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Another index formula

For a Jordan curve γ, let us write int γ for the bounded interior region of
the complement of γ.

Let f be a planar C1 vector field with an isolated critical point x0. and
let γ be a positively oriented C1 Jordan curve so that the only critical point
of f in int γ

⋃
γ is x0. Let φ(t, x) be the local flow of f . A point y ∈ γ

at which f is tangent to γ is called an exterior tangency if there is an ε > 0
such that φ(t, x) is in the exterior of γ for t ∈ (−ε, ε) \ {0}. Similarly, the
point y of tangency is an interior tangency if there is an ε > 0 such that
φ(t, x) ∈ int γ for t ∈ (−ε, ε) \ {0}.

Note that a tangency may be neither exterior nor interior.
Theorem. Suppose that f and γ are as above and there are only finitely

many points of tangency of f and γ and all of these tangencies are exterior or
interior. Let Ni be the number of interior tangencies and Ne be the number
of exterior tangencies. Then,

Ind(x0, f) = 1 +
1

2
(Ni −Ne)

The main part of the proof involves a combinatorial lemma which we now
give.

For a non-negative integer n, let An be the set of all finite sequences
(a0, a1, . . . , an) for which each aj = i or e. Given such a finite sequence,
(a0, . . . , an), call n its length.

For a = (a0, a1, . . . , an) ∈ An, let Ni(a) be the number of i′s occurring in
a, and let Ne(a) be the number of e′s occurring in a.

Letting A =
⋃
nAn be the collection of all finite sequences of i′s and e′s,

we define a function η : A → Z inductively by the following.

1. η(a0) = 0 for all a0.

2. η(i, i) = 1, η(e, e) = −1, η(i, e) = 0, η(e, i) = 0

3. For n ≥ 2,

η(a0, . . . , an) =


η(a0, . . . , an−1) + 1 if (an−1, an) = (i, i)
η(a0, . . . , an−1)− 1 if (an−1, an) = (e, e)
η(a0, . . . , an−1) otherwise
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Lemma. Let η be as above. Then, for any (a0, . . . , an) ∈ An with a0 = an

(a) if a0 = an = i, then η(a0, . . . , an) = Ni −Ne − 1.

(b) if a0 = an = e, then η(a0, . . . , an) = Ni −Ne + 1.

Proof. We use induction on the length n. By definition, the Lemma
holds for n = 0, 1.

Let n ≥ 2, and assume that lemma holds for every sequence of length less
than n.

Let (a0, . . . , an) have length n.
Suppose a0 = an = i

Case 1: There is no integer j < n for which aj = e. Then, η((a0, . . . , ak)) = k−1
for all k ≤ n, so η(a0, . . . , an) = n = Ni −Ne − 1

Case 2: There is a least integer j > 0 for which aj = e. Let bk = ak for k < j,
and bk = ak+1 for j ≤ k < n. That is, we remove the e at aj.

Then, the length of b is n− 1.

Case 2a: aj+1 = i. Then, η(b0, . . . , bj) = η(b0, . . . , bj−1) + 1, and adding
more b′`s gives η(b) = η(a) + 1.

By induction, η(b) = Ni(b)−Ne(b)−1. But, Ni(a) = Ni(b), Ne(a) =
Ne(b) + 1.

So, η(a) = η(b)−1 = Ni(b)−(Ne(a)−1)−1−1 = Ni(a)−Ne(a)−1.

Case 2b: aj+1 = e. Then, η(b) = η(a) + 1. Also, Ni(a) = Ni(b), Ne(a) =
Ne(b) + 1.

So, η(a) = η(b)− 1 = Ni(b)−Ne(b)− 1− 1 = Ni(a)−Ne(a)− 1.

This takes care of the case in which a0 = an = i.
Now suppose a0 = an = e.
Proceding in the same way, we get η(a) = Ni(a)−Ne(a) + 1. QED
Proof of the theorem.
Let y0, y1, . . . , yn be the tangencies of f at the curve γ where γ is as in

the statement of the theorem.
Let aj = i if the tangency at yj is interior, and let aj = e if the tangency

at yj is exterior.
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Let var(y0, ym, γ) be the angular variation of the tangent vector to γ from
y0 to ym, and let var(y0.ym, f) be the angular variation of f from y0 to ym.

