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Suppose S is a set and let G be a finite cyclic group acting on
S.

If g ∈ G, we let

Sg = {t ∈ S : gt = t} and o(g) = order of g in G.

Note: if d = o(g) then d | #G, the cardinality of G. We also let

ω = ωd = primitive d th root of unity.

Finally, suppose f (q) is a polynomial in q with coefficients in Z.

Definition (Reiner-Stanton-White, 2004)
The triple (S,G, f (q)) exhibits the cyclic sieving phenomenon
(c.s.p.) if, for all g ∈ G, we have

#Sg = f (ω).

where ω is chosen so that o(ω) = o(g).
Notes. 1. At first blush, this is a surprising equation.
2. The case #G = 2 was first studied by Stembridge.
3. Dozens of c.s.p.’s have been found.
4. Three proof techniques: evaluation, representation theory,
and combinatorics.
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Running example. Let [n] = {1,2, . . . ,n}

and

S =

(
[n]
k

)
= {T ⊆ [n] : #T = k}.

Let Cn = 〈(1,2, . . . ,n)〉. Now g ∈ Cn acts on T = {t1, . . . , tk}
by

gT = {g(t1), . . . ,g(tk )}.

Ex. Suppose n = 4 and k = 2. We have

S =

(
[4]
2

)
= {12, 13, 14, 23, 24, 34}.

Also

C4 = 〈(1,2,3,4)〉 = {e, (1,2,3,4), (1,3)(2,4), (1,4,3,2)}.

For g = (1,3)(2,4) we have

(1,3)(2,4)12 = 34, (1,3)(2,4)13 = 13, (1,3)(2,4)14 = 23,
(1,3)(2,4)23 = 14, (1,3)(2,4)24 = 24, (1,3)(2,4)34 = 12.

return 1 return 2
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Let [n]q = 1 + q + q2 + · · ·+ qn−1

and [n]q! = [1]q[2]q · · · [n]q.
Define the Gaussian polynomials or q-binomial coeffiecients by[

n
k

]
q
=

[n]q!
[k ]q![n − k ]q!

.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by( (

[n]
k

)
, Cn,

[
n
k

]
q

)
.

Ex. Consider n = 4, k = 2. So[
4
2

]
q
=

[4]q!
[2]q![2]q!

= 1 + q + 2q2 + q3 + q4.

For g = (1,3)(2,4) we have o(g) = 2 and ω = −1 so[
4
2

]
−1

= 1− 1 + 2− 1 + 1 = 2 = #S(1,3)(2,4).
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Corollary
If ω = ωd and d |n

then,[
n
k

]
ω

=


(

n/d
k/d

)
if d |k,

0 else.

Lemma
Let g ∈ Sn (symmetric group) have disjoint cycle
decomposition g = g1 · · · gk . Let T ⊆ [n]. Then

gT = T ⇐⇒ T = gi1 ∪ · · · ∪ gim

for some i1, . . . , im. return 1 return 2

Ex. If g = (1,3,4)(2,6)(5) then the T ∈
([6]

3

)
with gT = T are

T = {1,3,4} and T = {2,5,6}.
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Proposition
If S =

([n]
k

)
and g ∈ Cn has o(g) = d

then

#Sg =


(

n/d
k/d

)
if d |k,

0 else.

Proof If g ∈ Cn and o(g) = d then

g = g1 · · · gn/d

where #g1 = . . . = #gn/d = d . So, by the second lemma ,
T ∈

([n]
k

)
satisfies gT = T iff T is a union of k/d of the n/d

cycles gi .
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If G acts on S = {s1, . . . , sk} then G also acts on the vector
space

V = CS = {c1s1 + · · ·+ cksk : ci ∈ C for all i}.

Element g ∈ G corresponds to an invertible linear map [g]. If B
is a basis for V then let [g]B be the matrix of [g] in B. In
particular, [g]S is the permutation matrix for g acting on S.
Example. G = S3 acts on S = {1,2,3} and so on

CS = {c11 + c22 + c33 : c1, c2, c3 ∈ C}.

For g = (1,2)(3) and basis S:

(1,2)(3)1 = 2, (1,2)(3)2 = 1, (1,2)(3)3 = 3.

And so

[(1,2)(3)]S =

 0 1 0
1 0 0
0 0 1

 .
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A G-module is any C-vector space V where G acts by invertible
linear transformations.

The character of G on V is the function
χ : G→ C given by

χ(g) = tr[g].

Note that χ is well defined in that the trace is independent of
the basis. For a group G acting on S, the character on CS is

χ(g) = tr[g]S = #Sg . (1)

If G is cyclic, then there will be a basis B for CS such that every
g ∈ G satisfies

[g]B = diag(

m0︷ ︸︸ ︷
1, . . . ,1,

m1︷ ︸︸ ︷
ω, . . . , ω,

m2︷ ︸︸ ︷
ω2, . . . , ω2, . . .)

where ω = ωo(g). Thus

χ(g) = tr[g]B =
∑
i≥0

miω
i = f (ω). (2)

where f (q) =
∑

i≥0 miqi . Now (1) and (2) imply f (ω) = #Sg so
we have the c.s.p. To get the S =

([n]
k

)
example, one uses the

k th exterior power of a vector space V with dim V = n.
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To combinatorially prove (S,G, f (q)) exhibits the c.s.p., first find
a weight function wt : S → Z[q] such that

f (q) =
∑
T∈S

wt T . (3)

If B ⊆ S we let wt B =
∑

T∈B wt T . For each g ∈ G we then find
a partition of S

π = πg = {B1,B2, . . .}

satisfying, the following two criteria where ω = ωo(g):

(I) For 1 ≤ i ≤ #Sg we have #Bi = 1 and wt Bi |ω = 1.

(II) For i > #Sg we have #Bi > 1 and wt Bi |ω = 0.

We then have the c.s.p. since for each g ∈ G

f (ω) =
∑
T∈S

wt T |ω =
∑

i

wt Bi |ω =

#Sg︷ ︸︸ ︷
1 + · · ·+ 1+0+0+· · · = #Sg .
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Theorem (Reiner, Stanton, White)

The c.s.p. is exhibited by the triple

( (
[n]
k

)
, Cn,

[
n
k

]
q

)
.

Proof (Roichman & S) For T ∈
([n]

k

)
let wt T = q

∑
t∈T t−(k+1

2 ).

∴
∑

T

wt T =

[
n
k

]
q
.

Suppose g ∈ Cn with o(g) = d , so

g = g1 . . . gn/d where #g1 = . . . = #gn/d = d .

Suppose h ∈ Sn satisfies

h = h1 . . . hn/d where #h1 = . . . = #hn/d = d .

Then, by the second lemma , #
([n]

k

)g
= #

([n]
k

)h
.

Ex. If n = 4 and k = 2 then wt{t1, t2} = qt1+t2−3. So

T : 12 13 14 23 24 34,∑
T wt T = q0 + q1 + q2 + q2 + q3 + q4 =

[
4
2

]
q
.
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Let

h = (1,2, . . . ,d)(d + 1,d + 2, . . . ,2d) · · ·

= h1 · · · hn/d .
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(b) If hT 6= T , then find the smallest index i such that
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i T , . . . ,hd−1
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