The cyclic sieving phenomenon - an introduction

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

July 5, 2011

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

Suppose S is a set and let G be a finite cyclic group acting on S.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\}
$$

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let $\omega=\omega_{d}=$ primitive d th root of unity.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let $\omega=\omega_{d}=$ primitive d th root of unity.
Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let

$$
\omega=\omega_{d}=\text { primitive } d \text { th root of unity. }
$$

Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}. Definition (Reiner-Stanton-White, 2004)
The triple ($S, G, f(q)$) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $g \in G$, we have

$$
\# S^{g}=f(\omega) .
$$

where ω is chosen so that $o(\omega)=O(g)$.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let

$$
\omega=\omega_{d}=\text { primitive } d \text { th root of unity. }
$$

Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}. Definition (Reiner-Stanton-White, 2004)
The triple ($S, G, f(q)$) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $g \in G$, we have

$$
\# S^{g}=f(\omega) .
$$

where ω is chosen so that $o(\omega)=O(g)$.
Notes. 1. At first blush, this is a surprising equation.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let

$$
\omega=\omega_{d}=\text { primitive } d \text { th root of unity. }
$$

Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}.
Definition (Reiner-Stanton-White, 2004)
The triple ($S, G, f(q)$) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $g \in G$, we have

$$
\# S^{g}=f(\omega) .
$$

where ω is chosen so that $o(\omega)=O(g)$.
Notes. 1. At first blush, this is a surprising equation.
2. The case $\# G=2$ was first studied by Stembridge.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let

$$
\omega=\omega_{d}=\text { primitive } d \text { th root of unity. }
$$

Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}.
Definition (Reiner-Stanton-White, 2004)
The triple ($S, G, f(q)$) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $g \in G$, we have

$$
\# S^{g}=f(\omega) .
$$

where ω is chosen so that $o(\omega)=O(g)$.
Notes. 1. At first blush, this is a surprising equation.
2. The case $\# G=2$ was first studied by Stembridge.
3. Dozens of c.s.p.s have been found.

Suppose S is a set and let G be a finite cyclic group acting on S. If $g \in G$, we let

$$
S^{g}=\{t \in S: g t=t\} \text { and } o(g)=\text { order of } g \text { in } G .
$$

Note: if $d=o(g)$ then $d \mid \# G$, the cardinality of G. We also let

$$
\omega=\omega_{d}=\text { primitive } d \text { th root of unity. }
$$

Finally, suppose $f(q)$ is a polynomial in q with coefficients in \mathbb{Z}.
Definition (Reiner-Stanton-White, 2004)
The triple ($S, G, f(q)$) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $g \in G$, we have

$$
\# S^{g}=f(\omega) .
$$

where ω is chosen so that $o(\omega)=O(g)$.
Notes. 1. At first blush, this is a surprising equation.
2. The case $\# G=2$ was first studied by Stembridge.
3. Dozens of c.s.p.'s have been found.
4. Three proof techniques: evaluation, representation theory, and combinatorics.

Running example. Let $[n]=\{1,2, \ldots, n\}$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$.

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$. Now $g \in C_{n}$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
g T=\left\{g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$. Now $g \in C_{n}$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
g T=\left\{g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Also

$$
C_{4}=\langle(1,2,3,4)\rangle=\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\} .
$$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$. Now $g \in C_{n}$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
g T=\left\{g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Also

$$
C_{4}=\langle(1,2,3,4)\rangle=\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\} .
$$

For $g=(1,3)(2,4)$

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$. Now $g \in C_{n}$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
g T=\left\{g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Also

$$
C_{4}=\langle(1,2,3,4)\rangle=\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\} .
$$

For $g=(1,3)(2,4)$ we have
$(1,3)(2,4) 12=34$,

Running example. Let $[n]=\{1,2, \ldots, n\}$ and

$$
S=\binom{[n]}{k}=\{T \subseteq[n]: \# T=k\}
$$

Let $C_{n}=\langle(1,2, \ldots, n)\rangle$. Now $g \in C_{n}$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
g T=\left\{g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right\}
$$

Ex. Suppose $n=4$ and $k=2$. We have

$$
S=\binom{[4]}{2}=\{12,13,14,23,24,34\}
$$

Also

$$
C_{4}=\langle(1,2,3,4)\rangle=\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\} .
$$

For $g=(1,3)(2,4)$ we have
$(1,3)(2,4) 12=34$,
$(1,3)(2,4) 13=13$,
$(1,3)(2,4) 14=23$,
$(1,3)(2,4) 23=14$,
$(1,3)(2,4) 24=24$,
$(1,3)(2,4) 34=12$.

