The cyclic sieving phenomenon - an introduction

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu www.math.msu.edu/~sagan

July 5, 2011

(ロ) (同) (三) (三) (三) (○) (○)

Definitions and an example

Proof by evaluation

Proof by representation theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A combinatorial proof

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

Suppose S is a set and let G be a finite cyclic group acting on S.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $S^g = \{t \in S : gt = t\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $S^g = \{t \in S : gt = t\}$ and o(g) = order of g in G.

 $S^g = \{t \in S : gt = t\}$ and o(g) =order of g in G.

(日)

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*.

 $S^g = \{t \in S : gt = t\}$ and o(g) = order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of G. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

(日)

 $S^g = \{t \in S : gt = t\}$ and o(g) = order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} .

(日)

 $S^g = \{t \in S : gt = t\}$ and o(g) =order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of G. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} . Definition (Reiner-Stanton-White, 2004) The triple (S, G, f(q)) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $q \in G$, we have

 $\#S^g = f(\omega).$

where ω is chosen so that $o(\omega) = o(g)$.

 $S^g = \{t \in S : gt = t\}$ and o(g) =order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} . Definition (Reiner-Stanton-White, 2004) The triple (S, G, f(q)) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $q \in G$, we have

 $\#S^g = f(\omega).$

(ロ) (同) (三) (三) (三) (○) (○)

where ω is chosen so that $o(\omega) = o(g)$.

Notes. 1. At first blush, this is a surprising equation.

 $S^g = \{t \in S : gt = t\}$ and o(g) = order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} . Definition (Reiner-Stanton-White, 2004) The triple (S, G, f(q)) exhibits the cyclic sieving phenomenon (c.s.p.) if, for all $q \in G$, we have

 $\#S^g = f(\omega).$

where ω is chosen so that $o(\omega) = o(g)$.

Notes. 1. At first blush, this is a surprising equation. 2. The case #G = 2 was first studied by Stembridge.

 $S^g = \{t \in S : gt = t\}$ and o(g) =order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} . Definition (Reiner-Stanton-White, 2004) The triple (S, G, f(q)) exhibits the cyclic sieving phenomenon

(c.s.p.) if, for all $g \in G$, we have

 $\#S^g = f(\omega).$

where ω is chosen so that $o(\omega) = o(g)$.

Notes. 1. At first blush, this is a surprising equation. 2. The case #G = 2 was first studied by Stembridge. 3. Dozens of c.s.p.'s have been found.

 $S^g = \{t \in S : gt = t\}$ and o(g) = order of g in G.

Note: if d = o(g) then $d \mid #G$, the cardinality of *G*. We also let

 $\omega = \omega_d$ = primitive *d*th root of unity.

Finally, suppose f(q) is a polynomial in q with coefficients in \mathbb{Z} . Definition (Reiner-Stanton-White, 2004) *The triple* (*S*, *G*, *f*(*q*)) *exhibits the cyclic sieving phenomenon*

(c.s.p.) if, for all $g \in G$, we have

 $\#S^g = f(\omega).$

where ω is chosen so that $o(\omega) = o(g)$.

Notes. 1. At first blush, this is a surprising equation.

2. The case #G = 2 was first studied by Stembridge.

3. Dozens of c.s.p.'s have been found.

4. Three proof techniques: evaluation, representation theory, and combinatorics.

Running example. Let $[n] = \{1, 2, ..., n\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \ldots, n) \rangle$.

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \dots, n) \rangle$. Now $g \in C_n$ acts on $T = \{t_1, \dots, t_k\}$ by

$$gT = \{g(t_1),\ldots,g(t_k)\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \dots, n) \rangle$. Now $g \in C_n$ acts on $T = \{t_1, \dots, t_k\}$ by

$$gT = \{g(t_1),\ldots,g(t_k)\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

Also

 $C_4 = \langle (1,2,3,4) \rangle = \{ e, \ (1,2,3,4), \ (1,3)(2,4), \ (1,4,3,2) \}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \dots, n) \rangle$. Now $g \in C_n$ acts on $T = \{t_1, \dots, t_k\}$ by

$$gT = \{g(t_1),\ldots,g(t_k)\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

Also

 $C_4 = \langle (1,2,3,4) \rangle = \{e, (1,2,3,4), (1,3)(2,4), (1,4,3,2)\}.$ For g = (1,3)(2,4)

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \dots, n) \rangle$. Now $g \in C_n$ acts on $T = \{t_1, \dots, t_k\}$ by

$$gT = \{g(t_1),\ldots,g(t_k)\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

Also

 $C_4 = \langle (1,2,3,4) \rangle = \{ e, (1,2,3,4), (1,3)(2,4), (1,4,3,2) \}.$ For g = (1,3)(2,4) we have (1,3)(2,4)12 = 34,

