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17. Linear Homogeneous Systems with Con-

stant Coefficients

Consider the system

ẋ = Ax (1)

where A is a constant n×n matrix and x is an n−vector

in Rn.

In the one-dimensional (scalar case), we found solu-

tions using exponential functions, so it seems reasonable

to try to find a solution of the form

x(t) = ertξ

where r is a real constant and ξ is a non-zero constant

vector.

Plugging in, we get

ẋ(t) = rertξ = Aertξ

for all t. Since ert is never zero, we can cancel it and

get

rξ = Aξ

or

(rI − A)ξ = 0. (2)
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Thus, r is a scalar such that there is a non-zero vector ξ

such that ξ is a solution of the system of linear equations

(2).

This only holds for special r′s and special ξ′s.

Definition. Given an n × n matrix A, we call a

number r and eigenvalue of A is there is a non-zero vector

ξ such that

Aξ = rξ.

The vector ξ is called an eigenvector for the eigenvalue

r.

Note that r is an eigenvalue of A if and only if det(rI−
A) = 0. The function z(r) = det(rI − A) is a polyno-

mial of degree n in r and is called the characteristic

polynomial of A. Thus, eigenvalues of A are the roots

of the characteristic polynomial of A.

Remark.

1. Some general facts about eigenvalues and eigenvec-

tors.

(a) Let A be an n×n matrix and let r1 be an eigen-

value of A. Let ξ and η be eigenvectors associated

to r1. Then, for arbitrary scalars α, β, we have

that αξ + βη is also an eigenvector associated to

r1 provided that it is not the zero vector.
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Proof.

Let v = αξ + βη and assume this is not 0.

We have

A(v) = A(αξ + βη)

= αAξ + βAη

= αr1ξ + βr1η

= r1(αξ + βη)

= r1v

Therefore v is also an eigenvector as required.

(b) Let r1 6= r2 be distinct eigenvalues of A with

associated eigenvectors ξ, η, respectively. Then,

ξ is not a multiple of η.

Proof.

Assume that ξ = αη for some α. Since both

vectors are not 0, we must have α 6= 0.

Now,

Aξ = r1ξ

= r1αη,

Aξ = Aαη = αAη = αr2η,
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So,

r1αη = r2αη.

Since α 6= 0, and η 6= 0, we get r1 = r2 which is

a contradiction.

2. A real matrix may not have any real eigenvalues, but

always has complex eigenvalues.

There is a simple formula for the characteristic poly-

nomial of a 2× 2 matrix.

Let

A =

 a11 a12

a21 a22

 .

Then,

rI − A =

 r − a11 −a12

−a21 r − a22


So,

det(rI − A) = (r − a11)(r − a22)− a12a22

= r2 − a11r − a22r + a11a22 − a12a21

= r2 − tr(A)r + det(A)

where we define tr(A) = a11 + a22 and det(A) =

a11a22 − a12a21.
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Let us find some characteristic polynomials and eigen-

values for the following matrices.

Example 1

A =

 2 1

1 1



We have z(r) = r2 − 3r + 1. r = 3±
√

5
2 .

Example 2

A =

 3 1

−1 2



We have z(r) = r2− 5r + 7. r = 3±
√

25−28
2 = 3±

√
−3

2 =
3±3i

2 .

Next, we compute the eigenvectors associated to the

eigenvalues.

Example 1a.

Return to

A =

 2 1

1 1



Let r1 = 3+
√

5
2 .

Let

ξ =

 ξ1

ξ2


be the associated eigenvector.
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Then, we have

(r1 − a11)ξ1 − a12ξ2 = 0.

The other equation is not necessary since the matrix

(r1I − A) is singular.

Thus, we have the condition

ξ2 =
(r1 − a11)ξ1

a12

for ξ to be an eigenvector for r1. We can take ξ1 = 1,

and get

ξ =

 1
r1−a11

a12

.

Similarly, for r2, we get

ξ =

 1
r2−a11

a12

.

Example 2a.

In this case, we have complex eigenvalues, so there is

no real eigenvector. Let r1 = α + iβ and r2 = α − β

be the two roots. We can get complex eigenvectors for r1

and r2 in a manner analgous to that of Example 1a. For

r1 or r2, we simply look for a complex vector

ξ =

 ξ1

ξ2
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with complex numbers ξ1 and ξ2 such that

Aξ = r1ξ,

and

Aξ = r2ξ.

