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1. ACYCLIC ORIENTATIONS

Our primary focus will be a theorem of Greene and Zaslavsky [9] con-
cerning acyclic orientations of a graph and its chromatic polynomial. To
state it we need some definitions. For any undefined terms, we follow the
terminology of Harary's book [10].

Let G be a finite graph with vertices V=V(G) and edges E=E(G). We
permit E to contain loops and multiple edges. An orientation of G is a
digraph formed by replacing e # E by one of the two possible directed arcs.
The orientation is acyclic if it has no directed cycles. We let A(G) be the
set of acyclic orientations of G. So if G has a loop then it has no acyclic
orientations and A(G)=<. A sink of a digraph is a vertex v0 such that all
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arcs incident with v0 are directed toward it. Let A(G, v0) be the set of
acyclic orientations of G with a unique sink at v0 .

A proper coloring of G with color set C is a map }: V � C such that
uv # E implies }(u){}(v). Now consider the chromatic polynomial of G
which is

/G(n)=* of proper }: V � [1, 2, ..., n].

It is well known [11] that /G(n) is a polynomial in n of degree d=|V| so
we write

/G(n)=a0+a1 n+ } } } +ad nd.

If we need to be specific about the graph, we will write ai (G) for the coef-
ficient of ni in /G(n).

Stanley [12] was the first to connect acyclic orientations of graphs and
the characteristic polynomial and give an inductive proof of the following
theorem. In what follows, absolute value signs around a set denote its car-
dinality.

Theorem 1.1 (Stanley). For any graph G

|A(G)|=|/G(&1)|.

The result of Greene and Zaslavsky that will interest us can be seen as
an analog of Stanley's theorem for acyclic orientations with a unique sink
[9, Theorem 7.3]

Theorem 1.2 (Greene and Zaslavsky). Let v0 be any vertex of G. Then

|A(G, v0)|=|a1|. (1)

Originally this theorem was proved using the theory of hyperplane
arrangements. The purpose of this paper is to give three other proofs using
different techniques.

In the next section we will give a purely inductive proof. Stanley [13]
indicated that such a proof exists and we provide the details.

In the paper just cited, Stanley introduced a symmetric function analog
of the chromatic polynomial and showed that it counts the number of
acyclic orientations of G with j sinks, 1� j�d. Note that this is not quite
the same as counting those with a given sink. In Section 3 we will show
how using noncommutative variables allows us to generalize the
Greene�Zaslavsky theorem to the level of symmetric functions.

Our final proof of Theorem 1.2 is an algorithmic bijection. To explain it,
we need to recall Whitney's Broken Circuit Theorem [15]. A circuit in a
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graph G will be the same as a cycle, i.e., a closed walk with distinct vertices.
If we fix a total order on E(G), a broken circuit is a circuit with its largest
edge (with respect to the total order) removed. Let the broken circuit com-
plex BG of G denote the set of all S�E(G) which do not contain a broken
circuit. The Broken Circuit Theorem asserts:

Theorem 1.3 (Whitney). For any finite graph, G, on d vertices we have

/G(n)= :
S # BG

(&1) |S| nd&|S|.

It follows immediately from Theorems 1.1 and 1.3 that |A(G)|=|BG |.
This result was given a bijective algorithmic proof by Blass and Sagan [1].
It is also clear from the previous theorem that

|a1|=|[S # BG : |S|=d&1]|. (2)

So to prove the Greene�Zaslavsky theorem bijectively it suffices to find a
bijection between A(G, v0) and [S # BG : |S|=d&1]. This will be done in
Section 4 by modifying the Blass�Sagan algorithm.

In the penultimate section, we will give an inductive proof of another
theorem of Green and Zaslavsky [9] which states that Crapo's beta
invariant [3] enumerates graphs with a unique source and sink connected
by a given edge. Finally, we end with some open questions.

2. PURE INDUCTION

We will show that both sides of Eq. (1) satisfy the same recurrence rela-
tion and boundary conditions. We begin with the well-known Deletion�
Contraction Rule for the chromatic polynomial [11]. If e # E(G) we will let
G"e be G with e deleted. We also let G�e be G with e contracted to a point
and any resulting multiple edges not identified. So |E(G"e)|=|E(G�e)|=
|E(G)|&1. We will also use this notation for directed graphs.

Theorem 2.1 (Deletion�Contraction Rule). For any e # E(G)

/G(n)=/G"e(n)&/G�e(n).

From this result it is easy to prove inductively that the coefficients of
/G(n) alternate in sign with ad=+1. Using Theorem 2.1 again, we see that
if e is not a loop then

|a1(G)|=|a1(G"e)|+|a1(G�e)|.
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We now show bijectively that |A(G, v0)| satisfies the same recursion.