A D F A 同 F A E F A E F A Q A

$$S = \binom{[n]}{k} = \{T \subseteq [n] : \#T = k\}.$$

Let $C_n = \langle (1, 2, \dots, n) \rangle$. Now $g \in C_n$ acts on $T = \{t_1, \dots, t_k\}$ by

$$gT = \{g(t_1),\ldots,g(t_k)\}.$$

Ex. Suppose n = 4 and k = 2. We have

$$S = {[4] \choose 2} = \{12, 13, 14, 23, 24, 34\}.$$

Also

 $C_4 = \langle (1,2,3,4) \rangle = \{ e, (1,2,3,4), (1,3)(2,4), (1,4,3,2) \}.$

For g = (1,3)(2,4) we have

 $\begin{array}{ll} (1,3)(2,4)12=34, & (1,3)(2,4)13=13, & (1,3)(2,4)14=23, \\ (1,3)(2,4)23=14, & (1,3)(2,4)24=24, & (1,3)(2,4)34=12. \end{array}$

Let
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Let
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$
 and $[n]_q! = [1]_q[2]_q \cdots [n]_q$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Let $[n]_q = 1 + q + q^2 + \dots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Let $[n]_q = 1 + q + q^2 + \dots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Ex. Consider
$$n = 4, k = 2$$
. So
 $\begin{bmatrix} 4\\2 \end{bmatrix}_q = \frac{[4]_q!}{[2]_q! [2]_q!} = 1 + q + 2q^2 + q^3 + q^4.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $[n]_q = 1 + q + q^2 + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Theorem (Reiner-Stanton-White) The c.s.p. is exhibited by

$$\left(\begin{array}{c} \binom{[n]}{k}, C_n, \begin{bmatrix} n\\k \end{bmatrix}_q \right).$$

Ex. Consider n = 4, k = 2. So $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = \frac{[4]_q!}{[2]_q![2]_q!} = 1 + q + 2q^2 + q^3 + q^4.$

・ロト・西ト・西ト・日下・ 日下

Let $[n]_q = 1 + q + q^2 + \dots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Theorem (Reiner-Stanton-White) The c.s.p. is exhibited by

$$\left(\begin{array}{c} \binom{[n]}{k}, C_n, \begin{bmatrix} n\\k \end{bmatrix}_q \right).$$

Ex. Consider n = 4, k = 2. So $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = \frac{[4]_{q}!}{[2]_{q}![2]_{q}!} = 1 + q + 2q^{2} + q^{3} + q^{4}.$ For g = (1,3)(2,4) we have o(g) = 2 and $\omega = -1$ Let $[n]_q = 1 + q + q^2 + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Theorem (Reiner-Stanton-White) The c.s.p. is exhibited by

$$\left(\begin{array}{c} \binom{[n]}{k}, C_n, \begin{bmatrix} n\\ k \end{bmatrix}_q \right).$$

Ex. Consider n = 4, k = 2. So $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = \frac{[4]_{q!}}{[2]_{q!}[2]_{q!}} = 1 + q + 2q^2 + q^3 + q^4$. Let $[n]_q = 1 + q + q^2 + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

Theorem (Reiner-Stanton-White) The c.s.p. is exhibited by

$$\left(\begin{array}{c} \binom{[n]}{k}, C_n, \begin{bmatrix} n\\ k \end{bmatrix}_q \right).$$

Ex. Consider n = 4, k = 2. So $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = \frac{[4]_{q!}}{[2]_{q!}[2]_{q!}} = 1 + q + 2q^2 + q^3 + q^4$. Let $[n]_q = 1 + q + q^2 + \dots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian polynomials* or *q*-binomial coefficients by

$$\begin{bmatrix} n\\k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

Theorem (Reiner-Stanton-White) The c.s.p. is exhibited by

$$\left(\begin{array}{c} \binom{[n]}{k}, C_n, \begin{bmatrix} n\\k \end{bmatrix}_q \right).$$

Ex. Consider n = 4, k = 2. So $\begin{bmatrix}
4 \\
2
\end{bmatrix}_{q} = \frac{[4]_{q}!}{[2]_{q}![2]_{q}!} = 1 + q + 2q^{2} + q^{3} + q^{4}.$ For g = (1,3)(2,4) we have o(g) = 2 and $\omega = -1$ so $\begin{bmatrix}
4 \\
2
\end{bmatrix}_{-1} = 1 - 1 + 2 - 1 + 1 = 2 = \#S^{(1,3)(2,4)}.$

Definitions and an example

Proof by evaluation

Proof by representation theory

A combinatorial proof

Lemma If $m \equiv n \pmod{d}$ and $\omega = \omega_d$,

Lemma If $m \equiv n \pmod{d}$ and $\omega = \omega_d$, then

$$\lim_{q\to\omega}\frac{[m]_q}{[n]_q}=\begin{cases} \frac{m}{n} & \text{if } n\equiv 0 \pmod{d}, \end{cases}$$

Lemma If $m \equiv n \pmod{d}$ and $\omega = \omega_d$, then

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$
$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*.

