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Linear Differential Equations

Consider a differential equation of the form

ẋ = A(t)x+ h(t) (1)

where A(t) is a continuous real or complex n × n matrix valued func-
tion and h(t) is a continuous n − vector−valued function. We assume that
A(t), h(t) are defined for all t ∈ (−∞,∞). Let V = Rn or Cn. We assume
both A(·), h(t) are V − valued.

Given an equation (1), the associated homogeneous equation is the equa-
tion

ẋ = A(t)x (2)

We have already proved that every initial value problem for (1) has solu-
tions defined for all t.

Basic Facts:

1. If x(t), y(t) are solutions of (1), then z(t) = y(t)− x(t) is a solution of
(2).

2. If x(t) is a solution of (1) and z(t) is a solution of (2), then y(t) =
x(t) + z(t) is a solution of (1).

Thus, if one knows all solutions of (2), and one knows one particular
solution of (1), then one can get all solutions of (1).

The general solution of (1) is a vector-valued expression

φ(t, c) (3)

involving a vector c = (c1, . . . , cn) of constants so that every solution can
be represented as (3) for a unique choice of the vector c.

We now study the general properties of equation (2).
Proposition. The set of solutions to (2) form an n−dimensional linear

subspace of the vector space of C1 dunctions from R to V .
Proof.
Let S be the set of solutions.
Clearly, S ⊂ C1(R, V ).
(A) S is a linear subspace:
Suppose x(t), y(t) are in S, and a, b are scalars.



October 2, 2011 12-2

Then, z(t) = ax(t) + by(t) satisfies

ż(t) = aẋ(t) + bẏ(t)

= aA(t)x(t) + bA(t)y(t)

= A(t)(z(t))

so, z(t) ∈ S.
(B) S is n−dimensional:
We need to find n solutions x1(t), . . . , xn(t) such that every solutions can

be uniquely expressed as

x(t) =
n∑

i=1

αixi(t) (4)

where αi are scalars.
Let xi(t) be the unique solution such that xi(0) = ei where ei is the i− th

standard basis vector of V .
Let x(t) be an arbitrary solution of (2). Then, there are scalars αi such

that x(0) =
∑

i αiei. Consider y(t) =
∑

i αixi(t).
Then, both x(·), y(·) are solutions and they agree at t = 0. By uniqueness

of solutions, we have x(t) = y(t) for all t.
Now, if x(t) =

∑
i αixi(t) =

∑
i βixi(t) for all t, then this is true for t = 0,

so αi = βi ∀i since {ei} is a basis for V . QED
Definition. A set {y1(t), . . . , y`} of solutions to (2) is called linearly

independent if it is a linearly independent subset of C1(R, V ). That is,
whenever

∑̀
i=1

αiyi(t) = 0 ∀t

we have αi = 0 ∀i.
A maximal linearly independent set of solutions is called a fundamental

set of solutions.
Thus, a set {y1(t), . . . , yn(t)} is a fundamental set of solutions iff the set

is a basis for the subspace S of C1(R, V ).
Note, that, since any two bases of a vector space have the same number

of elements, we have ` = n for any fundamental set of solutions.
We now want a criterion for a set {y1(t), . . . , yn(t)} of solutions to be a

fundamental set.
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For a set {v1, . . . , vn} of vectors in V to be linearly independent if is
necessary and sufficient that

det(v1, . . . , vn) 6= 0

But linear independence of functions is a slightly different condition. The
values of a set of vector valued functions {z1(t), . . . , zn(t)} might be a linearly
independent set of vectors for some t′s and be a linearly dependent set for
other t′s. Thus, if we form the function

W (t) = W (z1(t), . . . , zn(t)) = det(z1(t), . . . , zn(t))

we may have W (t) = 0 for some t′s and not zero for other t′s. It turns out
that this cannot happen if the zi(t) are all solutions of the same homogeneous
linear differential equation (2).

Proposition. Suppose {y1(t), . . . , yn(t)} are n solutions to (2), and let
W (t) = det(y1(t), . . . , yn(t)).

