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Linear Differential Equations with Constant

Coefficients

We now consider differential equations of the form

ẋ = Ax (1)

with A an n× n real or complex matrix.
If A were a scalar, then we know the general solution has the form

x(t) = eAtx0

so, it is tempting to try to obtain a similar formula for the matrix case.
Consider the matrix power series

I + A+
A2

2!
+
A3

3!
+ . . . (2)

Because of the inequality | AB | ≤ | A || B | for n×n matrices, the series
(2) converges to a unique matrix. We call this matrix eA or exp(A).

It is easy to see that if A and B commute (i.e., AB = BA), then eA+B =
eA · eB.

Then, we can see that the matrix function etA defines a smooth function
of t and, for any constant vector x0, the function

x(t) = etAx0 (3)

solves the initial value problem ẋ = Ax, x(0) = x0.
The matrix etA is a fundamental matrix for (1), since its columns con-

sist of solutions (with initial values ej, the standard unit vectors), and its
determinant is nowhere zero.

The form (3) of the solution to (1) is useful for many purposes, but in
some contexts it is useful to have other forms for the solutions to (1).

Suppose that the matrix A is real and diagonalizable over the reals
with distinct real eigenvalues λ1, . . . , λn. This means that there is a basis
{v1, . . . , vn} for Rn in which vj is an eigenvector corresponding to λj.

Then, it is easy to see that the function xj(t) = etλjvj is a solution, and
these form a fundamental set of solutions. Thus, the general solution has the
form
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x(t) =
∑
j

αje
tλjvj (4)

Now suppose that the eigenvalues of A are all real, but that they are not
necessarily distinct.

Write the characteristic polynomial of A, p(λ) = det(λI − A) as

p(λ) = (λ− λ1)m1 . . . (λ− λs)ms

Thus, the real numbers λ1, . . . , λs are the distinct eigenvalues of A, and∑
jmj = n. From linear algebra, we know that there is a direct sum decom-

position

Rn = V1 ⊕ V2 ⊕ . . .⊕ Vs
where each Vj = ker(A− λjI)mj.
Then, there is an integer 0 < rj ≤ mj

1. A(Vj) ⊆ Vj (Vj is invariant)

2. The characteristic polynomial of A on Vj is (λ− λj)mj

3. For each v ∈ Vj, (A− λjI)rj(v) = 0

4. There is a v ∈ Vj such that (A− λjI)rj−1v 6= 0

The subspace Vj is called the generalized eigenspace of A corresponding
to the eigenvalue λj. Its dimension is mj.

In the case above in which the eigenvalues are distinct, each Vj is the
eigenspace of λj and rj = 1.

In general, each Vj contains an eigenvector. It consists only of eigenvectors
(its non-zero elements of course) if and only if rj = 1.

To find the general solution of (1), it suffices to find n linearly independent
solutions. For this purpose, it suffices to work in each generalized eigenspace
Vj. Indeed, each generalized eigenspace is invariant by the differential equa-
tion: any solution which starts in Vj remains in Vj for all t.

We remark that, once we have found the eigenvalues of A, there is a
simple procedure to find the generalized eigenspaces. If λj is an eigenvalue,
and we set Nj = A− λjI, then Vj is the set of vectors v such that there is a
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positive integer m ≥ 1 such that Nm
j v = 0. Note that Vj contains non-zero

vectors since the eigenvectors corresponding to λj are in Vj.
In fact, if we set Vjk = ker(Nk

j ), then we have the increasing family of
subspaces

{0} ( Vj1 ⊆ Vj2 ⊆ . . . ⊆ Vj

Since Vj is finite dimensional this increasing sequence of subspaces must
actually be finite and we have an rj > 0 such that

{0} ( Vj1 ⊆ Vj2 ⊂ . . . ⊆ Vj,rj = Vj.

The space Vj1 is just the space spanned by the eigenvectors.
Let us now give a procedure which gets a basis for Vj.
The operator Nj is nilpotent on Vj. That is, there is a positive integer m

such that Nm
j v = 0 for all v ∈ Vj.

There is a general structure theory for nilpotent operators. To recall this
theory, assume that V is is a finite dimensional vector space and N is a
nilpotent operator on V .

Given a finite set of vectors w1, w2, . . . wk in V , let sp(w1, w2, . . . , wk)
denote the subspace spanned by the vectors wi.

A subspace W of V is called a cyclic subspace if there are a vector w ∈
W and a positve integer a such that Na−1w 6= 0, Naw = 0, and W =
sp(w,Nw,N2w, . . . , Na−1w). In that case, we call w a cyclic generator of W
of order a. We also call W a cyclic subspace of order a.

Remarks.

1. A cyclic subspace W is invariant under N . That is, Nv ∈ W for any
v ∈ W .

2. If w is a cyclic generator ofW of order a, then the vectors w,Nw, . . . , Na−1w
form a basis for W . To see this, it suffices to prove that these vectors
form a linearly independent set.

Suppose that we have constants ci, i = 0, . . . , a− 1 such that

v
def
= c0w + c1Nw + . . .+ ca−1N

a−1w = 0.

Then,
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Na−1v = 0 = c0N
a−1w

since all other terms involve N bw with b ≥ a. Since, Na−1w 6= 0, we
have c0 = 0.

Hence, the c0 term is not actually in the expression for v. That is,

v = c1Nw + c2N
2w + . . .+ ca−1N

a−1w = 0.

