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Alternate treatment of Section 11

For a Jordan curve γ, let us write int γ for the bounded interior region of
the complement of γ.

Let f be a planar C1 vector field with an isolated critical point x0. and
let γ be a positively oriented C1 Jordan curve so that the only critical point
of f in int γ

⋃
γ is x0. Let φ(t, x) be the local flow of f . A point y ∈ γ

at which f is tangent to γ is called an exterior tangency if there is an ε > 0
such that φ(t, x) is in the exterior of γ for t ∈ (−ε, ε) \ {0}. Similarly, the
point y of tangency is an interior tangency if there is an ε > 0 such that
φ(t, x) ∈ int γ for t ∈ (−ε, ε) \ {0}.

In general, a tangency may be neither exterior nor interior.
Suppose f has only finitely many tangencies with γ and they are all

interior or exterior. An interval I in γ between two such tangencies will be
called

1. interior if its boundary points are both interior points

2. exterior if its boundary points are both exterior points

3. neutral if its boundary points consist of one interior and one exterior
tangency.

Theorem. Suppose that f and γ are as above and there are only finitely
many points of tangency of f and γ and all of these tangencies are exterior or
interior. Let Ni be the number of interior tangencies and Ne be the number
of exterior tangencies. Then,

Ind(x0, f) = 1 +
1

2
(Ni −Ne). (1)

Also, if Ñi is the number of interior intervals, and Ñe is the number of
exterior intervals, then

Ind(x0, f) = 1 +
1

2
(Ñi − Ñe). (2)

Proof.
Let’s prove the second statement first.
Let y0, y1, . . . , yn be the tangencies of f at the curve γ where γ is as in

the statement of the theorem and y0 = yn.
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For 1 ≤ m ≤ n, let var(y0, ym, γ) be the angular variation of the tangent
vector to γ from y0 to ym, and let var(y0.ym, f) be the angular variation of
f from y0 to ym. Let

β(m) = var(y0.ym, f)− var(y0, ym, γ).

Note that if the interval [ym, ym+1] is

• interior: then β(m+ 1)− β(m) = π

• exterior: then β(m+ 1)− β(m) = −π

• neutral: then β(m+ 1)− β(m) = 0.

Hence, if γ′ denotes the tangent vector field on γ, then

2πInd(f, γ) = 2πInd(γ′, γ) + β(n)

= 2πInd(γ′, γ) +
n−1∑
i=0

β(i+ 1)− β(i)

= 2πInd(γ′, γ) + π(Ñi − Ñe).

Dividing both sides by 2π gives (2).
Now we turn to (1).
First observe that if f has only internal or external tangencies, then,

Ni = Ñi and Ne = Ñe, so the result holds by (2).
So, we may assume that there are tangencies of both types, and hence at

least one neutral interval.
We say that f is internal on an open interval Ii = (yi, yi+1) if it points

into the interior of γ and otherwise we say that f is exterior on Ii.
Note that in going across a tangency from one interval Ii to Ii+1, f alter-

nates from interior to exterior or vice-versa.
We want to prove (1) by induction on the number of tangencies.
Note that the statement only depends on the structure of f on the curve

γ, and not on how f behaves at points off γ.
Let Ii = (yi, yi+1) be a neutral interval. We squeeze Ii to a point bringing

its boundary points together, say to a point p. Doing this we change f , say
to f1 and γ, say to γ1. We can do this so that we reduce the number of
tangencies by one and create a tangency at p which looks topologically like



November 12, 2011 11a-3

a point of “cubic contact.” After that we can turn f1 slightly near p and
remove the tangency at p entirely without introducing any new tangencies.
This entire procedure can be done without changing the index of f and
without changing the difference Ñi− Ñe. Thus we will have produced a new
vector field f2 on a new curve γ1 such that

(a) f2 has only interior and exterior tangencies with γ1,

(b) jf1(γ1) = jf (γ), and

(c) Ñi(f2)− Ñe(f2) = Ñi(f)− Ñe(f).