Let β :
⋃

0≤m≤nAm → Z be defined as follows.

β(a0, am) = var(y0.ym, f)− var(y0, ym, γ)

Then, one can check that 1
π
β on the sequences in

⋃
0≤m≤nAm satisfies the

same conditions as the function η of the preceding lemma.

Case 1: a0 = an = i

We get, for a = (a0, . . . , an),

β(a0, an) = π(Ni(a)−Ne(a)− 1)

This gives

var(y0, yn, f) = var(y0, yn, γ) + π(Ni(a)−Ne(a)− 1)

or,

2πInd(f, x0) = 2π + π(Ni(a)−Ne(a)− 1)

But, Ni = Ni(a)− 1, Ne = Ne(a), so we get

Ind(f, x0) = 1 +
1

2
(Ni −Ne)

as required.

Case 2: a0 = an = e.

We get, for a = (a0, . . . , an),

β(a0, an) = π(Ni(a)−Ne(a) + 1)

This gives

var(y0, yn, f) = var(y0, yn, γ) + π(Ni(a)−Ne(a) + 1)
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or,

2πInd(f, x0) = 2π + π(Ni(a)−Ne(a) + 1)

But, Ni = Ni(a), Ne = Ne(a)− 1, so we get

Ind(f, x0) = 1 +
1

2
(Ni −Ne)

as required. QED

Let us continue with our assumptions that f is a C1 planar vector field
with an isolated critical point at x0, and suppose γ is a small positively
oriented C1 Jordan curve γ with x0 ∈ int γ such that f does not vanish on
int γ

⋃
γ except at x0 .

Let φ(t, x) be the local flow of f . Recall we are assuming that φ(t, x) is
defined for all t.

A solution φ(t, x) through a point x ∈ γ is called a positive null solution
relative to γ if it satisfies the following condition.

• φ(t, x) is defined for all t ≥ 0, there is a t1 > 0 such that φ(t, x) ∈ int γ
for all t > t1 and φ(t, x)→ x0 as t→∞.

The solution φ(t, x) is called a negative null solution relative to γ if
φ(−t, x) is a positive null solution for −f .

A null solution relative to γ is either a positive or negative null solution
relative to γ. When γ is understood, we refer simply to null solutions, positive
null solutions, or negative null solutions. We also speak of null, positive
null, and negative null orbits for the set of points along the images of such
solutions.

A solution φ(t, x) is called elliptic if it is both a positive and negative null
solution.

A base interval in γ is an open interval U in γ whose boundary points
belong to null orbits.

The base interval U is a parabolic interval if all of its points belong to
positive null orbits or all of its points belong to negative null orbits. The
base interval is an elliptic interval if all of its points belong to elliptic orbits.
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A base interval which is called hyperbolic if none of its points belongs to
a null orbit. Suppose that there is at least one null solution. Then, it
can be shown that, for any point x in a hyperbolic interval there are times
t2(x) > 0, t1(x) < 0 such that φ(t, x) is exterior to γ for all t /∈ (t1(x), t2(x)).

The union of the set of orbits of points belonging to a parabolic, elliptic,
or hyperbolic base interval will be called, respectively, a parabolic, elliptic,
or hyperbolic sector.

The following theorem can be proved more or less like the previous one.
Theorem. Suppose that f , x0, and γ are as above and that there are

finitely many points y0, y1, . . . , yn on γ whose orbits are base solutions. As-
sume that the points in γ \{y0, . . . , yn} belong only to elliptic, hyperbolic, and
parabolic intervals. Let Nell, Nhyp denote, respectively the number of elliptic,
hyperbolic intervals. Then,

Ind(f, x0) = 1 +
1

2
(Nell −Nhyp)

For more general information about these topics, see (P. Hartman, Ordi-
nary Differential Equations, 1973, Chapter 7).

Note that Hartman’s definitions of sectors are slightly different than the
ones given here.

We now briefly discuss the concept of index for an isolated critical point
of an autonomous vector field in Rn+1 for arbitrary n ≥ 1. This involves the
notion of degree of a continuous self-mapping of the n−sphere. There are
many equivalent ways to define this notion. The simplest involves homology
theory. Since we do not assume knowledge of this theory, we will give a
definition in terms of integration on the n−sphere Sn.