Now, repeating the argument using Na−2v, we get

c1N
a−1w = 0

so that c1 = 0. Continuing with this argument, we get each ci = 0
proving the required linear independence statement.

Theorem. If N is a nilpotent operator on a finite dimensional vector
space V , then V is a direct sum of cyclic subspaces. More precisely, there are
cyclic subspaces W1,W2, . . . ,Wk and positive integers a1, . . . , ak such that Wi

is cyclic of order ai and

V = W1 ⊕W2 ⊕ . . .⊕Wk.

Let us apply this theorem to the subspaces Vj and operators Nj = A−λjI
above. The operator Nj is nilpotent on Vj. So we may write

Vj = Wj1 ⊕Wj2 ⊕ . . .⊕Wjk

where each Wji is cyclic of order ai. Let wi be a generator for Nj on Wji.
Then, the set {N l

jwi : 0 ≤ l < ai, 1 ≤ i ≤ k} is a basis for Vj.
Next, let us indicate how we can obtain the general solution to (1) in a

single cyclic subspace Wji of Nj.
To simplify the notation, assume that W = Wji, m = ai = dim W, λ =

λj, N = Nj | W . Then, A | W has only the eigenvalue λ, this eigenvalue
has multiplicity m, and N = A − λI. The vector w = wi is in W , and the
vectors w,Nw,N2w, . . . , Nm−1w form a basis for W .
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Lemma.The functions

xm−j(t) = etλ

(
m−1∑
k=m−j

tk−m+j

(k −m+ j)!
Nkw

)

for j = 1, . . . ,m− 1 form a fundamental set of solutions of of ẋ = Ax on
W .

Before giving the proof, let us write the solutions

x0(t), x1(t), . . . , xm−1(t)

in a more extended form.

xm−1(t) = eλtNm−1w

xm−2(t) = eλt
(
Nm−2w + tNm−1w

)
xm−3(t) = eλt

(
Nm−3w + tNm−2w +

t2

2!
Nm−1w

)
...

x0(t) = eλt
(
w + tNw + . . .+

tm−1

(m− 1)!
Nm−1w

)
Proof.
The vectors w,Nw, . . . , Nm−1w are linearly independent in W .
If we show the functions xm−j(t) are solutions, then it follows that they

are linearly independent since their values at t = 0 are the independent
vectors w,Nw, . . . , Nm−1w.

But, the function xm−j(t) has the form

xm−j(t) = et(λI+N)Nm−jw = etANm−jw

which is a solution of (1). QED.

Remark. In general to apply the above results one needs to first find
a cyclic vector w of order a for the subspace W . If λ is an eigenvalue of
multiplicity two of A, and W = ker(A−λI)2, then there is a simple procedure
to find a cyclic vector for A − λI on W . Let v be any eigenvector for A
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associated to λ which is in the image of A − λI, and let w be such that
(A− λI)w = v. Then, w is a cyclic vector for A− λI on W .

Now, suppose that A has some complex eigenvalues, but is a real matrix.
The complex eigenvalues come in complex conjugate pairs

µ1, µ̄1, µ2, µ̄2, . . . , µk, µ̄k

where µj = aj + ibj, µ̄j = aj − ibj, and i =
√
−1.

We can consider the matrix as an operator on Cn by defining A(u+ iv) =
Au+ iAv.

First suppose that A is complex diagonalizable with real eigenvalues
λ1, . . . , λj and complex eigenvalues

µ1, µ̄1, µ2, µ̄2, . . . , µk, µ̄k.

For each real eigenvalue λs, let v1
s , v

2
s , . . . , v

ps
s be a basis for ker(A−λsI).

The functions xhs (t) = eλstvhs form a set of linearly independent Rn-valued
solutions to (1).

For s = 1, . . . , k, let ζ1
s , ζ

2
s , . . . , ζ

qs
s be a complex eigenvector of A corre-

sponding to µs. The functions yhs (t) = eµstζhs form a set of linearly indepen-
dent Cn valued solutions to the complexified differential equation ż = Az on
Cn.

Then, the functions xhs (t), Re(y
h
s (t)), Im(yhs (t)) (note h and s vary) form

a complete set of linearly independent solutions for (1) in Rn.
In the general case, the real eigenvalues λs will have generalized eigenspaces

(not just consisting of eigenvectors), and so will the complex eigenvalues µs.
Moreover, the generalized eigenspace of µ̄s is the set of complex conjugates
of elements of the generalized eigenspace of µs. One then finds a real basis
{vhs } for the generalized eigenspace of each λs and a complex basis {ζhs } for
the generalized eigenspace of each µs.

The solutions

xhs (t) = eλst

 phs∑
`=0

t`

`!
(A− λsI)`

 vhs ,

Re

eµst
 qhs∑

`=0

t`

`!
(A− µsI)`

 ζhs

 ,
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Im

eµst
 qhs∑

`=0

t`

`!
(A− µsI)`

 ζhs

 ,

then form a set of n linearly independent Rn valued solutions to (1).
Note that, as a consequence of the above techniques, we get that all the

components of solutions to (1) are linear combinations of terms of the form
tkexp(tλj) where λj is a real eigenvalue or

tkeajtcos(bjt), t
keajtsin(bjt)

where aj + ibj is a complex eigenvalue.