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = \overbrace{(1 + \omega + \cdots + \omega^{d-1})}^{0} + \cdots + (1 + \omega + \cdots + \omega^{r-1})$$

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = \overbrace{(1 + \omega + \cdots + \omega^{d-1})}^{0} + \cdots + (1 + \omega + \cdots + \omega^{r-1}) = [n]_{\omega}.$$

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = (1 + \omega + \dots + \omega^{d-1}) + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}.$$

If $n \neq 0 \pmod{d}$ then $[n]_{\omega} \neq 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = \overbrace{(1 + \omega + \dots + \omega^{d-1})}^{0} + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}.$$

If $n \neq 0 \pmod{d}$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega}/[n]_{\omega} = 1$, proving the "else" case.

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = \overbrace{(1 + \omega + \dots + \omega^{d-1})}^{0} + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}.$$

If $n \neq 0 \pmod{d}$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega}/[n]_{\omega} = 1$, proving the "else" case. If $n \equiv 0 \pmod{d}$ then $n = \ell d$ and $m = kd$,

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$[m]_{\omega} = \overbrace{(1 + \omega + \dots + \omega^{d-1})}^{0} + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}.$$

If $n \not\equiv 0 \pmod{d}$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega}/[n]_{\omega} = 1$, proving the "else" case. If $n \equiv 0 \pmod{d}$ then $n = \ell d$ and $m = kd$, so
$$\frac{[m]_q}{[n]_q} = \frac{(1 + q + \dots + q^{d-1})(1 + q^d + q^{2d} + \dots + q^{(\ell-1)d})}{(1 + q + \dots + q^{d-1})(1 + q^d + q^{2d} + \dots + q^{(\ell-1)d})}.$$

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$\underbrace{[m]_{\omega} = \overbrace{(1 + \omega + \dots + \omega^{d-1})}^{0} + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}}_{\text{indeg}}.$$
If $n \neq 0 \pmod{d}$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega}/[n]_{\omega} = 1$, proving the "else" case. If $n \equiv 0 \pmod{d}$ then $n = \ell d$ and $m = kd$, so
$$\underbrace{[m]_q}_{[n]_q} = \underbrace{(1 + q + \dots + q^{d-1})(1 + q^d + q^{2d} + \dots + q^{(k-1)d})}_{(1 + q + \dots + q^{d-1})(1 + q^d + q^{2d} + \dots + q^{(\ell-1)d})}.$$
Cancelling and plugging in $\omega = \omega_d$ gives

$$\lim_{q\to\omega}\frac{[m]_q}{[n]_q}=\frac{k}{\ell}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\lim_{q \to \omega} \frac{[m]_q}{[n]_q} = \begin{cases} \frac{m}{n} & \text{if } n \equiv 0 \pmod{d}, \\ 1 & \text{else.} \end{cases}$$

Proof Let *m*, *n* have remainder *r* modulo *d*. So for $\omega = \omega_d$:

$$\underbrace{[m]_{\omega} = (1 + \omega + \dots + \omega^{d-1}) + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}}_{[m]_{\omega} = (1 + \omega + \dots + \omega^{d-1}) + \dots + (1 + \omega + \dots + \omega^{r-1}) = [n]_{\omega}}.$$
If $n \neq 0 \pmod{d}$ then $[n]_{\omega} \neq 0$ and $[m]_{\omega}/[n]_{\omega} = 1$, proving the "else" case. If $n \equiv 0 \pmod{d}$ then $n = \ell d$ and $m = kd$, so
$$\underbrace{[m]_{q}}_{[n]_{q}} = \frac{(1 + q + \dots + q^{d-1})(1 + q^{d} + q^{2d} + \dots + q^{(k-1)d})}{(1 + q + \dots + q^{d-1})(1 + q^{d} + q^{2d} + \dots + q^{(\ell-1)d})}.$$
Cancelling and plugging in $\omega = \omega_{d}$ gives

$$\lim_{q\to\omega}\frac{[m]_q}{[n]_q}=\frac{k}{\ell}=\frac{m}{n}.$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

Corollary If $\omega = \omega_d$ and d|n

Corollary

If $\omega = \omega_d$ and d|n then,

$$\left[\begin{array}{c}n\\k\end{array}\right]_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \end{cases}$$

Corollary

If $\omega = \omega_d$ and d|n then,

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d | k, \\ 0 & \text{else.} \end{cases}$$

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases} \quad \blacksquare \quad \P$

Lemma Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$.