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$. Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q}![2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \tag{4}\\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q!}[2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \tag{4}\\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q!}![2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

For $g=(1,3)(2,4)$ we have $O(g)=2$ and $\omega=-1$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \tag{4}\\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q}![2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

For $g=(1,3)(2,4)$ we have $o(g)=2$ and $\omega=-1$ so

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{-1}=1-1+2-1+1
$$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \tag{4}\\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q}![2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

For $g=(1,3)(2,4)$ we have $o(g)=2$ and $\omega=-1$ so

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{-1}=1-1+2-1+1=2
$$

Let $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
Define the Gaussian polynomials or q-binomial coeffiecients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Ex. Consider $n=4, k=2$. So

$$
\left[\begin{array}{l}
4 \tag{4}\\
2
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q}![2]_{q}!}=1+q+2 q^{2}+q^{3}+q^{4}
$$

For $g=(1,3)(2,4)$ we have $o(g)=2$ and $\omega=-1$ so

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{-1}=1-1+2-1+1=2=\# S^{(1,3)(2,4)}
$$

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$,

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}=\left\{\begin{array}{l}
\frac{m}{n} \quad \text { if } n \equiv 0(\bmod d), \\
\end{array}\right.
$$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d.

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}^{0}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}^{0}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}^{0}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}^{0}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega} /[n]_{\omega}=1$, proving the "else" case.

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}^{0}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega} /[n]_{\omega}=1$, proving the "else" case. If $n \equiv 0(\bmod d)$ then $n=\ell d$ and $m=k d$,

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega} /[n]_{\omega}=1$, proving the "else" case. If $n \equiv 0(\bmod d)$ then $n=\ell d$ and $m=k d$, so

$$
\frac{[m]_{q}}{[n]_{q}}=\frac{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(k-1) d}\right)}{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(l-1) d}\right)} .
$$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega} /[n]_{\omega}=1$, proving the "else" case. If $n \equiv 0(\bmod d)$ then $n=\ell d$ and $m=k d$, so

$$
\frac{[m]_{q}}{[n]_{q}}=\frac{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(k-1) d}\right)}{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(l-1) d}\right)} .
$$

Cancelling and plugging in $\omega=\omega_{d}$ gives

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}=\frac{k}{\ell}
$$

Lemma
If $m \equiv n(\bmod d)$ and $\omega=\omega_{d}$, then

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}= \begin{cases}\frac{m}{n} & \text { if } n \equiv 0(\bmod d), \\ 1 & \text { else. }\end{cases}
$$

Proof Let m, n have remainder r modulo d. So for $\omega=\omega_{d}$:
$[m]_{\omega}=\overbrace{\left(1+\omega+\cdots+\omega^{d-1}\right)}+\cdots+\left(1+\omega+\cdots+\omega^{r-1}\right)=[n]_{\omega}$.
If $n \not \equiv 0(\bmod d)$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega} /[n]_{\omega}=1$, proving the "else" case. If $n \equiv 0(\bmod d)$ then $n=\ell d$ and $m=k d$, so

$$
\frac{[m]_{q}}{[n]_{q}}=\frac{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(k-1) d}\right)}{\left(1+q+\cdots+q^{d-1}\right)\left(1+q^{d}+q^{2 d}+\cdots+q^{(\ell-1) d}\right)} .
$$

Cancelling and plugging in $\omega=\omega_{d}$ gives

$$
\lim _{q \rightarrow \omega} \frac{[m]_{q}}{[n]_{q}}=\frac{k}{\ell}=\frac{m}{n} .
$$

Corollary
If $\omega=\omega_{d}$ and $d \mid n$

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}=\left\{\binom{n / d}{k / d} \quad \text { if } d \mid k\right.
$$

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\
0 & \text { else }\end{cases}
$$

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k, \\
0 & \text { else. }\end{cases}
$$

Lemma
Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$.

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k, \\
0 & \text { else. }\end{cases}
$$

Lemma
Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$. Let $T \subseteq[n]$.

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k, \\
0 & \text { else } .\end{cases}
$$

Lemma
Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$. Let $T \subseteq[n]$. Then

$$
g T=T \Longleftrightarrow T=g_{i_{1}} \cup \cdots \cup g_{i_{m}}
$$

for some i_{1}, \ldots, i_{m}.

