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Degree for maps of the circle

Let S1 = {z ∈ C : | z | = 1}.
Let i =

√
−1.

The standard covering projection from R onto S1 is the map ρ : R→ S1

defined by

ρ(t) = exp(2πit)

Definition. An open interval in S1 is the homeomorphic image by ρ of
a real open interval. Any such interval clearly has length less than 1.

Also, note the if U is an open interval in S1, then ρ−1(U) is a countable
disjoint union of open intervals Ũj such that ρ | Ũj is a homeomorphism onto
U for each j. One says that U is evenly covered by ρ.

Let I = [0, 1] be the closed unit real interval.
Let X be a topological space (it will be an open connected set in the

plane in our application). A path in X is a continuous map γ : I → X. If
p = γ(0) and q = γ(1), we say that γ is a path from p to q.

Definition.

1. The topological space X is path connected if for any two points p, q in
X, there is a path from p to q (in X).

2. The topological space X is locally path connected if it is path connected,
and, for any x ∈ X and any neighborhood U of x, there is a path
connected neighborhood V of x such that x ∈ V ⊂ U .

Exercises

1. A path connected topological space is connected.

2. A connected, locally path connected topological space is path con-
nected.

3. Give examples of subsetsX, Y of the plane R2 such thatX is connected,
but not path connected, and Y is path connected, but not locally path
connected.

All spaces we consider in the rest of this section are assumed to be path
connected and locally path connected.



October 25, 2011 10a-2

Let X, Y be topological spaces, let A ⊂ X, and let γ0, γ1 be two continu-
ous maps fromX → Y such that γ0 and γ0 agree onA. That is, γ0(x) = γ1(x)
for x ∈ A.

Let X × I denote the product space, and denote X0 = X × {0}, X1 =
X × {1}.

Each of the maps γi is completely determined by associated map γ̄i :
X × {i} → Y where γ̄i((x, i)) = γi(x) for i = 0, 1. Thus, we will abuse the
notation slightly and write the maps γ̄i also as γi, letting the context make
the difference clear. Sometimes we use the words, we identify γi with γ̄i for
i = 0, 1.

We say that γ0 is homotopic to γ1 relative to A if there is a continuous
map F : X × I → Y such that

1. F | X0 = γ0 and F | X1 = γ1

2. F (x, t) = γ0(x) = γ1(x) for all x ∈ A.

This makes precise the intuitive notion of saying that γ0 can be continu-
ously deformed into γ1 by a family Fs(·) = F (·, s) of continuous maps from
X to Y with each map Fs not changing at points of A.

We will use the notation γ0 'A γ1 when γ1 is homotopic to γ2 relative
to A. When A is the empty set, the second condition above is always true
(there are no points in ∅ to make it false), so it does not have to be stated.
In that case, we simply say that γ0 is homotopic to γ1.

Now, let us specialize this notion to the case of X = I itself and A =
∂I = {0, 1}. We also replace the image space Y by X.

Thus, let γ0 : I → X be two paths in the path connected, locally path
connected topological space X.

Then γ0 '∂ γ1 means that γ0(0) = γ1(0), γ0(1) = γ1(1), and there is a
continuous map F : I × I → X such that

1. F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for all t ∈ I, and

2. F (0, s) = γ0(0) = γ1(0) and F (1, s) = γ0(1) = γ1(1) for all s ∈ I.

Thus, F provides a family Fs(·) = F (·, s) of paths from γ1 to γ2 keeping
the endpoints unchanged as s varies.

As above, the map F is called a homotopy from γ1 to γ2 relative ∂I.
We write γ0 '∂ γ1.
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Given two paths γ, η with γ(1) = η(0), one defines the concatenation path

γ]η =

{
γ(2t) if 0 ≤ t ≤ 1

2

η(2t− 1) if 1
2
≤ t ≤ 1

Whenever we write γ]η, we assume that γ(1) = η(0).
Definition.

1. Let p ∈ X. A loop in X based at p is a path γ : I → I such that
γ(0) = γ(1) = p. Note that we do not require that γ | [0, 1) be
injective.

2. A loop γ : I → X based at p is null-homotopic if it is homotopic relative
to ∂I to the constant loop ζ(t) ≡ p for all t ∈ I.

If γ : I → X is a loop based at p, then we write γ '∂ 0 to mean that γ
is null-homotopic. Also, we use the term homotopic to zero for this concept.

Given a path γ in X, the reverse or inverse path is the path −γ(t) =
γ(1− t).