This gives the complex vector

ξ =

 1
r1−a11

a12


for r1, and the complex vector

ξ =

 1
r2−a11

a12


for r2.

We will see next how to use this for solving systems of

two linear differential equations.

1 Two dimensional homogeneous systems of

linear differential equations with constant

coefficients

Consider the system

ẋ = a11 x + a12 y

ẏ = a21 x + a22 y
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where

A =

 a11 a12

a21 a22


is a constant 2× 2 real matrix.

We compute the eigenvalues r1, r2. These are the roots

of the characteristic polynomial

r2 − tr(A)r + det(A).

Case 1: Both roots are real and distinct. Say these

are r1 6= r2.

Step 1. Compute the eigenvectors v1 for r1 and v2 for

r2, repectively.

Then, we get solutions of the form

x1 = er1tv1, x2 = er2tv2.

These turn out to be linearly independent, so the gen-

eral solution is

x(t) = α1e
r1tv1 + α2e

r2tv2

where α1 and α2 are constants.

Case 2: Both roots are real and equal. Say the com-

mon root is r1.

We get one solution x1(t) of the form

x1(t) = er1tv1
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where v1 is an eigenvector for r1.

Next, we have two subcases

Subcase 2a: There are two linearly independent

eigenvectors, say ξ, η for the eigenvalue r1.

In this case the general solution is

x(t) = er1t(α1ξ + α2η).

An example of this is the system

ẋ = 2x

ẏ = 2y

with general solution

x(t) = e2t

α1

 1

0

 + α2

 0

1


 .

Subcase 2b: All eigenvectors for r1 are multiples of

v1.

In this case we proceed as follows.

Let us try to find another linearly independent solution

of the form

x2(t) = er1tv0 + ter1tv1.

We get
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ẋ2(t) = r1e
r1tv0 + tr1e

r1tv1 + er1tv1

= A(er1tv0 + ter1tv1),

or

r1v0 + tr1v1 + v1 = A(v0 + tv1).

Setting the constant and terms with t equal we get that

v1 is an eigenvector, and v0 satisfies the linear system

(A− r1I)v0 = v1. (3)

Finding the solution v0, we can in fact obtain a second

linearly independent solution of the above form.

Thus, the general solution has the form

x(t) = α1e
r1tv1 + α2e

r1t(v0 + tv1).

where v1 is an eigenvector associated to r1 and v0

satisfies (3).

Note that this involves solving the two systems of equa-

tions

(A− r1I)v1 = 0, (A− r1I)v0 = v1.

Example.

Consider the system
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ẋ = x

ẏ = x + y

The matrix is

A =

 1 0

1 1


with characteristic equation

r2 − 2r + 1 = (r − 1)2.

Hence, r = 1 is a root of multiplicity two.

We see that v1 =

 0

1

 is an eigenvector so we get one

non-zero solution as

x1(t) = et

 0

1

.

For the second independent solution we have

x1(t) = etv0 + tet

 0

1


where

(A− I)v0 =

 0

1

. (4)
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The solutions to this last equation are all vectors of the

form

 1

ξ2

 with ξ2 arbitrary, so we can pick v0 =

 1

0


and get a second linearly independent solution as

x2(t) = et

 1

0

 + tet

 0

1

.

The general solution is

x(t) = c1x1(t) + c2x2(t).

Remark. Note that we used the method above when

there are not two linearly independent eigenvectors for

the eigenvalue 1. We did not check whether this is the

case, so why does this work? The answer is that if there

were indeed two linearly independent eigenvectors for the

eigenvalue 1, then the system (4) would not have had

any solutions, so the fact that we could solve the system

justifies the approach. (The proof of this requires more

linear algebra and will have to be deferred to a more

advanced course.)

This method generalizes to n dimensional systems with

eigenvalues of multiplicity greater than one although the

linear algebra required is more complicated.

We will see that the method of elimination described

below is more efficient for two dimensional systems with

a multiple root.
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Case 3: The roots are α± iβ where β 6= 0.

Here we use complex variables. We have that xc(t) =

e(α+iβ)tξ is a complex solution where ξ is a complex

eigenvector associated to the eigenvalue α + iβ. The real

and imaginary parts give linearly independent solutions.

Then the general real solution is a linear combination of

these independent solutions.

Let us do an example.