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\
0 & \text { else }\end{cases}
$$

Lemma
Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$. Let $T \subseteq[n]$. Then

$$
g T=T \Longleftrightarrow T=g_{i_{1}} \cup \cdots \cup g_{i_{m}}
$$

for some i_{1}, \ldots, i_{m}.
4 return 1
4 return 2
Ex. If $g=(1,3,4)(2,6)(5)$ then the $T \in\binom{[6]}{3}$ with $g T=T$ are

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\
0 & \text { else }\end{cases}
$$

Lemma

Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$. Let $T \subseteq[n]$. Then

$$
g T=T \Longleftrightarrow T=g_{i_{1}} \cup \cdots \cup g_{i_{m}}
$$

for some i_{1}, \ldots, i_{m}.

```
4 return 1
```

4 return 2
Ex. If $g=(1,3,4)(2,6)(5)$ then the $T \in\binom{[6]}{3}$ with $g T=T$ are

$$
T=\{1,3,4\}
$$

Corollary

If $\omega=\omega_{d}$ and $d \mid n$ then,

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]_{\omega}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\
0 & \text { else }\end{cases}
$$

Lemma

Let $g \in \mathfrak{S}_{n}$ (symmetric group) have disjoint cycle decomposition $g=g_{1} \cdots g_{k}$. Let $T \subseteq[n]$. Then

$$
g T=T \Longleftrightarrow T=g_{i_{1}} \cup \cdots \cup g_{i_{m}}
$$

for some i_{1}, \ldots, i_{m}.

```
4 return 1
```

4 return 2
Ex. If $g=(1,3,4)(2,6)(5)$ then the $T \in\binom{[6]}{3}$ with $g T=T$ are

$$
T=\{1,3,4\} \quad \text { and } \quad T=\{2,5,6\} .
$$

Proposition

If $S=\binom{[n]}{k}$ and $g \in C_{n}$ has $o(g)=d$

Proposition

If $S=\binom{[n]}{k}$ and $g \in C_{n}$ has $o(g)=d$ then

$$
\# S^{g}=\left\{\begin{array}{l}
\binom{n / d}{k / d} \quad \text { if } d \mid k,
\end{array}\right.
$$

Proposition

If $S=\binom{[n]}{k}$ and $g \in C_{n}$ has $o(g)=d$ then

$$
\# S^{g}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\ 0 & \text { else }\end{cases}
$$

Proposition
If $S=\binom{[n]}{k}$ and $g \in C_{n}$ has $o(g)=d$ then

$$
\# S^{g}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\ 0 & \text { else }\end{cases}
$$

Proof If $g \in C_{n}$ and $o(g)=d$ then

$$
g=g_{1} \cdots g_{n / d}
$$

where $\# g_{1}=\ldots=\# g_{n / d}=d$.

Proposition

If $S=\binom{[n]}{k}$ and $g \in C_{n}$ has $o(g)=d$ then

$$
\# S^{g}= \begin{cases}\binom{n / d}{k / d} & \text { if } d \mid k \\ 0 & \text { else }\end{cases}
$$

Proof If $g \in C_{n}$ and $o(g)=d$ then

$$
g=g_{1} \cdots g_{n / d}
$$

where $\# g_{1}=\ldots=\# g_{n / d}=d$. So, by the second lemma $T \in\binom{[n]}{k}$ satisfies $g T=T$ iff T is a union of k / d of the n / d cycles g_{i}.

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g].

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_{B}$ be the matrix of $[g]$ in B.

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_{B}$ be the matrix of $[g]$ in B. In particular, $[g]_{S}$ is the permutation matrix for g acting on S.

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_{B}$ be the matrix of $[g]$ in B. In particular, $[g]_{S}$ is the permutation matrix for g acting on S. Example. $G=\mathfrak{S}_{3}$ acts on $S=\{1,2,3\}$ and so on

$$
\mathbb{C} S=\left\{c_{1} \mathbf{1}+c_{2} \mathbf{2}+c_{3} \mathbf{3}: c_{1}, c_{2}, c_{3} \in \mathbb{C}\right\} .
$$

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_{B}$ be the matrix of $[g]$ in B. In particular, $[g]_{S}$ is the permutation matrix for g acting on S. Example. $G=\mathfrak{S}_{3}$ acts on $S=\{1,2,3\}$ and so on

$$
\mathbb{C} S=\left\{c_{1} \mathbf{1}+c_{2} \mathbf{2}+c_{3} \mathbf{3}: c_{1}, c_{2}, c_{3} \in \mathbb{C}\right\}
$$