Then, for any real t0,

W (t) = W (t0)exp
(∫ t

t0
trace(A(s))ds

)
(5)

Corollary.Under the hypotheses of the theorem, if W (t) = 0 at a single
t = t0, then W (t) is identically equal to zero.

Before we proceed to the proof of the proposition, we recall some prop-
erties of determinants.

If A = (aij) is an n× n matrix, let A(i | j) denote the (n− 1)× (n− 1)
matrix obtained by deleting the i−th row and j−th column of A.

The expanding by minors along the first column gives

det(A) =
n∑

j=1

(−1)1+jaj1detA(j | 1). (6)

Also, if h is a real number, and B is obtained from A by multiplying a
single row (or column) of A by h, then

det(B) = h det(A). (7)

We define tr(A) = trace(A) =
∑n

i=1 aii to be the sum of the diagonal
elements of A.
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Lemma 1. Let A(t) = (aij(t)) by a continuous n × n matrix function
of t, and let h > 0. Then,

det(I + A(t)h) = 1 + tr(A(t))h+O(h2). (8)

Here I is the n× n identity matrix and O(h2) denotes any function R(h)
such that there is a constant C > 0 such that

lim sup
h→0

R(h)

h2
< C.

Proof of Lemma 1.
We use induction of n.
It is trivial for n = 1 since we can use the zero function for O(h2).
Assume the Lemma is true for n− 1.
Let B = I + A(t)h.
Expanding by minors down the first column of B gives

det(I + A(t)h) = (1 + a11(t)h)det(B(1 | 1)

+
n∑

j=2

(−1)1+jhaj1(t)det(B(j | 1). (9)

Now, letting In−1 denote the (n− 1)× (n− 1) identity matrix, we have

B(1 | 1) = In−1 + hA(1 | 1).

So, by induction, we have the first entry on the right side of (9) equals

(1 + a11(t)h)(1 + h trA(1 | 1) +O(h2)) = 1 + a11(t)h+

h trA(1 | 1) +O(h2)

= 1 + h trA(t) +O(h2).

On the other hand, each entry in the sum in the second term in equation
(9) has an h in its first column. So, this whole sum is O(h2). QED.

We need a standard result from the calculus of maps from Rn to R.
Lemma 2. Let ψ : Rn → R be a C1 function defined on an open set

D ⊂ Rn, and let u, v be vectors in D such that the closed line segment joining
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u to u + v is completely contained in D (i.e. {u + tv : 0 ≤ t ≤ 1} ⊂ D).
Then, there is a constant K > 0 such that

| ψ(u+ v)− ψ(u) | ≤ K| v |. (10)

Proof.
Let ∇ψ(x) denote the gradient of ψ at the point x.
Since the map t→ | ∇ψ(u+ tv) | is continuous on the closed unit interval

[0, 1], we have that

K
def
= sup

0≤t≤1
| ∇ψ(u+ tv) | <∞.

The map η(t) = ψ(u + tv) is a C1 real-valued function of the variable t
on the closed interval [0, 1], so the Mean-Value theorem gives that there is a
0 < t0 < 1 such that

ψ(u+ v)− ψ(u) = η(1)− η(0) = η′(t0)(1− 0) = η′(t0).

By the Chain Rule for functions of several variables, we have that

η′(t0) = ∇ψ(u+ t0v) · (v)

where · denotes the usual dot product (inner product) in Rn.
By the Cauchy-Schwarz inequality, we have

| ψ(u+ v)− ψ(u) | = | η′(t0) |
= | ∇ψ(u+ t0v) · (v) |
≤ | ∇ψ(u+ t0v) || ·(v) |
≤ K| v |

QED.
We now apply this to the determinant function, det, on n × n matrices,

thinking of these as elements of Rn2
.

Lemma 3. Let A and B be two n×n matrices. Then, there is a constant
K such that

| det(A+B)− det(A) | ≤ K| B | (11)
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Note that we may write this using the ’big oh’ notation as

det(A+B) = det(A) +O(B)

Proof of Lemma 3.
We recall that, if A = (aij), then

det(A) =
∑

permutations σ
(−1)sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

where sgn(σ) denotes the sign of the permutation σ.
Thus, det(A) is a polynomial in the coefficients (aij). (This can also be

seen using induction on n and the expansion by minors along the first column
formula).