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases} \quad \blacksquare \quad \P$

Lemma Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$. Let $T \subseteq [n]$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases} \quad \blacksquare \quad \P$

Lemma

Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$. Let $T \subseteq [n]$. Then

$$gT = T \iff T = g_{i_1} \cup \cdots \cup g_{i_n}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

for some i_1, \ldots, i_m .

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases}$

Lemma

Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$. Let $T \subseteq [n]$. Then

$$gT = T \iff T = g_{i_1} \cup \cdots \cup g_{i_n}$$

for some i_1, \ldots, i_m .

Ex. If g = (1,3,4)(2,6)(5) then the $T \in {\binom{[6]}{3}}$ with gT = T are

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases}$

Lemma

Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$. Let $T \subseteq [n]$. Then

$$gT = T \iff T = g_{i_1} \cup \cdots \cup g_{i_n}$$

for some i_1, \ldots, i_m .

Ex. If g = (1,3,4)(2,6)(5) then the $T \in \binom{[6]}{3}$ with gT = T are $T = \{1,3,4\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Corollary If $\omega = \omega_d$ and d|n then, $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega} = \begin{cases} \binom{n/d}{k/d} & \text{if } d|k, \\ 0 & \text{else.} \end{cases}$

Lemma

Let $g \in \mathfrak{S}_n$ (symmetric group) have disjoint cycle decomposition $g = g_1 \cdots g_k$. Let $T \subseteq [n]$. Then

$$gT = T \iff T = g_{i_1} \cup \cdots \cup g_{i_n}$$

for some i_1, \ldots, i_m .

Ex. If g = (1,3,4)(2,6)(5) then the $T \in {\binom{[6]}{3}}$ with gT = T are $T = \{1,3,4\}$ and $T = \{2,5,6\}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proposition If $S = {[n] \choose k}$ and $g \in C_n$ has o(g) = d

Proposition If $S = {[n] \choose k}$ and $g \in C_n$ has o(g) = d then $\#S^g = \begin{cases} {n/d \choose k/d} & \text{if } d|k, \end{cases}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proposition If $S = {\binom{[n]}{k}}$ and $g \in C_n$ has o(g) = d then $\#S^g = \begin{cases} \binom{n/d}{k/d} & \text{if } d | k, \\ 0 & \text{else.} \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition
If
$$S = {\binom{[n]}{k}}$$
 and $g \in C_n$ has $o(g) = d$ then
 $\#S^g = \begin{cases} \binom{n/d}{k/d} & \text{if } d | k, \\ 0 & \text{else.} \end{cases}$

Proof If $g \in C_n$ and o(g) = d then

 $g = g_1 \cdots g_{n/d}$

where $\#g_1 = \ldots = \#g_{n/d} = d$. So, by the second lemma \triangleright , $T \in {[n] \choose k}$ satisfies gT = T iff T is a union of k/d of the n/d cycles g_i .

A D F A 同 F A E F A E F A Q A

Definitions and an example

Proof by evaluation

Proof by representation theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A combinatorial proof

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \dots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \dots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

(ロ)、

Element $g \in G$ corresponds to an invertible linear map [g].

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \dots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_B$ be the matrix of [g] in B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \cdots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_B$ be the matrix of [g] in B. In particular, $[g]_S$ is the permutation matrix for g acting on S.

(ロ) (同) (三) (三) (三) (三) (○) (○)

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \dots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_B$ be the matrix of [g] in B. In particular, $[g]_S$ is the permutation matrix for g acting on S. **Example.** $G = \mathfrak{S}_3$ acts on $S = \{1, 2, 3\}$ and so on

 $\mathbb{C}S = \{c_1 \mathbf{1} + c_2 \mathbf{2} + c_3 \mathbf{3} : c_1, c_2, c_3 \in \mathbb{C}\}.$

(ロ) (同) (三) (三) (三) (三) (○) (○)

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \cdots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_B$ be the matrix of [g] in B. In particular, $[g]_S$ is the permutation matrix for g acting on S. **Example.** $G = \mathfrak{S}_3$ acts on $S = \{1, 2, 3\}$ and so on

$$\mathbb{C}S = \{c_1\mathbf{1} + c_2\mathbf{2} + c_3\mathbf{3} : c_1, c_2, c_3 \in \mathbb{C}\}.$$

For g = (1, 2)(3) and basis S:

 $(1,2)(3)\mathbf{1} = \mathbf{2}, \ (1,2)(3)\mathbf{2} = \mathbf{1}, \ (1,2)(3)\mathbf{3} = \mathbf{3}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$V = \mathbb{C}S = \{c_1 \mathbf{s}_1 + \cdots + c_k \mathbf{s}_k : c_i \in \mathbb{C} \text{ for all } i\}.$$