Exercise

1. If γ0 '∂ γ1 and η0 '∂ η1, then γ0]η0 '∂ γ1]η1

2. For any γ, we have γ](−γ) '∂ 0

Let Ω(X, p) denote the collection of all loops based at p.
The relation γ0 '∂ γ1 is an equivalence relation on Γ(X, p). The quotient

set

Ω(X, p)/ '∂

is denoted π1(X, p).
The operation ] on Ω(X, p) pushes down to an operation on π1(X, p)

which turns π1(X, p) into a group. It is called the fundamental group of
(X, p) or just X.

If γ represents an element of π1(X, p), then −γ represents its inverse for
the operation induced by concatenation.

It is a fact that if p, q are two points in X, then π1(X, p) is isomorphic to
π1(X, q).

Indeed, an isomorphism can be constructed as follows. Let η be a path
from p to q. For γ ∈ Ω(X, p), let Φ(γ) = (−η]γ)]η. This is an element of
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Ω(X, q). It can be shown that if γ1 '∂ γ, then Φ(γ1) '∂ Φ(γ). Thus, we

get a well-defined map, Φ̃ : π1(X, p) → π1(X, q). We leave it as an exercise
to show that Φ̃ is a group isomorphism.

A topological space X is called simply connected if for some p ∈ X, every
loop γ based at p is null-homotopic. That is, the group π1(X, p) is the trivial
group consisting of a single element. Since π1(X, p) is isomorphic to π2(X, q)
for any p, q ∈ X, we can use any p ∈ X to test for simple-connectivity.

Definition Let X be a path connected, locally connected space, and let
f : X → S1 be continuous. A lift of f (or a lift to R) is a continuous map
f̃ : X → R such that ρf̃ = f .

Proposition 0.1 (Path lifting property) Let γ : I → S1 be a path in S1.
Then, there is a lift γ̃ of γ. If γ̃1 and γ̃2 are any two such lifts, then there is
an integer n such that γ̃1(t) = γ̃2(t) + n for all t ∈ I.

Proof.
Let us first construct a lift γ̃.
Let U = {U1, U2, . . . , Un} be a collection of open intervals in S1 whose

union covers S1 such that, for each i ∈ [1, n],

ρ−1(Ui) is a disjoint union {Vij} of open intervals in R and diam(Vij) < 1/4
(1)

and

if j 6= k, then dist(Vij, Vik) > 1/2. (2)

Let t0 = 0 < t1 < . . . < tk = 1 be a finite collection of points in I so
that the image γ([ti, ti+1]) is contained in one of the intervals Uj for each
0 ≤ i < k.

We construct a lift γ̃i of γ | [t0, ti] for each i. At the end of the induction,
we simply set γ̃ = γ̃k.

First, pick a real number θ0 so that ρ(θ0) = γ(t0), and let Ui0 be one of
the intervals in U which contains γ([t0, t1]).

Let Vi0,j0 be the real interval in ρ−1(Ui0) which contains θ0.
The map ρ maps Vi0,j0 homeomorphically onto Ui0 . Let h0 be its inverse

map.
Let γ̃0 = h0 ◦ γ | [t0, t1]. This is the first step of our induction.
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Now, for 0 ≤ s < k − 1, assume that γ̃s has been defined as a lift of
γ | [t0, ts+1].

We wish to define γ̃s+1 from [t0, ts+2] to R as a lift of γ | [t0, ts+2].
Let θs+1 = γ̃s(ts+1), and let Uis+1 be the interval in U containing ρ(θs+1),

let Vis+1,js+1 be the interval in ρ−1(Uis+1) containing θs+1.
Let hs+1 be the inverse of ρ restricted to Uis+1 .
Define γ̃s+1 to be γ̃s on [t0, ts+1] and hs+1 ◦ γ on [ts+1, ts+2]. Then, γ̃s+1

provides the lift on [t0, ts+2]. By induction, we can go all the way up to
[t0, tk] = I.

Now, suppose that γ̃1 and γ̃2 are two lifts which agree at 0.
Let

A = {t ∈ I : γ̃1(t) = γ̃2(t)}

Then, A is non-empty. We leave it as an exercise using (2) that A is both
open and closed. Since I is connected, we must have A = I.

Thus if the two lifts agree at a single point, they must agree everywhere.
Now, consider two arbitrary lifts γ̃1, γ̃2. Since ρ(γ̃1(0)) = ρ(γ̃2(0)), there

is an integer n such that γ̃1(0) = γ̃2(0) + n.
The map t → γ̃2(t) + n is a lift of γ which agrees with γ̃1 at 0. Hence,

they agree at every t. QED.

Proposition 0.2 (Homotopy lifting property) Let γi : I → S1, i = 1, 2 be
two paths in S1 which are homotopic via the homotopy F . Then, there is a
lift F̃ of F to R such that F̃ is a homotopy from F̃ | I × {0} to F̃ | I × {1}.