Lemma 2.2. Consider any vertex v0 , and any edge e=uv0 , u{v0 , with
the corresponding arc a= uv0

w�. The map

D � {D"a # A(G"e, v0)
D�a # A(G�e, v0)

if D"a # A(G"e, v0)
if D"a � A(G"e, v0),

is a bijection between A(G, v0) and A(G"e, v0)_+ A(G�e, v0), where the
vertex of G�e formed by contracting e is labeled v0 .

Proof. We first prove that this map is well-defined by showing that in
both cases we actually obtain an acyclic orientation with unique sink at v0 .
This is clear in the first case by definition. In the second, where
D"a � A(G"e, v0), it must be true that D"a has sinks both at u and at v0

(since deleting a directed edge of D will not introduce a cycle, nor will it
cause us to lose the sink at v0). So the orientation D�a will be in
A(G�e, v0): since u and v0 were the only sinks in D"a the contraction must
have a unique sink at v0 , and no new cycles will be formed. Hence this map
is well-defined.

To see that this is actually a bijection, we need only exhibit the inverse.
This is obtained by simply orienting all edges of G as in D"a or D�a as
appropriate, and then adding in a. It should be clear that this map is also
well-defined. K

For the boundary conditions, we will need the following well-known
result.

Lemma 2.3. If G is connected, then any D # A(G) has at least one sink.
So if G is arbitrary then for any D # A(G), the number of sinks is greater
than or equal to the number of components of G.

We can now complete the first proof of the Greene�Zaslavsky theorem
by inducting on the number of edges of G. We have already verified the
recurrence relation, so we need only worry about the boundary conditions.
If G has more than one component, then n2 must divide /(G) yielding
|a1|=0. From Lemma 2.3 we see that |A(G, v0)|=0 as well, so we need
only consider connected graphs. Also, if G has loops then clearly /n(G)=0
=|A(G, v0)|. So it suffices to do the base case where G=K1 , the graph
with a single vertex and no edges, giving a1=1=|A(G, v0)|. Thus the
boundary conditions match and we are done. K
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3. CHROMATIC SYMMETRIC FUNCTIONS

Using his symmetric function generalization, XG , of the chromatic poly-
nomial, Stanley [13] proved a result related to, but not quite implying, the
one of Greene and Zaslavsky. (See Theorem 3.7 at the end of this section.)
In [7] we introduced an analogue of XG using noncommutative variables.
This allows us to use deletion�contraction techniques on symmetric func-
tions to prove a generalization of Greene�Zaslavsky at this level.

We begin with some background on symmetric functions in noncommut-
ing variables. Much of this follows from the work of Doubilet [4]
(although he does not explicitly mention such functions in his paper).
These noncommutative symmetric functions will be indexed by set parti-
tions (as opposed to integer partitions in the commutative case). Note that
they differ from the noncommutative symmetric functions considered by
Gelfand et al. [8] and Fomin and Greene [5].

We will write ?=B1 �B2� } } } �Bk to denote a partition of [d] :=
[1, 2, ..., d], i.e., .+ k

i=1 Bi=[d]. The Bi are called blocks. The set of all
partitions of [d] form a lattice 6d under the partial order of refinement.
We will let 7 denote the meet operation (greatest lower bound) in 6d .

Now let x=[x1 , x2 , x3 , ...] be a set of noncommuting variables. We
define the noncommutative monomial symmetric function, m? , by

m?=m?(x)= :
i1 , i2 , ..., id

x i1
x i2

} } } xid
, (3)

where the sum is over all sequences i1 , i2 , ..., id of positive integers P such
that ij=ik if and only if j and k are in the same block of ?. For example,

m124�3=x1x1x2 x1+x2 x2x1x2+x1 x1x3x1+x3 x3x1 x3+ } } }

is the monomial symmetric function in noncommuting variables corre-
sponding to the partition ?=124�3. The m? are clearly linearly inde-
pendent over C and we call the span of [m? : ? # 6d , d�0] the algebra of
noncommutative symmetric functions.

The other basis we will be interested in is given by the noncommutative
elementary symmetric functions

e?=e?(x)= :
_: _7 ?=0�

m_= :
i1 , i2 , ..., id

x i1
xi2

} } } xid
, (4)

where the second sum is over all sequences i1 , i2 , ..., id of P such that ij {ik

if j and k are both in the same block of ?. As an example

e124�3 =x1x2x1 x3+x1x2x2x3+x1x2x3x3+x1x2x4 x3+ } } }

=m13�2�4+m1�23�4+m1�2�34+m1�2�3�4 .
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We now introduce a noncommutative version, YG , of Stanley's chromatic
symmetric function, XG . The latter is obtained from the former merely by
letting the variables commute.