For $g=(1,2)(3)$ and basis S :

$$
(1,2)(3) \mathbf{1}=\mathbf{2},(1,2)(3) \mathbf{2}=\mathbf{1},(1,2)(3) \mathbf{3}=\mathbf{3}
$$

If G acts on $S=\left\{s_{1}, \ldots, s_{k}\right\}$ then G also acts on the vector space

$$
V=\mathbb{C} S=\left\{c_{1} \mathbf{s}_{1}+\cdots+c_{k} \mathbf{s}_{k}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_{B}$ be the matrix of $[g]$ in B. In particular, $[g]_{S}$ is the permutation matrix for g acting on S. Example. $G=\mathfrak{S}_{3}$ acts on $S=\{1,2,3\}$ and so on

$$
\mathbb{C} S=\left\{c_{1} \mathbf{1}+c_{2} \mathbf{2}+c_{3} \mathbf{3}: c_{1}, c_{2}, c_{3} \in \mathbb{C}\right\} .
$$

For $g=(1,2)(3)$ and basis S :

$$
(1,2)(3) \mathbf{1}=\mathbf{2},(1,2)(3) \mathbf{2}=\mathbf{1},(1,2)(3) \mathbf{3}=\mathbf{3} .
$$

And so

$$
[(1,2)(3)]_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations.

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g]
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g]
$$

Note that χ is well defined in that the trace is independent of the basis.

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g]
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\chi(g)=\operatorname{tr}[g]_{S}
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g]
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} \tag{1}
\end{equation*}
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C} S$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$.

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C S}$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$. Thus

$$
\chi(g)=\operatorname{tr}[g]_{B}
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C S}$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$. Thus

$$
\chi(g)=\operatorname{tr}[g]_{B}=\sum_{i \geq 0} m_{i} \omega^{i}
$$

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C S}$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C S}$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$. Thus

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{B}=\sum_{i \geq 0} m_{i} \omega^{i}=f(\omega) . \tag{2}
\end{equation*}
$$

where $f(q)=\sum_{i \geq 0} m_{i} q^{i}$.

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C} S$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C S}$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$. Thus

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{B}=\sum_{i \geq 0} m_{i} \omega^{i}=f(\omega) . \tag{2}
\end{equation*}
$$

where $f(q)=\sum_{i \geq 0} m_{i} q^{i}$. Now (1) and (2) imply $f(\omega)=\# S^{g}$ so we have the c.s.p.

A G-module is any \mathbb{C}-vector space V where G acts by invertible linear transformations. The character of G on V is the function $\chi: G \rightarrow \mathbb{C}$ given by

$$
\chi(g)=\operatorname{tr}[g] .
$$

Note that χ is well defined in that the trace is independent of the basis. For a group G acting on S, the character on $\mathbb{C S}$ is

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{S}=\# S^{g} . \tag{1}
\end{equation*}
$$

If G is cyclic, then there will be a basis B for $\mathbb{C S}$ such that every $g \in G$ satisfies

$$
[g]_{B}=\operatorname{diag}(\overbrace{1, \ldots, 1}^{m_{0}}, \overbrace{\omega, \ldots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \ldots, \omega^{2}}^{m_{2}}, \ldots)
$$

where $\omega=\omega_{o(g)}$. Thus

$$
\begin{equation*}
\chi(g)=\operatorname{tr}[g]_{B}=\sum_{i \geq 0} m_{i} \omega^{i}=f(\omega) . \tag{2}
\end{equation*}
$$

where $f(q)=\sum_{i \geq 0} m_{i} q^{i}$. Now (1) and (2) imply $f(\omega)=\# S^{g}$ so we have the c.s.p. To get the $S=\binom{[n]}{k}$ example, one uses the k th exterior power of a vector space V with $\operatorname{dim} V=n$.

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

To combinatorially prove ($S, G, f(q)$) exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T . \tag{3}
\end{equation*}
$$

To combinatorially prove ($S, G, f(q)$) exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T.

