum decom-
position

R'=VieV,d...0V;

where each V; = ker(A — \;1)™.
Then, there is an integer 0 < r; < m;

1. A(V;) CV; (V; is invariant)

2. The characteristic polynomial of A on Vj is (A — A;)™
3. For each v € V}, (A= X\;1)7(v) =0

4. There is a v € V; such that (A — M\;1)7 v #£ 0

The subspace Vj is called the generalized eigenspace of A corresponding
to the eigenvalue ;. Its dimension is m;.

In the case above in which the eigenvalues are distinct, each Vj is the
eigenspace of \; and r; = 1.

In general, each V; contains an eigenvector. It consists only of eigenvectors
(its non-zero elements of course) if and only if r; = 1.

To find the general solution of (1), it suffices to find n linearly independent
solutions. For this purpose, it suffices to work in each generalized eigenspace
V;. Indeed, each generalized eigenspace is invariant by the differential equa-
tion: any solution which starts in V; remains in V; for all ¢.

We remark that, once we have found the eigenvalues of A, there is a
simple procedure to find the generalized eigenspaces. If \; is an eigenvalue,
and we set N; = A — \;I, then V} is the set of vectors v such that there is a
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positive integer m > 1 such that Nj"v = 0. Note that V; contains non-zero
vectors since the eigenvectors corresponding to A; are in Vj.

In fact, if we set Vi, = ker(NF), then we have the increasing family of
subspaces

{0}CVaCVaC...CV

Since Vj is finite dimensional this increasing sequence of subspaces must
actually be finite and we have an r; > 0 such that

{0} CViCVpC...CV;,, =V,

The space Vj; is just the space spanned by the eigenvectors.

Let us now give a procedure which gets a basis for V.

The operator N, is nilpotent on V;. That is, there is a positive integer m
such that Ni"v = 0 for all v € V}.

There is a general structure theory for nilpotent operators. To recall this
theory, assume that V' is is a finite dimensional vector space and N is a
nilpotent operator on V.

Given a finite set of vectors wi,ws, ... wg in V, let sp(wy,ws, ..., wy)
denote the subspace spanned by the vectors w;.

A subspace W of V is called a cyclic subspace if there are a vector w €
W and a positve integer a such that N lw # 0,N%w = 0, and W =

sp(w, Nw, N*w, ..., N lw). In that case, we call w a cyclic generator of W
of order a. We also call W a cyclic subspace of order a.
Remarks.

1. A cyclic subspace W is invariant under N. That is, Nv € W for any
veWw.

2. If wis a cyclic generator of W of order a, then the vectors w, Nw, ..., N* tw

form a basis for W. To see this, it suffices to prove that these vectors
form a linearly independent set.

Suppose that we have constants ¢;,7 = 0,...,a — 1 such that

v cow + e Nw+ ...+ o1 N tw = 0.

Then,
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Ny =0=¢oN* 'w

since all other terms involve N®w with b > a. Since, N*'w # 0, we
have ¢y = 0.

Hence, the ¢y term is not actually in the expression for v. That is,

v=c Nw+ cN?w+ ...+ ce 1N w = 0.

Now, repeating the argument using N% v, we get

Nt =0

so that ¢; = 0. Continuing with this argument, we get each ¢; = 0
proving the required linear independence statement.

Theorem. If N is a nilpotent operator on a finite dimensional vector
space V, then V is a direct sum of cyclic subspaces. More precisely, there are
cyclic subspaces Wy, Wy, ..., Wy and positive integers ay, ..., ax such that W;
1s cyclic of order a; and

Let us apply this theorem to the subspaces V; and operators N; = A—\;[
above. The operator [V; is nilpotent on V;. So we may write

Vi=WnoWpd...oWg

where each W, is cyclic of order a;. Let w; be a generator for N; on Wj;.
Then, the set {N}wi :0<l<a; 1<i<k}isa basis for V.

Next, let us indicate how we can obtain the general solution to (1) in a
single cyclic subspace W;; of N;.

To simplify the notation, assume that W = Wj;, m = a; = dim W, \ =
Aj, N =N; | W. Then, A | W has only the eigenvalue A, this eigenvalue
has multiplicity m, and N = A — AI. The vector w = w; is in W, and the
vectors w, Nw, N?w, ..., N™ 'w form a basis for W.
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Lemma. The functions

tA - thm+ k
m—j(t) = —F XN
Ty (1) = € kz.(k—erj)! v

forj=1,...,m—1 form a fundamental set of solutions of of & = Ax on
W.

Before giving the proof, let us write the solutions

ZEo(t), $1<t>, PN ,l’m_l(t)

in a more extended form.

Tmo1(t) = ANy,
Tm_o(t) = e (N w4+ tN™ w)

t2
Tps(t) = e (Nm_3w +EN™ 2 + ENm_1w>

tm—l

Proof.

The vectors w, Nw, ..., N™ 1w are linearly independent in W.

If we show the functions x,,_;(t) are solutions, then it follows that they
are linearly independent since their values at ¢ = 0 are the independent
vectors w, Nw, ..., N™ 1.

But, the function x,,_;(¢) has the form

Ty () = et()\IJrN)Nmfjw — ANy,

which is a solution of (1). QED.

Remark. In general to apply the above results one needs to first find
a cyclic vector w of order a for the subspace W. If X is an eigenvalue of
multiplicity two of A, and W = ker(A—\I)?, then there is a simple procedure
to find a cyclic vector for A — Xl on W. Let v be any eigenvector for A
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associated to A which is in the image of A — X, and let w be such that
(A= M)w =wv. Then, w is a cyclic vector for A— X on W.

Now, suppose that A has some complex eigenvalues, but is a real matrix.
The complex eigenvalues come in complex conjugate pairs

Hos [y 2y 2y - - oy [y FUk
where p; = a; +ib;, fi; = a; — ibj, and i = /—1.
We can consider the matrix as an operator on C" by defining A(u+iv) =
Au + i Av.
First suppose that A is complex diagonalizable with real eigenvalues
A1,...,A; and complex eigenvalues

J1s 1y fh2y 2y - ooy Mgy [k

For each real eigenvalue ), let v}, v2, ... vP* be a basis for ker(A — \,I).
h

t) = e)‘stvf; form a set of linearly independent R"-valued

The functions x
solutions to (1).

For s = 1,...,k, let ¢!,(?,...,¢% be a complex eigenvector of A corre-
sponding to p,. The functions y”(t) = e*=!(" form a set of linearly indepen-
dent C" valued solutions to the complexified differential equation z = Az on
cn.

Then, the functions x”(¢), Re(y"(t)), Im(y"(t)) (note h and s vary) form
a complete set of linearly independent solutions for (1) in R".

In the general case, the real eigenvalues A\ will have generalized eigenspaces
(not just consisting of eigenvectors), and so will the complex eigenvalues ;.
Moreover, the generalized eigenspace of [is is the set of complex conjugates
of elements of the generalized eigenspace of p;. One then finds a real basis
{vh} for the generalized eigenspace of each \, and a complex basis {¢"} for
the generalized eigenspace of each .

The solutions

ps Y4
t
ity =M 3 GA-AD |l
£=0
e e
st v V4 h
Re € E' (A NSI) Cs )
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at
t A )
Im e'uSt Z E(A - ,USI) Cs )
=0
then form a set of n linearly independent R™ valued solutions to (1).
Note that, as a consequence of the above techniques, we get that all the
components of solutions to (1) are linear combinations of terms of the form

tkexp(t);) where \; is a real eigenvalue or

the®tcos(bjt), tretsin(b;t)

where a; 4 b, is a complex eigenvalue.