Definition 3. For any multigraph G with vertices labeled v1 , v2 , ..., vd

in a fixed order, define

YG=YG(x)=:
}

x}(v1)x}(v2) } } } x}(vd ) ,

where the sum is over all proper colorings }: V � P of G.

As an example, if we let P3 be the path with edge set E=[v1v2 , v2 v3]
then

YP3
=x1 x2x1+x2x1x2+x1 x3x1+ } } }

+x1x2 x3+x1x3x2+ } } } +x3x2x1+ } } }

=m13�2+m1�2�3 .

Note that if we let 1n denote the substitution x1=x2= } } } =xn=1 and
xi=0 for i>n then

XG(1n)=YG(1n)=/G(n)

since the only terms surviving in the sum are those using the first n colors.
We will need two properties of YG ; proofs can be found in [7]. For the

first one, consider $ # Sd , the symmetric group on [d]. We let $ act on the
vertices of G by $(vi)=v$(i) . This induces an action on graphs, denoted
$(G)=H, where H is just a relabeling of G. We also have an action on
noncommutative symmetric functions given by linearly extending

$ b (xi1
x i2

} } } xik
) =

def xi$&1(1)
x i$&1(2)

} } } xi$&1(k)
.

These two actions are compatible.

Proposition 3.2 (Relabeling Proposition). For any finite multigraph G,
we have

$ b YG=Y$(G) ,

where the vertex order v1 , v2 , ..., vd is used in both YG and Y$(G) .

In order to allow us to state the Deletion�Contraction Rule for YG , we
make the following definition.
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Definition 3.3. Define an operation induction, A , on monomials in
noncommuting variables by

(xi1
xi2

} } } xid&2
xid&1

) A =xi1
xi2

} } } xid&2
x2

id&1

and extend linearly.

From Eq. (3) it is easy to see that if ? # 6d&1 , then m? A =m?+(d ) where
?+(d) # 6d is the partition obtained from ? by inserting d into the block
with d&1.

Proposition 3.4 (Deletion�Contraction Rule). If e=vd&1vd is in E(G)
then

YG=YG"e&YG�e A ,

where the contraction of e=vd&1vd is labeled vd&1 .

To illustrate, consider P3 again. So e=v2v3 and

YP3
=YP2_+ [v3]&YP2

A .

We then compute

YP2 _+ [v3] =m1�2�3+m1�23+m13�2

YP2
=m1�2 ,

YP2
A =m1�2 A =m1�23 .

So

YP3
=m1�2�3+m1�23+m13�2&m1�23

=m1�2�3+m13�2 ,

Theorem 3.5. Let YG=�? # 6d
c?e? . Then for any fixed vertex, v0 .

|A(G, v0)|=(d&1)! c[d] .

Proof. We induct on the number of non-loops in E. If all the edges of
G are loops, then

YG={e1�2� } } } �d

0
if G has no edges
if G has loops.
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So

c[d]={1 if G=K1

0 if d>1 or G has loops==|A(G, v0)|.

Now suppose that G has non-loops. Then by the Relabeling Proposition,
we may choose e=vd&1vd and YG=YG"e&YG�e A . We are only interested
in the leading coefficient, so let

YG =ae[d]+ :
_<[d]

a_e_ ,

YG"e=be[d]+ :
_<[d]

b_e_ ,

and

YG�e=ce[d&1]+ :
_<[d&1]

c_e_ ,

where � is the partial order on set partitions. Using induction and
Lemma 2.2, it suffices to prove that (d&1)! a=(d&1)! b+(d&2)! c.

From the change of basis formulae found in [4] one gets

e? A = :
_�?

+(0� , _)

+(0� , _+(d ))
:

{�_+(d )

+({, _+(d )) e{ . (5)

This permits us to compute the coefficient of e[d] in YG�e A . The only term
which contributes comes from ce[d&1] A , and

ce[d&1] A =c :
_ # 6d&1

+(0� , _)

+(0� , _+(d ))
:

{�_+(d )

+({, _+(d )) e{

=c
+(0� , [d&1])

+(0� , [d])
e[d]+ :

{<[d]

d{e{

=
&c

d&1
e[d]+ :

{<[d]

d{e{ .

Now YG=YG"e&YG�e A yields

(d&1)! a=(d&1)! b+(d&1)!
c

d&1

=(d&1)! b+(d&2)! c,

completing the proof. K
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To see why this implies Greene�Zaslavsky, recall that YG(1n)=XG(1n)
=/G(n). Now, if ?=B1 �B2 � } } } �Bk then under this substitution

e?(1n)= `
k

i=1

n(n&1)(n&2) } } } (n&|Bi |+1).