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

We then have the c.s.p. since for each $g \in G$
$f(\omega)$

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

We then have the c.s.p. since for each $g \in G$

$$
f(\omega)=\left.\sum_{T \in S} \mathrm{wt} T\right|_{\omega}
$$

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

We then have the c.s.p. since for each $g \in G$

$$
f(\omega)=\left.\sum_{T \in S} \mathrm{wt} T\right|_{\omega}=\left.\sum_{i} \mathrm{wt} B_{i}\right|_{\omega}
$$

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

We then have the c.s.p. since for each $g \in G$
$f(\omega)=\left.\sum_{T \in S} \mathrm{wt} T\right|_{\omega}=\left.\sum_{i} \mathrm{wt} B_{i}\right|_{\omega}=\overbrace{1+\cdots+1}^{\# S^{g}}+0+0+\cdots$

To combinatorially prove $(S, G, f(q))$ exhibits the c.s.p., first find a weight function wt : $S \rightarrow \mathbb{Z}[q]$ such that

$$
\begin{equation*}
f(q)=\sum_{T \in S} \mathrm{wt} T \tag{3}
\end{equation*}
$$

If $B \subseteq S$ we let wt $B=\sum_{T \in B}$ wt T. For each $g \in G$ we then find a partition of S

$$
\pi=\pi_{g}=\left\{B_{1}, B_{2}, \ldots\right\}
$$

satisfying, the following two criteria where $\omega=\omega_{o(g)}$:
(I) For $1 \leq i \leq \# S^{g}$ we have $\# B_{i}=1$ and wt $\left.B_{i}\right|_{\omega}=1$.
(II) For $i>\# S^{g}$ we have $\# B_{i}>1$ and wt $\left.B_{i}\right|_{\omega}=0$.

We then have the c.s.p. since for each $g \in G$
$f(\omega)=\left.\sum_{T \in S} \mathrm{wt} T\right|_{\omega}=\left.\sum_{i} \mathrm{wt} B_{i}\right|_{\omega}=\overbrace{1+\cdots+1}^{\# S^{g}}+0+0+\cdots=\# S^{g}$.

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\sum_{t \in T} t-\binom{k+1}{2}}$.

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{c}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2} \text {. }}$

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$.

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} T-\binom{k+1}{2} \text {. }}$

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So

$$
\begin{array}{ccrrrrr}
T & : 12 & 13 & 14 & 23 & 24 & 34, \\
\sum_{T} \mathrm{wt} T & =q^{0} \\
+ & q^{1} \\
+ & q^{2} & + \\
q^{2} & + & q^{3}+ \\
q^{4}
\end{array}
$$

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So

$$
\begin{array}{ccccccc}
T & : 12 & 13 & 14 & 23 & 24 & 34, \\
\sum_{T \mathrm{wt} T} & =q^{0} & + & q^{1} & + & q^{2} & + \\
q^{2} & + & q^{3}
\end{array}+\begin{gathered}
q^{4}
\end{gathered}=\left[\begin{array}{c}
4 \\
2
\end{array}\right]
$$

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Suppose $g \in C_{n}$ with $o(g)=d$,

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So

T	$: 12$	13	14	23	24	34,
$\sum_{T} \mathrm{wt} T$	$=q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+$					
q^{4}						

2\end{array}\right]\).

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Suppose $g \in C_{n}$ with $o(g)=d$, so

$$
g=g_{1} \ldots g_{n / d} \text { where } \# g_{1}=\ldots=\# g_{n / d}=d
$$

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So
T
: 12
13
14
23
24 34,
$\sum_{T \mathrm{wt}} T=q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{4}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple $\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$.
Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} t-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Suppose $g \in C_{n}$ with $o(g)=d$, so

$$
g=g_{1} \ldots g_{n / d} \text { where } \# g_{1}=\ldots=\# g_{n / d}=d
$$

Suppose $h \in \mathfrak{S}_{n}$ satisfies

$$
h=h_{1} \ldots h_{n / d} \text { where } \# h_{1}=\ldots=\# h_{n / d}=d
$$

Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So
$\begin{array}{lllllll}T & : 12 & 13 & 14 & 23 & 24 & 34,\end{array}$
$\sum_{T \mathrm{wt}} T=q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{4}=\left[\begin{array}{c}4 \\ 2\end{array}\right]$

Theorem (Reiner, Stanton, White)
The c.s.p. is exhibited by the triple

$$
\left(\binom{[n]}{k}, C_{n},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right) .
$$

Proof (Roichman \& S) For $T \in\binom{[n]}{k}$ let wt $T=q^{\Sigma_{t \in T} T-\binom{k+1}{2}}$.