Element $g \in G$ corresponds to an invertible linear map [g]. If B is a basis for V then let $[g]_B$ be the matrix of [g] in B. In particular, $[g]_S$ is the permutation matrix for g acting on S. **Example.** $G = \mathfrak{S}_3$ acts on $S = \{1, 2, 3\}$ and so on

$$\mathbb{C}S = \{c_1\mathbf{1} + c_2\mathbf{2} + c_3\mathbf{3} : c_1, c_2, c_3 \in \mathbb{C}\}.$$

For g = (1, 2)(3) and basis S:

 $(1,2)(3)\mathbf{1} = \mathbf{2}, \ (1,2)(3)\mathbf{2} = \mathbf{1}, \ (1,2)(3)\mathbf{3} = \mathbf{3}.$

And so

$$[(1,2)(3)]_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

A *G*-module is any \mathbb{C} -vector space *V* where *G* acts by invertible linear transformations.

$$\chi(\boldsymbol{g}) = \operatorname{tr}[\boldsymbol{g}].$$

$$\chi(\boldsymbol{g})=\mathrm{tr}[\boldsymbol{g}].$$

(ロ) (同) (三) (三) (三) (○) (○)

Note that χ is well defined in that the trace is independent of the basis.

 $\chi(g) = \operatorname{tr}[g].$

(ロ) (同) (三) (三) (三) (○) (○)

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

 $\chi(\boldsymbol{g}) = \operatorname{tr}[\boldsymbol{g}]_{\mathcal{S}}$

 $\chi(\boldsymbol{g}) = \mathrm{tr}[\boldsymbol{g}].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g.$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)
$\chi(g) = \operatorname{tr}[g].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g.$$
 (1)

(ロ) (同) (三) (三) (三) (三) (○) (○)

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_B = \operatorname{diag}(\overbrace{1,\ldots,1}^{m_0},\overbrace{\omega,\ldots,\omega}^{m_1},\overbrace{\omega^2,\ldots,\omega^2}^{m_2},\ldots)$$

where $\omega = \omega_{o(g)}$.

 $\chi(g) = \operatorname{tr}[g].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g. \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_{B} = \operatorname{diag}(\overbrace{1, \dots, 1}^{m_{0}}, \overbrace{\omega, \dots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \dots, \omega^{2}}^{m_{2}}, \dots)$$

where $\omega = \omega_{o(g)}$. Thus
 $\chi(g) = \operatorname{tr}[g]_{B}$

 $\chi(g) = \operatorname{tr}[g].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g. \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_{B} = \operatorname{diag}(\overbrace{1,\ldots,1}^{m_{0}},\overbrace{\omega,\ldots,\omega}^{m_{1}},\overbrace{\omega^{2},\ldots,\omega^{2}}^{m_{2}},\ldots)$$

where $\omega = \omega_{o(g)}$. Thus
 $\chi(g) = \operatorname{tr}[g]_{B} = \sum_{i>0} m_{i}\omega^{i}$

 $\chi(g) = \operatorname{tr}[g].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g. \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_{B} = \operatorname{diag}(\overbrace{1, \dots, 1}^{m_{0}}, \overbrace{\omega, \dots, \omega}^{m_{1}}, \overbrace{\omega^{2}, \dots, \omega^{2}}^{m_{2}}, \dots)$$

where $\omega = \omega_{o(g)}$. Thus
 $\chi(g) = \operatorname{tr}[g]_{B} = \sum_{i \ge 0} m_{i}\omega^{i} = f(\omega).$ (2)

where $f(q) = \sum_{i\geq 0} m_i q^i$.

 $\chi(g) = \operatorname{tr}[g].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g. \tag{1}$$

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_B = \operatorname{diag}(\overbrace{1,\ldots,1}^{m_0},\overbrace{\omega,\ldots,\omega}^{m_1},\overbrace{\omega^2,\ldots,\omega^2}^{m_2},\ldots)$$

where $\omega = \omega_{o(g)}$. Thus

$$\chi(g) = \operatorname{tr}[g]_B = \sum_{i \ge 0} m_i \omega^i = f(\omega).$$
(2)

where $f(q) = \sum_{i\geq 0} m_i q^i$. Now (1) and (2) imply $f(\omega) = \#S^g$ so we have the c.s.p.