We refer to standard texts; e.g. for the basic concepts of differential forms
and integration of manifolds, see (F. Warner, Foundations of differentiable
manifolds and Lie groups, Springer, 1983.)

Let Dn be the open unit ball in Rn, and let Sn be the (unit) n−sphere;
i.e., the set of vectors in Rn+1 whose distance from the origin is exactly
equal to 1. Write x = (x1, x2, . . . , xn) for coordinates in Rn. Let r ≥ 1. A
Cr coordinate parametrization in Sn is a pair (U, φ) where φ is a 1-1 Cr map
from Dn into Rn+1 such that

1. φ(x) ∈ Sn for all x ∈ Dn



August 11, 2002 11-6

2. The columns of the Jacobian matrix of φ, ∂φ
∂xi

are linearly independent

in Rn+1.

3. U = image(φ) and U is an open subset of Sn.

If (U, φ) and (V, ψ) are two Cr coordinate parametrizations in Sn, and
U
⋂
V 6= ∅, then the map ψ−1 ◦ φ is a Cr diffeomorphism from the open set

φ−1(U
⋂
V ) to ψ(U

⋂
V ).

If (U, φ) is a coordinate parametrization in Sn, we sometimes call the
pair (U, φ−1) a coordinate chart. Thus, the maps in coordinate parametriza-
tions go from Dn into Sn, and the maps in coordinate charts go from open
subsets of Sn to Dn. Coordinate charts (U, η), (V, γ) have the property of
differentiability on overlaps in the sense that η ◦γ−1 is Cr where it is defined.

A Ck map f : Sn → Rn+1 is a continuous map from Sn to Rn+1 such
that, for each Ck coordinate chart (U, φ) in Sn, the composition f ◦ φ−1 is a
Ck map from Dn into Rn+1.

A Ck tangent vector field X on Sn is a Ck map X : Sn → Rn+1 such
that, for each x ∈ Sn, X(x) is tangent to Sn at x. A positively oriented Ck

orthonormal n−frame field on Sn is an n−tuple (v1, . . . , vn) of Ck tangent
vector fields on Sn with the property that, for each x ∈ Sn, the set of vectors
{v1(x), . . . , vn(x)} is an orthonormal basis for the tangent space to Sn at x,
and the determinant Det(v1(x), v2(x), . . . , vn(x), x) is positive.

There is a C∞ n−form on Sn which gives the value 1 to each positively
oriented orthonormal n−frame field on Sn. We call this form the unit volume
form and write it dv.

Using this form, one can define integration for continuous functions g :
Sn → R by the formula ∫

Sn
g(x) =

∫
Sn
g(x)dv(x)

The volume of the whole sphere is then the constant vol(Sn) which is the
integral of the constant function whose value is 1 for each point of Sn.

Given a C1 map f : Sn → Sn, one can pull back the form dv to a form
f ?dv, and integrate this form over Sn. One gets an integer multiple of vol(Sn)
and this integer is called the degree of the map f . We write deg(f) for this
integer.

Thus, we have



August 11, 2002 11-7

∫
Sn
f ?dv = deg(f)vol(Sn)

Now, let f be a C1 vector field in Rn with an isolated critical point x0.
One defines the index of f at x0, Ind(f, x0) in the following way.

Let Sε be a small (n− 1)−sphere of radius ε centered at x0, and assume
that f(x) 6= 0 for all x with 0 < | x− x0 | ≤ ε. Use f on Sε to define a map
f̄ : Sn−1 → Sn−1 by the formula

f̄(y) =
f(x0 + εy)

| f(x0 + εy) |

Then, we define

Ind(f, x0) = deg(f̄)

One can show that the definition is independent of the choice of small
(n− 1)-sphere Sε containing x0 in its interior. It actually can be defined for
any sphere S on which f does not vanish. If f and g are two vector fields
which can be continuously deformed into one another without vanishing on
a sphere S, then they have the same index on S. This index satisfies many
nice properties. For instance, there is an analogous formula to that in the
theorem earlier in this section which says that, given a smooth vector field
X with only isolated critical points on a compact smooth manifold M , the
sum of the indices of the X equals the Euler Characteristic of M .

For more information on these topics, we refer to the following books.

1. J. Milnor, Topology from the differentiable viewpoint, University Press
of Virginia, Charlottesville, Va., 1965

2. M. Hirsch, Differential Topology, Springer-Verlag, 1976.


