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Umlaufsatz

Let Ω be an open connected subset of the plane R2, and let η = (η1, η2) be
a C0 non-vanishing vector field defined in Ω. For z ∈ Ω,, we wish to define a
real number ζη(z) which represents the angle between η(z) and the positive
x−direction.

This clearly does not depend on the length of η(z), so we may replace η

by the unit vector field η̄(z) = η(z)

| η(z) | .
Thus, η̄ is a continuous map from Ω into the circle S1.
If γ : [0, 1] → Ω is a continuous curve in Ω, we may lift the compostion

η̄ ◦ γ to a map ρ : I → R. Any two such lifts differ by an integer so the
difference ρ(1)−ρ(0) is a well-defined real number which depending on γ and
η. We call this difference the angular variation along γ of η and denote it by

jη(γ).

If γ is a loop in Ω, then jη(γ) is an integer. We call this the index of η
along γ.

The results of the last section give us some results about jη(γ) for loops.

Proposition 0.1 1. Suppose that γ is a loop in Ω and η, ρ are two non-
vanishing vector fields in a region Ω which contains γ. If η is homotopic
to ρ through non-vanishing vector fields, then

jη(γ) = jρ(γ) (1)

2. Suppose that η is a non-vanishing vector field in Ω and γ1, γ1 are two
loops which are homotopic relative ∂I in Ω. Then,

jη(γ1) = jη(γ2) (2)

Proof. Follows from the results in Section 10a on degree for circle maps
QED.

If γ and η = (η1, η2) happen to be C1, then the index can be computed
by the formula

jη,γ =
1

2π

∫
γ

η1dη2 − η2dη1

η2
1 + η2

2
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In any region in Ω in which η1 is non-zero, the above line integral is the
integral over γ of the 1-form α where α = 1

2π
d(Arctan(η2

η1
)). Analogously,

in a region in which η2 is non-zero, the line integral is that of the 1-form α
with α = 1

2π
d(ArcCot(η1

η2
)) over γ. Thus, the line integral is the integral of a

closed 1-form over γ.
Let I = [0, 1] be the real unit interval.
Definition. A C1 positively oriented Jordan curve in R2 is a C1 map

γ : I → R2

1. γ(0) = γ(1) and γ(s) 6= γ(t) for all 0 ≤ s < t ≤ 1.

2. γ′(0) = γ′(1) where γ′(t) is the tangent vector γ at t.

3. If γ(t) = (x(t), y(t)), then x′(t)2 + y′(t)2 6= 0 for all t ∈ [0, 1]

4. There is an ε > 0 such that, for 0 < s < ε, and any t ∈ I, we
have (x(t), y(t)) + s(−y′(t), x′(t)) lies in the bounded region of the
complement of the image of γ.

The interpretation of the last condition is that the normal vector to γ at
γ(t) points into the interior of γ.

Definition. Let x0 be an isolated critical point of a C1 vector field f
in the plane. Let γ be a small C1 positively oriented Jordan curve whose
interior contains x0. The index jf (γ) of f with respect to the curve γ is
called the index of the critical point x0 (with respect to the vector field f . It
is denoted Ind(f, x0) or jf (x0).

Note that if γ1, γ2 are two positively oriented C1 curves whose interiors
contain x0 and γ1 can be continuously deformed into γ2 without passing
through a critical point of f , then jf (γ1) = jf (γ2).

Hence the index is independent of the small positively oriented Jordan
curve chosen to calculate it.

Examples. Sources and sinks have index +1, saddles have index -1.
Lemma. Let f be a C1 vector field which does not vanish on the closure

of the interior of a Jordan curve γ. Then, jf (γ) = 0.
Proof. Let A be the interior of γ (i.e., the bounded component of R2\γ).

The set A is simply connected. So the curve can be continously deformed to
a very small Jordan curve γ1 in A. But, since f does not vanish in A, the
index jf (γ1) is zero if γ1 is small enough. QED
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Theorem.(Umlaufsatz)Let γ be a C1 positvely oriented Jordan curve
in the plane and let γ′ be its tangent vector field. Then,

jγ′(γ) = 1

Proof.
The result is clearly independent of the position of the curve γ in the

plane. So, translate the curve γ so that it is above and tangent to the
x−axis. Let the curve be given by s → γ(s) = (x(s), y(s)) with 0 ≤ s ≤ 1,
γ(0) = γ(1) and γ(s) 6= γ(t) for s < t < 1.

Consider the triangle ∆ = {(s, t) : 0 ≤ s ≤ t ≤ 1}, and the subset
∆0 = {(s, t) : 0 ≤ s < t ≤ 1}.

Let η(s, t) = γ(t)−γ(s)

t−s
.

This function is continuous for t 6= s, and extends to a continuous function
on the closed triangle ∆ which agrees with γ′(t) for s = t. Moreover, since
∆ is simply connected, there is a continuous function ζ(s, t) defined on ∆ so
that ζ(s, t) is the angle from η(s, t) to the positive x−direction.

It is clear that jγ′(γ) = 1
2π

(ζ(1, 1)− ζ(0, 0)).

Now, ζ(1, 1) − ζ(0, 0) = ζ(1, 1) − ζ(0, 1) + ζ(0, 1) − ζ(0, 0). Considering
ζ(0, t) as t varies from 0 to 1 we see that ζ(0, 1) − ζ(0, 0) = π since η(0, t)
always points into the upper half-plane. Similarly, η(s, 1) always points into
the lower half-plane, so, as s varies from 0 to 1, we see that ζ(1, 1)−ζ(0, 1) =
π. QED

Proposition.Let γ be a non-trivial periodic orbit of a C1 planar vector
field. Then, γ is a Jordan curve. Let A be its interior. Then, f has a critical
point in A.