By induction, we get our result.
Note also that we could continue this procedure and remove all neutral

intervals without changing either side of (1). QED

Let us continue with our assumptions that f is a C1 planar vector field
with an isolated critical point at x0, and suppose γ is a small positively
oriented C1 Jordan curve γ with x0 ∈ int γ such that f does not vanish on
int γ

⋃
γ except at x0 .

Let φ(t, x) be the local flow of f . Recall we are assuming that φ(t, x) is
defined for all t.

A solution φ(t, x) through a point x ∈ γ is called a positive null solution
relative to γ if it satisfies the following condition.

• φ(t, x) is defined for all t ≥ 0, there is a t1 > 0 such that φ(t, x) ∈ int γ
for all t > t1 and φ(t, x)→ x0 as t→∞.

The solution φ(t, x) is called a negative null solution relative to γ if
φ(−t, x) is a positive null solution for −f .

A null solution relative to γ is either a positive or negative null solution
relative to γ. When γ is understood, we refer simply to null solutions, positive
null solutions, or negative null solutions. We also speak of null, positive
null, and negative null orbits for the set of points along the images of such
solutions.

A solution φ(t, x) is called elliptic if it is both a positive and negative null
solution.

A base interval in γ is an open interval U in γ whose boundary points
belong to null orbits.
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The base interval U is a parabolic interval if all of its points belong to
positive null orbits or all of its points belong to negative null orbits. The
base interval is an elliptic interval if all of its points belong to elliptic orbits.
A base interval which is called hyperbolic if none of its points belongs to
a null orbit. Suppose that there is at least one null solution. Then, it
can be shown that, for any point x in a hyperbolic interval there are times
t2(x) > 0, t1(x) < 0 such that φ(t, x) is exterior to γ for all t /∈ (t1(x), t2(x)).

The union of the set of orbits of points belonging to a parabolic, elliptic,
or hyperbolic base interval will be called, respectively, a parabolic, elliptic,
or hyperbolic sector.

The following theorem can be proved more or less like the previous one.
Theorem. Suppose that f , x0, and γ are as above and that there are

finitely many points y0, y1, . . . , yn on γ whose orbits are base solutions. As-
sume that the points in γ \{y0, . . . , yn} belong only to elliptic, hyperbolic, and
parabolic intervals. Let Nell, Nhyp denote, respectively the number of elliptic,
hyperbolic intervals. Then,

Ind(f, x0) = 1 +
1

2
(Nell −Nhyp)

For more general information about these topics, see (P. Hartman, Ordi-
nary Differential Equations, 1973, Chapter 7).

Note that Hartman’s definitions of sectors are slightly different than the
ones given here.

Index of isolated critial point in Rn+1

We now briefly discuss the concept of index for an isolated critical point of
an autonomous vector field in Rn+1 for arbitrary n ≥ 1. This involves the
notion of degree of a continuous self-mapping of the n−sphere. There are
many equivalent ways to define this notion. The simplest involves homology
theory. Since we do not assume knowledge of this theory, we will give a
definition in terms of integration on the n−sphere Sn.

Degree of maps of Sn using integration theory

We refer to standard texts; e.g. for the basic concepts of differential forms
and integration of manifolds, see (F. Warner, Foundations of differentiable
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manifolds and Lie groups, Springer, 1983.)
Let Dn be the open unit ball in Rn, and let Sn be the (unit) n−sphere;

i.e., the set of vectors in Rn+1 whose distance from the origin is exactly
equal to 1. Write x = (x1, x2, . . . , xn) for coordinates in Rn. Let r ≥ 1. A
Cr coordinate parametrization in Sn is a pair (U, φ) where φ is a 1-1 Cr map
from Dn into Rn+1 such that

1. φ(x) ∈ Sn for all x ∈ Dn

2. The columns of the Jacobian matrix of φ, ∂φ
∂xi

are linearly independent

in Rn+1.