Consider the system

ẋ = 2 x− 3 y

ẏ = 2 x + 4 y

The matrix A is given by 2 −3

2 4

 .

The characterstic polynomial is

r2 − 6r + 14

with roots

r =
6±

√
36− 56

2
= 3± i

√
5.

We seek a complex eigenvector ξ = (ξ1, ξ2) for the

eigenvalue r = 3 + i
√

5.

We get the equation
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(rI − A)ξ = 0.

or  r − 2 3

−2 r − 4


 ξ1

ξ2

 =

 0

0

.

Because the matrix is singular, we need only consider

the first row equation

(r − 2)ξ1 + 3ξ2 = 0

Setting ξ1 = 1, we get

ξ2 =
(2− r)

3

=
2− (3 + i

√
5)

3

=
−1− i

√
5

3

Thus, we get a complex solution of the form

xc = e(3+i
√

5)t

 1
−1−i

√
5

3



= e(3+i
√

5)t


 1
−1
3

 + i

 0

−
√

5
3
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The real and imaginary parts are

R1
def= e3t

cos(
√

5t)

 1
−1
3

 − sin(
√

5t)

 0

−
√

5
3




I1
def= e3t

sin(
√

5t)

 1
−1
3

 + cos(
√

5t)

 0

−
√

5
3




The general real solution is

x(t) = α1R1 + α2I1.

2 An alternate method for 2 dimensional

systems: Elimination and reduction to scalar

equations

First, we give some examples to describe the elimination

method to solve two dimensional systems.

Example 1:

Consider the system

ẋ = x + y

ẏ = x− y

We can write

y = ẋ− x (5)
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from the first equation and substitute into the second

equation getting

ẏ = ẍ− ẋ

= x− (ẋ− x)

This gives the second order scalar equation for x

ẍ− 2x = 0.

We know how to solve this. The characteristic equation

is r2 − 2 with roots r = ±
√

2 and general solution

x(t) = c1e
√

2t + c2e
−
√

2t.

Then, we get y from (5) as

y(t) = ẋ− x

= c1

√
2e
√

2t − c2

√
2e−

√
2t − c1e

√
2t − c2e

−
√

2t,

so, the general solution to the system is

 x(t)

y(t)

 =

 c1e
√

2t + c2e
−
√

2t

c1

√
2e
√

2t − c2

√
2e−

√
2t − c1e

√
2t − c2e

−
√

2t



= c1e
√

2t

 1√
2− 1

 + c2e
−
√

2t

 1

−
√

2− 1

.
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This method can most often be used for two dimen-

sional homogeneous systems.

Which method is best?

In my opinion, this method is best when the eigenvalue

is real of multiplicity two and the matrix method is best

in the other cases.

Example.

Let us apply the method of elimination to the system

ẋ = x

ẏ = x + y

we considered above.

We get

x = ẏ − y

ẋ = ÿ − ẏ = x = ẏ − y.

or

ÿ − 2ẏ + y = 0.

The general solution is

y(t) = c1e
t + c2te

t.

This gives
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x(t) = ẏ − y

= c1e
t + c2e

t + c2te
t − (c1e

t + c2te
t)

= c2e
t

and the general solution

 x(t)

y(t)

 =

 c2e
t

c1e
t + c2te

t



= c1e
t

 0

1

 + c2e
t

 1

t

.

Finally, we describe some general aspects of the method

of elimination.

We consider the system

x′ = ax + by

y′ = cx + dy

We assume, that either b or c is not 0. Otherwise, the

system is diagonal and easily solvable.

Assuming b 6= 0, we use the elimination method to find

a second order equation for x(t). We will see that the

characteristic polynomial for this second order equation

is the same as the characteristic polynomial of

 a b

c d

 .



December 6, 2004 17-19

The latter characteristic polynomial is

r2 − (a + d)r + ad− bc.

Now,

x′′ = ax′ + by′

= ax′ + bcx + bdy

= ax′ + dx′((bc− ad)x

or

x′′ − (a + d)x′ + ad− bc = 0.

Now, we can find the general solution x(t) of this sec-

ond order equation, and then get y(t) in the original sys-

tem from

y =
x′ − ax

b

If, b = 0 but c 6= 0, we use the elimination method to

find a second order equation for y(t). We get the general

solution for y(t), and then get x(t) from

x =
y′ − dy

c
.