Thus, as a function on Rn2
, the map A→ det(A) is certainly C1.

We apply Lemma 2. Note, that, since we used the Cauchy-Schwarz in-
equality, the constant K obtained in Lemma 2 requires that we use the norm

| A |1 = (
∑
i,j

a2
ij)

1
2

on matrices A.
Thus, we get some constant, say K1 such that

| det(A+B)− det(A) | ≤ K1| B |1

Since, any two norms on Rn2
are boundedly related, we have that,

| B |1 ≤ K2| B |

where | B | is the usual operator norm sup| x |=1
| Bx |.

Thus, (11) follows using K = J1K2. QED.
Proof of the proposition.
We show that W (t) satisfies the scalar linear non-autonomous differential

equation

W ′ = trA(t)W (12)

It will then follow that
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W ′

W
= trA(t)

or

logW (t) |W (t)
W (t0)=

∫ t

t0
trA(s)ds

or

W (t) = W (t0)exp
(∫ t

t0
trA(s)ds

)
As usual, we let o(h) denote a function r(h) such that

lim
h→0

r(h)

h
= 0.

Let Φ(t) be the matrix whose columns are the solutions y1(t), . . . , yn(t),
so that we have the matrix equation

Φ′(t) = A(t)Φ(t).

Now, we have

Φ(t+ h) = Φ(t) + Φ′(t)h+ o(h)

= Φ(t) + A(t)Φ(t)h+ o(h)

= (I + A(t)h)Φ(t) + o(h)

which, in turn, gives

W (t+ h) = det((I + A(t)h)Φ(t) + o(h))

Applying Lemma 3 with A = (I + A(t)h)Φ(t) and B = o(h), we get

det((I + A(t)h)Φ(t) + o(h)) = det((I + A(t)h)Φ(t)) +O(o(h))

= det((I + A(t)h)Φ(t)) + o(h)
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Using the fact that the det(AB) = det(A)det(B) for all A,B and Lemma
1 gives

W (t+ h) = W (t)(1 + tr A(t)h+O(h2)) + o(h)

= W (t) +W (t)(tr A(t)h) + o(h).

So,

W (t+ h)−W (t)

h
= W (t)tr A(t) +

o(h)

h
.

Letting h→ 0 gives

W ′ = trA(t)W

as required. QED.
Definition. The determinant W (t) = W (y1(t), . . . , yn(t)) of the set of

solutions {y1, . . . , yn} is called the Wronskian of this set of solutions.
This a set of solutions is a fundamental set if and only if its Wronskian

is not zero for some (or any ) t.
When, {y1, . . . , yn} is a fundamental set of solutions, we form the matrix

Φ(t) whose columns are the y′is and call this matrix a fundamental matrix
for (2).

Thus, the general solution to (2) has the form

x(t) = Φ(t)c

where Φ(t) is any fundamnental matrix for (2) and c is a constant vector.
Fact: Suppose Φ(t) is a fundamental matrix for (2) and h(t) is not iden-

tically zero. Then, one can always find a particular solution for (1) of the
form

xp(t) = Φ(t)v(t) (13)

where v(t) is some non-constant vector-valued function of t.
Proof.
To motivate how we find v(t), first suppose that we can find a solution

as in (13).
Then,
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x′p = Φ′v + Φv′

= AΦv + Φv′

= Axp + h

= AΦv + h

Or,

Φv′ = h

Since, Φ is invertible, we can write the last equation as

v′ = Φ(t)−1h(t)

Integrating, gives

v(t) =
∫ t

t0
Φ(s)−1h(s)ds

for any t0.
Now, take v(t) in this last equation and reverse the steps. This gives us

xp(t) = Φ(t)
∫ t

t0
Φ(s)−1h(s)ds

and, the general solution to (1) has the form

x(t) = Φ(t)c + Φ(t)
∫ t

t0
Φ(s)−1h(s)ds (14)

This last formula is known as the variation of constants formula or the
variation of parameters formula.