$$
\therefore \sum_{T} \mathrm{wt} T=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Suppose $g \in C_{n}$ with $o(g)=d$, so

$$
g=g_{1} \ldots g_{n / d} \text { where } \# g_{1}=\ldots=\# g_{n / d}=d
$$

Suppose $h \in \mathfrak{S}_{n}$ satisfies

$$
h=h_{1} \ldots h_{n / d} \text { where } \# h_{1}=\ldots=\# h_{n / d}=d
$$

Then, by the second lemma $\bullet \#\binom{[n]}{k}^{g}=\#\binom{[n]}{k}^{h}$.
Ex. If $n=4$ and $k=2$ then $w t\left\{t_{1}, t_{2}\right\}=q^{t_{1}+t_{2}-3}$. So
T
: 12
13
14
23
24
34,
$\sum_{T} \mathrm{wt} T=q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{4}=\left[\begin{array}{c}4 \\ 2\end{array}\right]$

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots
$$

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

Ex: $n=4, k=2, g=(1,3)(2,4)$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$,

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d} .
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$,

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d} .
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T : (a) If $h T=T$ then $B=\{T\}$.
$\mathrm{Ex}: n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$,

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π : \{12\}, \{34\},

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$, and π : $\{12\},\{34\}$,

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}$

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\}$,

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$. wt $\left.\{12\}\right|_{-1}=(-1)^{0}=1$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1$,

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$. $\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$, $\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d} .
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II)

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$ $\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$, $\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1,\left.\quad \operatorname{wt}\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d} .
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π : $\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$ $\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$, $\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=$ wt $T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$

Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=$ wt $T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$
$\left.\therefore \mathrm{wt} B\right|_{\omega}=\omega^{j}+$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4), \quad$ and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=\mathrm{wt} T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$
\therefore wt $\left.B\right|_{\omega}=\omega^{j}+\omega^{j+\ell}+$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4), \quad$ and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=$ wt $T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$
\therefore wt $\left.B\right|_{\omega}=\omega^{j}+\omega^{j+\ell}+\cdots+\omega^{j+(d-1) \ell}$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4), \quad$ and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d} .
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=$ wt $T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$
$\left.\therefore \mathrm{wt} B\right|_{\omega}=\omega^{j}+\omega^{j+\ell}+\cdots+\omega^{j+(d-1) \ell}=\omega^{j} \frac{1-\omega^{d \ell}}{1-\omega^{\ell}}$

Ex: $n=4, k=2, g=(1,3)(2,4) . \quad$ So $h=(1,2)(3,4)$, and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{3}=0$.

Let

$$
h=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots=h_{1} \cdots h_{n / d}
$$

For any $T \in\binom{[n]}{k}$ define the block B of π containing T :
(a) If $h T=T$ then $B=\{T\}$.
(b) If $h T \neq T$, then find the smallest index i such that $0<\#\left(T \cap h_{i}\right)<d$ and let

$$
B=\left\{T, h_{i} T, h_{i}^{2} T, \ldots, h_{i}^{d-1} T\right\}
$$

Proof of (II) If $\omega=\omega_{d}$, wt $T=q^{j}, \ell=\#\left(T \cap h_{i}\right)$ so $0<\ell<d$.
\therefore wt $B=$ wt $T+$ wt $h_{i} T+\cdots+$ wt $h_{i}^{d-1} T$
$\left.\therefore \mathrm{wt} B\right|_{\omega}=\omega^{j}+\omega^{j+\ell}+\cdots+\omega^{j+(d-1) \ell}=\omega^{j} \frac{1-\omega^{d \ell}}{1-\omega^{\ell}}=0$
since $\omega^{d}=1$ and $\omega^{l} \neq 1$.
Ex: $n=4, k=2, g=(1,3)(2,4)$. So $h=(1,2)(3,4)$, and π :
$\{12\},\{34\},\{13,(1,2) 13\}=\{13,23\},\{14,(1,2) 14\}=\{14,24\}$
$\left.\operatorname{wt}\{12\}\right|_{-1}=(-1)^{0}=1,\left.\quad \operatorname{wt}\{13,23\}\right|_{-1}=(-1)^{1}+(-1)^{2}=0$,
$\left.\operatorname{wt}\{34\}\right|_{-1}=(-1)^{4}=1, \quad$ wt $\left.\{14,24\}\right|_{-1}=(-1)^{2}+(-1)^{\frac{3}{3}}=0$.

THANKS FOR LISTENING!