 $\chi(\boldsymbol{g}) = \mathrm{tr}[\boldsymbol{g}].$

Note that χ is well defined in that the trace is independent of the basis. For a group *G* acting on *S*, the character on $\mathbb{C}S$ is

$$\chi(g) = \operatorname{tr}[g]_{\mathcal{S}} = \# \mathcal{S}^g. \tag{1}$$

If *G* is cyclic, then there will be a basis *B* for $\mathbb{C}S$ such that every $g \in G$ satisfies

$$[g]_B = \operatorname{diag}(\overbrace{1,\ldots,1}^{m_0},\overbrace{\omega,\ldots,\omega}^{m_1},\overbrace{\omega^2,\ldots,\omega^2}^{m_2},\ldots)$$

where $\omega = \omega_{o(g)}$. Thus

$$\chi(g) = \operatorname{tr}[g]_B = \sum_{i \ge 0} m_i \omega^i = f(\omega).$$
(2)

where $f(q) = \sum_{i \ge 0} m_i q^i$. Now (1) and (2) imply $f(\omega) = \#S^g$ so we have the c.s.p. To get the $S = {[n] \choose k}$ example, one uses the *k*th exterior power of a vector space *V* with dim V = n.

Outline

Definitions and an example

Proof by evaluation

Proof by representation theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A combinatorial proof

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \operatorname{wt} T$.

$$f(q) = \sum_{T \in \mathcal{S}} \operatorname{wt} T.$$
(3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

(I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

- (I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.
- (II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

- (I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.
- (II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(\omega)$$

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

- (I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.
- (II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(\omega) = \sum_{T \in \mathcal{S}} \operatorname{wt} T|_{\omega}$$

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

(I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.

(II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(\omega) = \sum_{T \in S} \operatorname{wt} T|_{\omega} = \sum_{i} \operatorname{wt} B_{i}|_{\omega}$$

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

- (I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.
- (II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(\omega) = \sum_{T \in S} \operatorname{wt} T|_{\omega} = \sum_{i} \operatorname{wt} B_{i}|_{\omega} = \overbrace{1 + \cdots + 1}^{\#S^{g}} + 0 + 0 + \cdots$$

$$f(q) = \sum_{T \in S} \operatorname{wt} T.$$
(3)

If $B \subseteq S$ we let wt $B = \sum_{T \in B} \text{wt } T$. For each $g \in G$ we then find a partition of S

$$\pi = \pi_g = \{B_1, B_2, \ldots\}$$

satisfying, the following two criteria where $\omega = \omega_{o(g)}$:

- (I) For $1 \le i \le \#S^g$ we have $\#B_i = 1$ and wt $B_i|_{\omega} = 1$.
- (II) For $i > \#S^g$ we have $\#B_i > 1$ and wt $B_i|_{\omega} = 0$.

$$f(\omega) = \sum_{T \in S} \operatorname{wt} T|_{\omega} = \sum_{i} \operatorname{wt} B_{i}|_{\omega} = \overbrace{1 + \cdots + 1}^{\#S^{g}} + 0 + 0 + \cdots = \#S^{g}.$$

The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}$, C_n , $\begin{bmatrix} n \\ k \end{bmatrix}_a \end{pmatrix}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}$, C_n , $\begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {\binom{[n]}{k}}$ let wt $T = q^{\sum_{t \in T} t - {\binom{k+1}{2}}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}$, C_n , $\begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {\binom{[n]}{k}}$ let wt $T = q^{\sum_{t \in T} t - {\binom{k+1}{2}}}$. $\therefore \sum_T \text{wt } T = \begin{bmatrix} n \\ k \end{bmatrix}_q$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {[n] \choose k}$ let wt $T = q^{\sum_{t \in T} t - {k+1 \choose 2}}$. $\therefore \sum_T \operatorname{wt} T = \begin{bmatrix} n \\ k \end{bmatrix}_q$.

Ex. If n = 4 and k = 2 then wt{ t_1, t_2 } = $q^{t_1+t_2-3}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}$, C_n , $\begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {[n] \choose k}$ let wt $T = q^{\sum_{t \in T} t - {k+1 \choose 2}}$. $\therefore \sum_T \text{wt } T = \begin{bmatrix} n \\ k \end{bmatrix}_q$.

Ex. If
$$n = 4$$
 and $k = 2$ then $wt\{t_1, t_2\} = q^{t_1+t_2-3}$. So
 $T : 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$,
 $\sum_T wt T = q^0 + q^1 + q^2 + q^2 + q^3 + q^4$

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {[n] \choose k}$ let wt $T = q^{\sum_{t \in T} t - {k+1 \choose 2}}$. $\therefore \sum_T \operatorname{wt} T = \begin{bmatrix} n \\ k \end{bmatrix}_q$.

Theorem (Reiner, Stanton, White) The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_q \end{pmatrix}$. Proof (Roichman & S) For $T \in {[n] \choose k}$ let wt $T = q^{\sum_{t \in T} t - {k+1 \choose 2}}$. $\therefore \sum_T \operatorname{wt} T = \begin{bmatrix} n \\ k \end{bmatrix}_q$.