Proof. By the Umlaufsatz, jf (γ) = ±1 depending on whether γ is pos-
itively or negatively oriented as a solution of the vector field f . (Strictly
speaking, if γ is given some parametrization so that it is positively oriented,
then with respect to that parametrization, jf (γ) = 1. This is true whether
the parametrization as a solution makes γ positively or negatively oriented).
If f had no critical points in A, the previous Lemma would give jf (γ) = 0
which is a contradiction. QED

Proposition. Let f be a C1 vector field with only finitely many critical
points x1, x2, . . . , xn in the interior of a positively oriented Jordan curve γ.
Then,
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jf (γ) = Ind(f, x1) + . . . + Ind(f, xn)

Proof. Consider small positively oriented Jordan curves γi about xi in
the interior of γ. Join γ to each γi by an arc ηi so that the η′is are disjoint.
We may split the curves ηi into small arcs going in opposite directions ηi1, ηi2

and use pieces of γ, γi with these new curves to get a simple closed positively
oriented curve γ̃ whose interior contains no critical points. Thus, jf (γ̃) = 0.

But jf (γ̃) is approximately

jf (γ)−
∑

Ind(f, xi).

Passing to the limit as the curves ηij approach ±ηi, proves the result.
QED.

Definition. The standard n− simplex is the set ∆n = {x ∈ Rn+1 : x =
(x0, . . . , xn), xi ≥ 0 ∀i, ∑

i xi = 1}. A topological n − simplex in Rp is the
homeomorphic image of ∆n (or a homeomorphism σ from ∆n into Rp).

Thus, a 0-simplex is a point, a 1-simplex is a homeomorphically embedded
line segment, a 2-simplex is a homeomorphically embedded triangle, etc.

Definition. Suppose ∆n is the standard n−simplex. Its interior is the
set {x ∈ ∆n : xi > 0 ∀i}. For 1 ≤ k ≤ n + 1, let Ak be the set of k−tuples
i1 < i2 < . . . < ik of distinct integers in 0, . . . , n. The (k − 1)−face in ∆n

determined by a k−tuple in Ak is the set of points x = (x0, x1, . . . xn) ∈ ∆n

such that
∑

1≤j≤k xij = 1. A 0-face is called a vertex and a 1-face is called an
edge. An open k−face is a k − face minus all of its (k − 1)−subfaces.

Thus, a 0-face is one of the e′is, an edge is the line segment joining a pair
of distinct vertices, etc. Note that there is an affine embedding from Rk+1 to
Rn+1 (linear embedding plus translation) carrying the standard k−simplex
onto any k−face of ∆n.

If σ : ∆n → S is a representation of the topological n−simplex S, then a
k − face of S is the image by σ of a k−face of ∆n. Vertices of S are images
of vertices of ∆n, edges of S are images of edges of ∆n, etc.

A triangulation of a subset K of Rp is a collection of topological simplexes
T such that

1.
⋃

σ∈T σ = K

2. If σ ∈ T and τ is a face of σ, then τ ∈ T .
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3. If σ ∈ T and τ ∈ T , then σ
⋂

τ is a common face of both σ and τ .

The dimension of an n−simplex is n. A triangulatable set is a set which
has some triangulation. If K can be triangulated by finitely many sim-
plexes, and the largest dimension of one of those simplexes is n, we call K
an n−complex.

We will be interested in 2-complexes. Then, we call the 2-faces simply
faces, and we only have vertices, edges and faces among the simplexes in-
volved.

Theorem.Let K be an n-complex. Let T1 and T2 be two finite triangula-
tions of K. For i = 1, 2, 0 ≤ j ≤ n, let bij be the number of j−simplexes in
Ti. Then,

χ(T1) ≡
n∑

j=0

(−1)jb1j =
n∑

j=0

(−1)jb2j ≡ χ(T2)

The number χ(Tj) is called the Euler characteristic of the triangulation.
From the theorem one can define the Euler characteristic of a finite complex
using the Euler characteristic of any of its triangulations.

This theorem will not be proved here. We only mention that a proof
can be given using the concept of homology. With this concept one defines
another number and shows that the Euler characteristic of any triangulation
equals this number, so any two must be equal.

Theorem. Suppose Ω is a bounded region in the plane bounded by finitely
many positively oriented Jordan curves γ1, . . . , γn. (such a region is called a
multiply connected domain). Let Ω̄ = Ω

⋃
i γi be the closure of Ω. Let f be a

C1 vector field such that each boundary curve γi is a periodic solution of f
and the parametrizations by solutions make γi positively oriented. Suppose
in addition that f has only finitely many critical points x1, . . . , xk in Ω.

Then, ∑
i

Ind(f, xi) = χ(Ω̄)

Proof. Using the standard little cuts joining boundary curves, we see
that the sum of the indices of f at the critical points equals 2 - (number of
boundary curves). But this last number is the Euler characteristic of Ω̄.

Here is an alternate proof. There is a single curve among the γ′is such
that all the others are in the interior region of this curve. Call this curve γ1.
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Construct a new vector field f̃ on the closure of the interior of γ1 (the
outer curve) which equals f in the closure of the region Ω and adds a single
critical point pi of index +1 in the interior of each γi, i > 1.

Then, f̃ has the critical points xi, i ≥ 1, pj, j > 1 inside γ1. By a previous
theorem,

∑
i

Ind(f̃ , xi) +
∑
j

I(f̃ , pj) = jf̃ (γ1) = 1

Hence,∑
i

Ind(f, xi) = 1− (number of internal boundary curves)

= 2− (number of boundary curves)

QED