Moreover, any two such lifts F̃1, F̃2 differ by an integer translation.

The proof is similar to that of Proposition (0.1).
We cover S1 with a finite collection of open intervals U = {Uij} satisfying

(1) and (2).
Next, we pick finite sequences of points (ti, uj) ∈ I × I with 0 ≤ i ≤

N, 0 ≤ u ≤ N for some large enough N such that the F−image of each box
Bij = {(t, u) : ti ≤ t ≤ ti+1, uj ≤ u ≤ uj+1} is contained in a single element of
U . We then construct the lift F̃ by inductively constructing along the boxes
Bij along each level i = const, letting j go from 0 to N , and then letting i
go from 0 to N . Since the image of each closed box Bij is an open interval
Uij and the connected components of ρ−1(Uij) are not too close relative to
their diameters, the induction can continue.
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The uniqueness up to integer translations is proved as in Proposition (0.1)
as well. QED.

Remark. If the homotopy F is rel ∂, then the left F̃ can also be chosen
to be rel ∂.

Proposition 0.3 Let γ be a path in R such that γ(1)−γ(0) is an integer n,
and let η(t) = (1− t)γ(0)+ tγ(1) be the affine path parametrizing the interval
from γ(0) to γ(1). Then, the curves γ and η are homotopic relative ∂I.

Proof. The map Fs(t) = (1−s)γ(t)+sη(t) gives the required homotopy.
QED.

Thus, any path γ in R is homotopic relative to ∂I to an affine path.

Lemma 0.4 Let γ : I → S1 be any loop in S1. Then, γ '∂ 0 if and only if
any lift γ̃ : I → R to R is a loop in R.

Proof. First observe that if γ̃1 and γ̃2 are two lifts of γ, then γ1(0) = γ2(0)
and γ1(1) = γ2(1). Thus, γ1 is a loop iff γ2 is also a loop.

Next, assume that some lift γ̃ is a loop in R. The point p = γ̃(0) = γ̃(1)
in R is such that ρ(γ̃(1)) = ρ(γ̃(0)) in S1. But, ρ ◦ γ̃ = γ, so γ is indeed a
loop in S1.

For the converse, assume that γ '∂ 0. Let F : I×I → S1 be a homotopy
(relative to ∂I) such that F | I × {0} = γ and F | I × {1} = c (i.e.
F (t, 1) = c for all t ∈ I ) where ρ(c) = γ(0).

Using the homotopy lifting property, we lift F to a homotopy F̃ : I×I →
R relative to ∂I so that ρ ◦ F̃ = F .

The curve γ̃ = F̃ | I×{0} is a lift of γ. We wish to show that γ̃(1) = γ̃(0).
But, by the property that F̃ is a relative homotopy, we have that F̃ |

{0}× I and F̃ | {1}× I are constant functions. That is, F̃ is constant on the
left and right boundaries of I × I. Since F̃ | I × {1} = c, F̃ is also constant
on the upper boundary of I×I. Since F̃ is continuous, (and the union of the
left, right, and upper boundaries of I×I is connected), these three constants
must be equal. This implies that γ̃(1) = γ̃(0), so γ̃ is a loop. QED.

Proposition 0.5 Let X be simply connected and let f : X → S1 be a con-
tinuous map. Then, there is a lift f̃ : X → R of f to R. Any two such lifts
differ by an integer translation.
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Proof. Pick a point p ∈ X, and let θ0 ∈ R be a point in ρ−1(f(p)). Let
q ∈ X, and let γ : I → X be a path from p to q. The map f ◦ γ : I → S1 is
then a path in S1. Lift this path to a path γ̃ : I → S1.

Define

f̃(q) = γ̃(1). (3)

We claim:

(?) The definition (3) is independent of the path γ from p to q and the
choice of any lift of γ. That is, if γ1, γ2 are two paths in X from p
to q, and γ̃1, γ̃2 are any lifts of f ◦ γ1, f ◦ γ2, respectively, such that
γ̃1(0) = γ̃2(0), then we have γ̃1(1) = γ̃2(1)

Assume the claim for the moment.
Then, we get a well-defined lift f̃ of f defined by (3).
We wish to show that it is continuous at each point q ∈ X.
Fix a path γ from p to q in X with lift γ̃. Then, f̃(q) = γ̃(1).
Let V be any open set in R containing f̃(q). We wish to find an open set

U in X containing q such that f̃(U) ⊂ V .
Let V0 be a small interval in V about f̃(q) so that ρ | V0 maps V0 home-

omorphically onto its image V ′0 in S1.
Continuity of f gives us a neighborhood U0 of q in X so that f(U0) ⊂ V ′0 .