Suppose $g \in C_n$ with o(g) = d,

Ex. If n = 4 and k = 2 then wt $\{t_1, t_2\} = q^{t_1 + t_2 - 3}$. So $T : 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$, $\sum_T \text{ wt } T = q^0 + q^1 + q^2 + q^2 + q^3 + q^4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{Q \in C}$

The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_n$.

Proof (Roichman & S) For $T \in {\binom{[n]}{k}}$ let wt $T = q^{\sum_{t \in T} t - {\binom{k+1}{2}}}$.

$$\therefore \sum_{T} \operatorname{wt} T = \left[\begin{array}{c} n \\ k \end{array} \right]_{q}$$

Suppose $g \in C_n$ with o(g) = d, so

$$g=g_1\ldots g_{n/d}$$
 where $\#g_1=\ldots=\#g_{n/d}=d.$

Ex. If n = 4 and k = 2 then wt $\{t_1, t_2\} = q^{t_1 + t_2 - 3}$. So $T : 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$, $\sum_T \text{ wt } T = q^0 + q^1 + q^2 + q^2 + q^3 + q^4 = \begin{bmatrix} 4 \\ 12 \end{bmatrix}_{q_1^{\circ}} \bullet$

The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_n$.

Proof (Roichman & S) For $T \in {\binom{[n]}{k}}$ let wt $T = q^{\sum_{t \in T} t - {\binom{k+1}{2}}}$.

$$\therefore \sum_{T} \operatorname{wt} T = \left[\begin{array}{c} n \\ k \end{array} \right]_{q}$$

Suppose $g \in C_n$ with o(g) = d, so

 $g = g_1 \dots g_{n/d}$ where $\#g_1 = \dots = \#g_{n/d} = d$.

Suppose $h \in \mathfrak{S}_n$ satisfies

$$h = h_1 \dots h_{n/d}$$
 where $\# h_1 = \dots = \# h_{n/d} = d$.

Ex. If n = 4 and k = 2 then wt $\{t_1, t_2\} = q^{t_1 + t_2 - 3}$. So $T : 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$, $\sum_T \text{ wt } T = q^0 + q^1 + q^2 + q^2 + q^3 + q^4 = \begin{bmatrix} 4 \\ 12 \end{bmatrix} \stackrel{\bullet}{\underset{h \neq a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \neq a}{\longrightarrow}} \begin{bmatrix} 4 \\ 12 \end{bmatrix} \stackrel{\bullet}{\underset{h \neq a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow}} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow} \stackrel{\bullet}{\underset{h \mapsto a}{\longrightarrow}$

The c.s.p. is exhibited by the triple $\begin{pmatrix} [n] \\ k \end{pmatrix}, C_n, \begin{bmatrix} n \\ k \end{bmatrix}_n$.

Proof (Roichman & S) For $T \in {\binom{[n]}{k}}$ let wt $T = q^{\sum_{t \in T} t - {\binom{k+1}{2}}}$.

$$\therefore \sum_{T} \operatorname{wt} T = \left[\begin{array}{c} n \\ k \end{array} \right]_{q}$$

Suppose $g \in C_n$ with o(g) = d, so

 $g = g_1 \dots g_{n/d}$ where $\#g_1 = \dots = \#g_{n/d} = d$.

Suppose $h \in \mathfrak{S}_n$ satisfies

 $h = h_1 \dots h_{n/d}$ where $\# h_1 = \dots = \# h_{n/d} = d$.

Then, by the second lemma , $\# {\binom{[n]}{k}}^g = \# {\binom{[n]}{k}}^h$. **Ex.** If n = 4 and k = 2 then wt $\{t_1, t_2\} = q^{t_1 + t_2 - 3}$. So $T : 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$, $\sum_T \text{ wt } T = q^0 + q^1 + q^2 + q^2 + q^3 + q^4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q \in \mathbb{C}}$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots$$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Ex: n = 4, k = 2, g = (1,3)(2,4).

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4),

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {\binom{[n]}{k}}$ define the block *B* of π containing *T*:

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4),

<□ > < @ > < E > < E > E のQ@

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$.

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4),

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$.

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34},

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$h = (1, 2, \dots, d)(d + 1, d + 2, \dots, 2d) \dots = h_1 \dots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that

 $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \ldots, h_i^{d-1} T\}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34},

A D F A 同 F A E F A E F A Q A

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that

 $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \ldots, h_i^{d-1} T\}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34}, {13, (1,2)13}

A D F A 同 F A E F A E F A Q A
$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that

 $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \ldots, h_i^{d-1} T\}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34}, {13, (1,2)13} = {13, 23},

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that

 $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \ldots, h_i^{d-1} T\}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}.