3. U = image(φ) and U is an open subset of Sn.

If (U, φ) and (V, ψ) are two Cr coordinate parametrizations in Sn, and
U

⋂
V 6= ∅, then the map ψ−1 ◦ φ is a Cr diffeomorphism from the open set

φ−1(U
⋂
V ) to ψ(U

⋂
V ).

If (U, φ) is a coordinate parametrization in Sn, we sometimes call the
pair (U, φ−1) a coordinate chart. Thus, the maps in coordinate parametriza-
tions go from Dn into Sn, and the maps in coordinate charts go from open
subsets of Sn to Dn. Coordinate charts (U, η), (V, γ) have the property of
differentiability on overlaps in the sense that η ◦γ−1 is Cr where it is defined.

A Ck map f : Sn → Rn+1 is a continuous map from Sn to Rn+1 such
that, for each Ck coordinate chart (U, φ) in Sn, the composition f ◦ φ−1 is a
Ck map from Dn into Rn+1.

A Ck tangent vector field X on Sn is a Ck map X : Sn → Rn+1 such
that, for each x ∈ Sn, X(x) is tangent to Sn at x. A positively oriented Ck

orthonormal n−frame field on Sn is an n−tuple (v1, . . . , vn) of Ck tangent
vector fields on Sn with the property that, for each x ∈ Sn, the set of vectors
{v1(x), . . . , vn(x)} is an orthonormal basis for the tangent space to Sn at x,
and the determinant Det(v1(x), v2(x), . . . , vn(x), x) is positive.

There is a C∞ n−form on Sn which gives the value 1 to each positively
oriented orthonormal n−frame field on Sn. We call this form the unit volume
form and write it dv.

Using this form, one can define integration for continuous functions g :
Sn → R by the formula ∫

Sn
g(x) =

∫
Sn
g(x)dv(x)
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The volume of the whole sphere is then the constant vol(Sn) which is the
integral of the constant function whose value is 1 for each point of Sn.

Given a C1 map f : Sn → Sn, one can pull back the form dv to a form
f ?dv, and integrate this form over Sn. One gets an integer multiple of vol(Sn)
and this integer is called the degree of the map f . We write deg(f) for this
integer.

Thus, we have ∫
Sn
f ?dv = deg(f)vol(Sn)

Degree of maps of Sn using regular values

Write the n−sphere as

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 :
∑
i

x2i = 1}

We cover the points on Sn for which xn+1 6= 0 by the two open hemi-
spheres

U+ = {(x1, . . . , xn+1) ∈ Sn : xn+1 =
√

1−
∑

1≤i≤n
x2i },

U− = {(x1, . . . , xn+1) ∈ Sn : xn+1 = −
√

1−
∑

1≤i≤n
x2i }.

Define the maps φ± : Dn → Sn by

φ+(u1, u2, . . . , un) = (u1, u2, u3, . . . , un,
√

1−
∑

1≤i≤n
u2i ),

and

φ−(u1, u2, . . . , xn) = (u2, u1, u3, . . . , un,−
√

1−
∑

1≤i≤n
u2i ).

These are coordinate parametrizaions of U+, U−, respectively.
Note the interchange of the two first coordinates u1, u2 in the definition

of φ−. This is to insure that the normal vectors to Sn induced by these
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coordinate parametrizations point outward on Sn. Note that there is a ”cross-
product” of n vectors v1, v2, . . . , vn in Rn+1 defined by a slight modification
of the usual determinant rule.

The outward normal vector N(x) at some point x ∈ Sn is the normal
vector such that the dot product N(x) · x is positive.

The usual determinant rule for obtaining the outward normal to the plane
spanned by the non-collinear vectors v1, v2 in R3 is to write the matrix A
whose second and third row vectors are v1 = (v11, v12, v13), v2 = v21, v22, v23),
respectively, and to put the standard basis vectors e1, e2, e3 across the top
as  e1 e2 e3

v11 v12 v13
v21 v22 v23

 (3)

Then, one gets the coordinates (relative to the standard basis of R3) of
the normal vector by expanding by minors across the top row.

In the case of n linearly independent vectors v1, v2, . . . , vn in Rn+1, let
V = sp(v1, . . . , vn) be the linear subspace spanned by the v′is. To get a
normal vector to V by a rule like the one in (3) one has to put the basis
vectors on the bottom of the analogous matrix A instead of the top as in

v11 v12 . . . v1,n+1

v21 v22 . . . v2,n+1
...

e1 e2 . . . en+1

 (4)

Looking at the top point (0, 0, . . . , 1) in Sn shows that, using the top row
for the e′is will result in an inward normal to Sn when n is odd.

Next, let f : Sn → Sn be a C1 map. If f is not onto, we simply define
deg(f) = 0.

Now, we assume that f is onto. A point y ∈ Sn is a regular value of f
if, for every x ∈ f−1(y) and any coordinate chart (U, ψ) with x ∈ U , the
derivative of f ◦ ψ−1 has rank n at x.

It is a theorem (Sard’s theorem) that almost all points of Sn are regular
values. This means that the complement of the set of regular values has zero
volume (Lebesgue measure) in Sn.

If y is a regular value of f , it follows that the set f−1(y) = E(y) is a finite
set.
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From Sard’s theorem, it follows that there is a regular value y ∈ U+
⋃
U−

whose preimage f−1(y) = E(y) is also in U+
⋃
U−.

Given point x ∈ E(y)
⋂
Ui

⋂
f−1Uj, with i = ± and j = ±, we say that f

preserves orientation at x if the determinant of the derivative of φ−1j fφi at

φ−1i (x) is positive.
Define sgn(x) = 1 if f preserves orientation at x, and sgn(x) = −1 is f

reverses orientation at x.
For a regular value y of f as above, define the degree of f at y to be

deg(f, y) =
∑

x∈f−1(y)

sgn(x).

It is a fact that this number does not depend on which regular value one
chooses. So, we define

deg(f) = deg(f, y)

for any regular value y as above.
We remark that, in general one could cover Sn by coordinate charts

(Vi, ψi) such that det(D(ψi ◦ ψ−1j )) > 0 where defined, and do the construc-
tion above. This is usually called an orientation of Sn. We chose to use the
sets U+, U− which almost cover Sn because they are familiar from elementary
calculus.

Index of C1 vector fields in Rn

Now, let f be a C1 vector field in Rn with an isolated critical point x0. One
defines the index of f at x0, Ind(f, x0) in the following way.

Let Sε be a small (n− 1)−sphere of radius ε centered at x0, and assume
that f(x) 6= 0 for all x with 0 < | x− x0 | ≤ ε. Use f on Sε to define a map
f̄ : Sn−1 → Sn−1 by the formula

f̄(y) =
f(x0 + εy)

| f(x0 + εy) |

Then, we define

Ind(f, x0) = deg(f̄)



November 12, 2011 11a-9

One can show that the definition is independent of the choice of small
(n− 1)-sphere Sε containing x0 in its interior. It actually can be defined for
any sphere S on which f does not vanish. If f and g are two vector fields
which can be continuously deformed into one another without vanishing on
a sphere S, then they have the same index on S. This index satisfies many
nice properties. For instance, there is an analogous formula to that in the
theorem earlier in this section which says that, given a smooth vector field
X with only isolated critical points on a compact smooth manifold M , the
sum of the indices of the X equals the Euler Characteristic of M .

For more information on these topics, we refer to the following books.

1. J. Milnor, Topology from the differentiable viewpoint, University Press
of Virginia, Charlottesville, Va., 1965

2. M. Hirsch, Differential Topology, Springer-Verlag, 1976.