Since X is locally path connected, we may assume that U0 is path connected.
For q1 ∈ U0, let γ1 : I → X be a path in U0 from q to q1. Then, the path

η
def
= γ]γ1 is a path in X from p to q1 and η(1) = f(q1). The lift η̃ of η to

R satisfies f̃(q1) = η̃(1) = (ρ | V0)−1(η(1)). But, this last point lies in V0.
Hence f̃(q1) ∈ V0 ⊂ V as required.

It remains to prove (?).
Let γ1, γ2 be two paths from p to q with lifts γ̃1, γ̃2 of f ◦ γ1, f ◦ γ2,

respectively.

The curve η
def
= (−γ2)]γ1 is then a loop in X based at q and η(0) =

γ1(1) = γ2(1). Since X is simply connected, we have η '∂ 0 in X.

This implies that η1
def
= f ◦ η '∂ 0 in S1. Hence, by Lemma 0.4, the lift

η̃1 of this last loop is a loop in R. Thus, η̃1(1) = η̃1(0). But, η̃(1) = γ̃(1) and
η̃(0) = γ̃2(1). QED.

Now consider a continuous map f : S1 → S1.
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Since R is simply connected, the map f ◦ ρR→ S1 has a lift f̃ : R→ R
which satisfies ρf̃ = fρ. We call f̃ a lift of to R which covers f .

Any two such lifts differ by an integer translation. We define the degree
of f to be f̃(1) = f̃(0) for any lift which covers f . This is an integer. We
denote it by deg(f).

The next theorem is fundamential.

Theorem 0.6 Let f : S1 → S1 and g : S1 → S1 be two continous self-maps
of the circle. Then, f is homotopic to g iff deg(f) = deg(g).

Proof
Let 1̄ denote the complex number 1 + 0 ·

√
−1.

We first reduce to the case in which f(1̄) = 1̄. That is, f has 1̄ as a fixed
point.

Let θ ∈ R and let Tθ(x) = x + θ be the translation on R by θ. Let

Rθ : S1 → S1 be the rotation by angle 2Piθ given by Rθ(z) = e2πθz.
It is easy to see that Tθ is a lift of Rθ with Tθ(0) = θ. We call Tθ the

standard lift of Rθ.
Given f : S1 → S1, let θ be such that Rθ(θ) ◦ f(1̄) = 1̄.
We leave it as an exercise that any rotation Rθ on S1 is homotopic to the

identity map id. It follow that Rθ ◦ f ' f .

Let f̃ be a lift of f to R. Then, Tθ ◦ f̃ is a lift of Rθ ◦ f .

Since Tθ◦f̃(x) = f̃(x)+θ, it is clear that Tθ◦f̃(1)−Tθ◦f̃(0) = f̃(1)−f̃(0),
so

deg(f) = deg(Rθ ◦ f).

Similarly, let θ1 be such that Rθ1
◦ g(1̄) = 1̄. Then,

deg(f) = deg(Rθ1
◦ f),

and f ' g iff Rθ ◦ f ' Rθ1
◦ g

deg(g) = deg(Rθ1
◦ g).

It follows that we may replace f by Rθ ◦ f g by Rθ1
◦ g), so it suffices to

prove the theorem assuming f and g both fix 1̄.
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Consider the maps f1
def
= f ◦ ρ | [0, 1] and g1

def
= g ◦ ρ | [0, 1]. These are

both paths in S1, and f ' g iff f1 '∂ g1.
Assume first that f ' g. Then f1 '∂ g1, and f1](−g1) '∂ 0. It follows

from Lemma 0.4 that any lift of f1](−g1) is a loop in R.
Choose lifts f̃1 of f1 and g̃1 of g1, respectively so that f̃1(1) = 0 = g̃1(0).

Then, f̃1](−g̃1) is defined, and it is a lift of f1](−g1). Since the latter curve is
a null-homotopic loop in S1, the curve f̃1](−g̃1) is a loop in R. This implies
that f̃1(1)− f̃1(0) = g̃1(1)− g̃1(0). So, deg(f1) = deg(g1).

Conversely, suppose that deg(f1) = deg(g1). Let f̃1, g̃1 be lifts of f1, g1,
respectively such that f̃1(0) = 0 and g̃1(0) = 0. Since deg(f) = f̃1(1) −
f̃1(0) = deg(g) = g̃1(1)− g̃1(0), we have that f̃1(1) = g̃1(1). Letting n denote
this common value, Propostion 0.3, gives that f̃1 '∂ [0, n] and g̃1 '∂ [0, n].

It follows that f̃1 '∂ g̃1, and, hence f1 = ρ ◦ f̃1 '∂ ρ ◦ g̃1 = g1. QED.