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that

 $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π : {12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}. wt{12}|_{-1} = (-1)^0 = 1, wt{34}|_{-1} = (-1)^4 = 1,

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$

Ex:
$$n = 4, k = 2, g = (1,3)(2,4)$$
. So $h = (1,2)(3,4)$, and π :
{12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}.
wt{12}|_{-1} = (-1)^0 = 1, wt{13,23}|_{-1} = (-1)^1 + (-1)^2 = 0, wt{34}|_{-1} = (-1)^4 = 1, wt{14,24}|_{-1} = (-1)^2 + (-1)^3 = 0.

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$

Proof of (II)

Ex:
$$n = 4, k = 2, g = (1,3)(2,4)$$
. So $h = (1,2)(3,4)$, and π :
{12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}.
wt{12}|_{-1} = (-1)^0 = 1, wt{13,23}|_{-1} = (-1)^1 + (-1)^2 = 0, wt{34}|_{-1} = (-1)^4 = 1, wt{14,24}|_{-1} = (-1)^2 + (-1)^3 = 0.

$$h = (1, 2, \dots, d)(d + 1, d + 2, \dots, 2d) \dots = h_1 \dots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_iT, h_i^2T, \ldots, h_i^{d-1}T\}.$$

Proof of (II) If $\omega = \omega_d$, we $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.

Ex:
$$n = 4, k = 2, g = (1,3)(2,4)$$
. So $h = (1,2)(3,4)$, and π :
{12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}.
wt{12}|_{-1} = (-1)^0 = 1, wt{13,23}|_{-1} = (-1)^1 + (-1)^2 = 0, wt{34}|_{-1} = (-1)^4 = 1, wt{14,24}|_{-1} = (-1)^2 + (-1)^3 = 0.

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$
Proof of (II) If $\omega = \omega_d$, we $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore we $B =$ we $T +$ we $h_i T + \dots +$ we $h_i^{d-1} T$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$

Proof of (II) If $\omega = \omega_d$, we $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore we $B =$ we $T +$ we $h_i T + \dots +$ we $h_i^{d-1} T$

$$\therefore$$
 wt $B|_{\omega} = \omega^j +$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$
Proof of (II) If $\omega = \omega_d$, wt $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore wt $B =$ wt T + wt $h_i T$ + \cdots + wt $h_i^{d-1} T$

$$\therefore \operatorname{wt} B|_{\omega} = \omega^j + \omega^{j+\ell} +$$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$
Proof of (II) If $\omega = \omega_d$, wt $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore wt $B =$ wt T + wt $h_i T$ + \cdots + wt $h_i^{d-1} T$

 $\therefore \operatorname{wt} \boldsymbol{B}|_{\omega} = \omega^{j} + \omega^{j+\ell} + \cdots + \omega^{j+(d-1)\ell}$

$$h = (1, 2, \dots, d)(d + 1, d + 2, \dots, 2d) \dots = h_1 \dots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$
Proof of (II) If $\omega = \omega_d$, we $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore we $B =$ we $T +$ we $h_i T + \dots +$ we $h_i^{d-1} T$
 \therefore we $B|_{\omega} = \omega^j + \omega^{j+\ell} + \dots + \omega^{j+(d-1)\ell} = \omega^j \frac{1 - \omega^{d\ell}}{1 - \omega^{\ell}}$

$$h = (1, 2, ..., d)(d + 1, d + 2, ..., 2d) \cdots = h_1 \cdots h_{n/d}.$$

For any $T \in {[n] \choose k}$ define the block *B* of π containing *T*: (a) If hT = T then $B = \{T\}$. (b) If $hT \neq T$, then find the smallest index *i* such that $0 < \#(T \cap h_i) < d$ and let

$$B = \{T, h_i T, h_i^2 T, \dots, h_i^{d-1} T\}.$$
Proof of (II) If $\omega = \omega_d$, wt $T = q^j$, $\ell = \#(T \cap h_i)$ so $0 < \ell < d$.
 \therefore wt $B =$ wt $T +$ wt $h_i T + \dots +$ wt $h_i^{d-1} T$
 \therefore wt $B|_{\omega} = \omega^j + \omega^{j+\ell} + \dots + \omega^{j+(d-1)\ell} = \omega^j \frac{1 - \omega^{d\ell}}{1 - \omega^{\ell}} = 0$
since $\omega^d = 1$ and $\omega^\ell \neq 1$.
Ex: $n = 4, k = 2, g = (1,3)(2,4)$. So $h = (1,2)(3,4)$, and π :
[12], [34], [13,(1,2)13] = [13,23], [14,(1,2)14] = [14,24].
wt[12]|_{-1} = (-1)^0 = 1, wt[13,23]|_{-1} = (-1)^1 + (-1)^2 = 0, wt[34]|_{-1} = (-1)^4 = 1, wt[14,24]|_{-1} = (-1)^2 + (-1)^3 = 0.

THANKS FOR LISTENING!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで