Umlaufsatz

Let Ω be an open connected subset of the plane \mathbf{R}^{2}, and let $\eta=\left(\eta_{1}, \eta_{2}\right)$ be a C^{0} non-vanishing vector field defined in Ω. For $z \in \Omega$,, we wish to define a real number $\zeta_{\eta}(z)$ which represents the angle between $\eta(z)$ and the positive x-direction.

This clearly does not depend on the length of $\eta(z)$, so we may replace η by the unit vector field $\bar{\eta}(z)=\frac{\eta(z)}{|\eta(z)|}$.

Thus, $\bar{\eta}$ is a continuous map from Ω into the circle S^{1}.
If $\gamma:[0,1] \rightarrow \Omega$ is a continuous curve in Ω, we may lift the compostion $\bar{\eta} \circ \gamma$ to a map $\rho: I \rightarrow \mathbf{R}$. Any two such lifts differ by an integer so the difference $\rho(1)-\rho(0)$ is a well-defined real number which depending on γ and η. We call this difference the angular variation along γ of η and denote it by

$$
j_{\eta}(\gamma)
$$

If γ is a loop in Ω, then $j_{\eta}(\gamma)$ is an integer. We call this the index of η along γ.

The results of the last section give us some results about $j_{\eta}(\gamma)$ for loops.
Proposition 0.1 1. Suppose that γ is a loop in Ω and η, ρ are two nonvanishing vector fields in a region Ω which contains γ. If η is homotopic to ρ through non-vanishing vector fields, then

$$
\begin{equation*}
j_{\eta}(\gamma)=j_{\rho}(\gamma) \tag{1}
\end{equation*}
$$

2. Suppose that η is a non-vanishing vector field in Ω and γ_{1}, γ_{1} are two loops which are homotopic relative ∂I in Ω. Then,

$$
\begin{equation*}
j_{\eta}\left(\gamma_{1}\right)=j_{\eta}\left(\gamma_{2}\right) \tag{2}
\end{equation*}
$$

Proof. Follows from the results in Section 10a on degree for circle maps QED.

If γ and $\eta=\left(\eta_{1}, \eta_{2}\right)$ happen to be C^{1}, then the index can be computed by the formula

$$
j_{\eta, \gamma}=\frac{1}{2 \pi} \int_{\gamma} \frac{\eta_{1} d \eta_{2}-\eta_{2} d \eta_{1}}{\eta_{1}^{2}+\eta_{2}^{2}}
$$

In any region in Ω in which η_{1} is non-zero, the above line integral is the integral over γ of the 1 -form α where $\alpha=\frac{1}{2 \pi} d\left(\operatorname{Arctan}\left(\frac{\eta_{2}}{\eta_{1}}\right)\right)$. Analogously, in a region in which η_{2} is non-zero, the line integral is that of the 1 -form α with $\alpha=\frac{1}{2 \pi} d\left(\operatorname{ArcCot}\left(\frac{\eta_{1}}{\eta_{2}}\right)\right)$ over γ. Thus, the line integral is the integral of a closed 1-form over γ.

Let $I=[0,1]$ be the real unit interval.
Definition. A C^{1} positively oriented Jordan curve in \mathbf{R}^{2} is a C^{1} map $\gamma: I \rightarrow \mathbf{R}^{2}$

1. $\gamma(0)=\gamma(1)$ and $\gamma(s) \neq \gamma(t)$ for all $0 \leq s<t \leq 1$.
2. $\gamma^{\prime}(0)=\gamma^{\prime}(1)$ where $\gamma^{\prime}(t)$ is the tangent vector γ at t.
3. If $\gamma(t)=(x(t), y(t))$, then $x^{\prime}(t)^{2}+y^{\prime}(t)^{2} \neq 0$ for all $t \in[0,1]$
4. There is an $\epsilon>0$ such that, for $0<s<\epsilon$, and any $t \in I$, we have $(x(t), y(t))+s\left(-y^{\prime}(t), x^{\prime}(t)\right)$ lies in the bounded region of the complement of the image of γ.

The interpretation of the last condition is that the normal vector to γ at $\gamma(t)$ points into the interior of γ.

Definition. Let x_{0} be an isolated critical point of a C^{1} vector field f in the plane. Let γ be a small C^{1} positively oriented Jordan curve whose interior contains x_{0}. The index $j_{f}(\gamma)$ of f with respect to the curve γ is called the index of the critical point x_{0} (with respect to the vector field f. It is denoted $\operatorname{Ind}\left(f, x_{0}\right)$ or $j_{f}\left(x_{0}\right)$.

Note that if γ_{1}, γ_{2} are two positively oriented C^{1} curves whose interiors contain x_{0} and γ_{1} can be continuously deformed into γ_{2} without passing through a critical point of f, then $j_{f}\left(\gamma_{1}\right)=j_{f}\left(\gamma_{2}\right)$.

Hence the index is independent of the small positively oriented Jordan curve chosen to calculate it.

Examples. Sources and sinks have index +1 , saddles have index -1 .
Lemma. Let f be a C^{1} vector field which does not vanish on the closure of the interior of a Jordan curve γ. Then, $j_{f}(\gamma)=0$.

Proof. Let A be the interior of γ (i.e., the bounded component of $\mathbf{R}^{2} \backslash \gamma$). The set A is simply connected. So the curve can be continously deformed to a very small Jordan curve γ_{1} in A. But, since f does not vanish in A, the index $j_{f}\left(\gamma_{1}\right)$ is zero if γ_{1} is small enough. QED

Theorem.(Umlaufsatz) Let γ be a C^{1} positvely oriented Jordan curve in the plane and let γ^{\prime} be its tangent vector field. Then,

$$
j_{\gamma^{\prime}}(\gamma)=1
$$

Proof.

The result is clearly independent of the position of the curve γ in the plane. So, translate the curve γ so that it is above and tangent to the x-axis. Let the curve be given by $s \rightarrow \gamma(s)=(x(s), y(s))$ with $0 \leq s \leq 1$, $\gamma(0)=\gamma(1)$ and $\gamma(s) \neq \gamma(t)$ for $s<t<1$.

Consider the triangle $\Delta=\{(s, t): 0 \leq s \leq t \leq 1\}$, and the subset $\Delta_{0}=\{(s, t): 0 \leq s<t \leq 1\}$.

Let $\eta(s, t)=\frac{\gamma(t)-\gamma(s)}{t-s}$.
This function is continuous for $t \neq s$, and extends to a continuous function on the closed triangle Δ which agrees with $\gamma^{\prime}(t)$ for $s=t$. Moreover, since Δ is simply connected, there is a continuous function $\zeta(s, t)$ defined on Δ so that $\zeta(s, t)$ is the angle from $\eta(s, t)$ to the positive x-direction.

It is clear that $j_{\gamma^{\prime}}(\gamma)=\frac{1}{2 \pi}(\zeta(1,1)-\zeta(0,0))$.
Now, $\zeta(1,1)-\zeta(0,0)=\zeta(1,1)-\zeta(0,1)+\zeta(0,1)-\zeta(0,0)$. Considering $\zeta(0, t)$ as t varies from 0 to 1 we see that $\zeta(0,1)-\zeta(0,0)=\pi$ since $\eta(0, t)$ always points into the upper half-plane. Similarly, $\eta(s, 1)$ always points into the lower half-plane, so, as s varies from 0 to 1 , we see that $\zeta(1,1)-\zeta(0,1)=$ π. QED

Proposition.Let γ be a non-trivial periodic orbit of a C^{1} planar vector field. Then, γ is a Jordan curve. Let A be its interior. Then, f has a critical point in A.

Proof. By the Umlaufsatz, $j_{f}(\gamma)= \pm 1$ depending on whether γ is positively or negatively oriented as a solution of the vector field f. (Strictly speaking, if γ is given some parametrization so that it is positively oriented, then with respect to that parametrization, $j_{f}(\gamma)=1$. This is true whether the parametrization as a solution makes γ positively or negatively oriented). If f had no critical points in A, the previous Lemma would give $j_{f}(\gamma)=0$ which is a contradiction. QED

Proposition. Let f be a C^{1} vector field with only finitely many critical points $x_{1}, x_{2}, \ldots, x_{n}$ in the interior of a positively oriented Jordan curve γ. Then,

$$
j_{f}(\gamma)=\operatorname{Ind}\left(f, x_{1}\right)+\ldots+\operatorname{Ind}\left(f, x_{n}\right)
$$

Proof. Consider small positively oriented Jordan curves γ_{i} about x_{i} in the interior of γ. Join γ to each γ_{i} by an arc η_{i} so that the $\eta_{i}^{\prime} s$ are disjoint. We may split the curves η_{i} into small arcs going in opposite directions $\eta_{i 1}, \eta_{i 2}$ and use pieces of γ, γ_{i} with these new curves to get a simple closed positively oriented curve $\tilde{\gamma}$ whose interior contains no critical points. Thus, $j_{f}(\tilde{\gamma})=0$.

But $j_{f}(\tilde{\gamma})$ is approximately

$$
j_{f}(\gamma)-\sum \operatorname{Ind}\left(f, x_{i}\right) .
$$

Passing to the limit as the curves $\eta_{i j}$ approach $\pm \eta_{i}$, proves the result. QED.

Definition. The standard $n-$ simplex is the set $\Delta_{n}=\left\{x \in \mathbf{R}^{n+1}: x=\right.$ $\left.\left(x_{0}, \ldots, x_{n}\right), x_{i} \geq 0 \forall i, \sum_{i} x_{i}=1\right\}$. A topological $n-$ simplex in \mathbf{R}^{p} is the homeomorphic image of Δ_{n} (or a homeomorphism σ from Δ_{n} into \mathbf{R}^{p}).

Thus, a 0 -simplex is a point, a 1 -simplex is a homeomorphically embedded line segment, a 2 -simplex is a homeomorphically embedded triangle, etc.

Definition. Suppose Δ_{n} is the standard n-simplex. Its interior is the set $\left\{x \in \Delta_{n}: x_{i}>0 \forall i\right\}$. For $1 \leq k \leq n+1$, let \mathcal{A}_{k} be the set of k-tuples $i_{1}<i_{2}<\ldots<i_{k}$ of distinct integers in $0, \ldots, n$. The $(k-1)$-face in Δ_{n} determined by a k-tuple in \mathcal{A}_{k} is the set of points $x=\left(x_{0}, x_{1}, \ldots x_{n}\right) \in \Delta_{n}$ such that $\sum_{1 \leq j \leq k} x_{i_{j}}=1$. A 0 -face is called a vertex and a 1 -face is called an edge. An open k-face is a $k-f a c e$ minus all of its $(k-1)$-subfaces.

Thus, a 0 -face is one of the $e_{i}^{\prime} s$, an edge is the line segment joining a pair of distinct vertices, etc. Note that there is an affine embedding from \mathbf{R}^{k+1} to \mathbf{R}^{n+1} (linear embedding plus translation) carrying the standard k-simplex onto any k-face of Δ_{n}.

If $\sigma: \Delta_{n} \rightarrow S$ is a representation of the topological n-simplex S, then a k - face of S is the image by σ of a k-face of Δ_{n}. Vertices of S are images of vertices of Δ_{n}, edges of S are images of edges of Δ_{n}, etc.

A triangulation of a subset K of \mathbf{R}^{p} is a collection of topological simplexes \mathcal{T} such that

1. $\cup_{\sigma \in \mathcal{T}} \sigma=K$
2. If $\sigma \in \mathcal{T}$ and τ is a face of σ, then $\tau \in \mathcal{T}$.
3. If $\sigma \in \mathcal{T}$ and $\tau \in \mathcal{T}$, then $\sigma \cap \tau$ is a common face of both σ and τ.

The dimension of an n-simplex is n. A triangulatable set is a set which has some triangulation. If K can be triangulated by finitely many simplexes, and the largest dimension of one of those simplexes is n, we call K an n-complex.

We will be interested in 2-complexes. Then, we call the 2-faces simply faces, and we only have vertices, edges and faces among the simplexes involved.

Theorem. Let K be an n-complex. Let \mathcal{T}_{1} and \mathcal{T}_{2} be two finite triangulations of K. For $i=1,2,0 \leq j \leq n$, let $b_{i j}$ be the number of j-simplexes in \mathcal{T}_{i}. Then,

$$
\chi\left(\mathcal{T}_{1}\right) \equiv \sum_{j=0}^{n}(-1)^{j} b_{1 j}=\sum_{j=0}^{n}(-1)^{j} b_{2 j} \equiv \chi\left(\mathcal{T}_{2}\right)
$$

The number $\chi\left(\mathcal{T}_{j}\right)$ is called the Euler characteristic of the triangulation. From the theorem one can define the Euler characteristic of a finite complex using the Euler characteristic of any of its triangulations.

This theorem will not be proved here. We only mention that a proof can be given using the concept of homology. With this concept one defines another number and shows that the Euler characteristic of any triangulation equals this number, so any two must be equal.

Theorem. Suppose Ω is a bounded region in the plane bounded by finitely many positively oriented Jordan curves $\gamma_{1}, \ldots, \gamma_{n}$. (such a region is called a multiply connected domain). Let $\bar{\Omega}=\Omega \bigcup_{i} \gamma_{i}$ be the closure of Ω. Let f be a C^{1} vector field such that each boundary curve γ_{i} is a periodic solution of f and the parametrizations by solutions make γ_{i} positively oriented. Suppose in addition that f has only finitely many critical points x_{1}, \ldots, x_{k} in Ω.

Then,

$$
\sum_{i} \operatorname{Ind}\left(f, x_{i}\right)=\chi(\bar{\Omega})
$$

Proof. Using the standard little cuts joining boundary curves, we see that the sum of the indices of f at the critical points equals 2 - (number of boundary curves). But this last number is the Euler characteristic of $\bar{\Omega}$.

Here is an alternate proof. There is a single curve among the $\gamma_{i}^{\prime} s$ such that all the others are in the interior region of this curve. Call this curve γ_{1}.

Construct a new vector field \tilde{f} on the closure of the interior of γ_{1} (the outer curve) which equals f in the closure of the region Ω and adds a single critical point p_{i} of index +1 in the interior of each $\gamma_{i}, i>1$.

Then, \tilde{f} has the critical points $x_{i}, i \geq 1, p_{j}, j>1$ inside γ_{1}. By a previous theorem,

$$
\sum_{i} \operatorname{Ind}\left(\tilde{f}, x_{i}\right)+\sum_{j} I\left(\tilde{f}, p_{j}\right)=j_{\tilde{f}}\left(\gamma_{1}\right)=1
$$

Hence,

$$
\begin{aligned}
\sum_{i} \operatorname{Ind}\left(f, x_{i}\right) & =1-(\text { number of internal boundary curves }) \\
& =2-(\text { number of boundary curves })
\end{aligned}
$$

QED