For k�2, this polynomial is divisible by n2. So the only contribution to the
linear term of /G(n) occurs when ?=[d], which yields a coefficient with
absolute value (d&1)! c[d] .

Immediately from the previous theorem we get

Corollary 3.6. If YG=�? # 6d
c? e? , then the number of acyclic

orientations of G with one sink is d! c[d] .

Before ending this section, we should state Stanley's theorem [13]
relating XG and sinks. In it, e* is the commutative elementary symmetric
function corresponding to the integer partition *, and l(*) is the number of
parts of *.

Theorem 3.7 (Stanley). If XG=�* c* e* , then the number of acyclic
orientations of G with j sinks is �l(*)= j c* .

We can prove an analogue of this theorem in the noncommutative
setting by using his technique involving P-partitions. However, this only
implies Corollary 3.6 (and Theorem 1.1) but not Theorem 3.5.

4. THE MODIFIED BLASS�SAGAN ALGORITHM

We will now prove Theorem 1.2 a third time, using (2) to interpret the
linear coefficient of /G(n). This demonstration will use a variant of an
algorithmic bijection of Blass and Sagan to show that A(G, v0) and
[S # BG : |S|=d&1] have the same cardinality.

We first need some notation and definitions. For any arc a= wuw� , the
oppositely oriented arc is denoted a$= uww� . We also say that to unorient an
arc, a, in a digraph we will just add the oppositely oriented are a$. By the
same token, an edge will also be considered as a pair of oppositely oriented
arcs so that any graph is also a digraph. Since we are interested in acyclic
digraphs, it is necessary to adopt the convention that a digraph is acyclic
if it has no cycles of length �3. With this convention, unorienting an arc
will not necessarily produce a cyclic. Also for any acyclic digraph D, we
will let c(D) be the contraction of D, which is the graph where all unori-
ented arcs of D have been contracted. We note that c(D) is still acyclic and
has no unoriented arcs.
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Theorem 4.1. For any fixed vertex v0 # V(G), the number of acyclic
orientations of G with a unique sink at v0 is the same as the number of sets,
S # BG with |S|=d&1.

Proof. We will construct a bijection using an algorithm that sequen-
tially examines each arc of an element of A(G, v0) and either deletes the
arc or unorients it.

Fix an orientation of G (not necessarily acyclic), which we will refer to
as the normal orientation, and also choose a fixed vertex v0 of G. The algo-
rithm will accept any acyclic orientation D of G which has a unique sink
at v0 , and consider each arc in turn, using the total order on the edges
which defines the broken circuits. At the stage when an arc a= wuw� is being
considered, the algorithm will delete a if either

(I) D _ a$ has a cycle, or

(II) c(D)"a has only one sink, and a is not normally oriented.

Otherwise, the algorithm will unorient a. For an example of how this
algorithm works, see Fig. 1. The steps of the algorithm are labeled either I,

FIG. 1. An example of the algorithm.
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II, or u, indicating if the algorithm deleted the arc for reason I or II, or
unoriented it.

To show that this algorithm actually does produce a bijection, we shall
first introduce a sequence of sets, D0 , D1 , ..., Dq , such that D0 is the set of
all acyclic orientations of G with a unique sink at v0 , and Dq (where
q=|E(G)| ) is the set of all S # BG with |S|=d&1. Equivalently, Dq is the
set of all spanning trees, T, of G such that E(T ) contains no broken
circuits.

We will show that the k th step of the algorithm gives a bijection,
fk : Dk&1 � Dk , where Dk is defined as the set of all spanning subdigraphs
D of G satisfying the following conditions:

(a) Each of the first k edges of G is either present in D (as an
unoriented edge) or absent from D, but each of the remaining q&k edges
is present in D in exactly one orientation.

(b) D is acyclic.

(c) D has an x � v0 path for every x # V(D).

(d) The unoriented part of D contains no broken circuit.

From these conditions, it should be clear that D0 is indeed the set of
acyclic orientations of G with a unique sink at v0 by Lemma 2.3. It is also
clear that any element of Dq will be an acyclic, connected graph, which
implies that the elements of Dq must be trees with exactly d&1 edges. So
provided the algorithm gives a bijection at each step, we will have the
desired bijection between acyclic orientations of G with a unique sink at v0 ,
and edge sets of size d&1 which contain no broken circuits.

We should also note here that conditions (b) and (c) together imply that
c(D) must have a unique sink which occurs at the vertex identified with v0 .
That this is the only possible sink of c(D) is clear from condition (c). We
also know that v0 must be a sink of c(D), since if it is not, then there is a
vertex u and arc a=v0uw� in c(D). But from condition (c) there would have
to be a u � v0 path in D. This contradicts the acyclicity of D.

To show that the algorithm does indeed produce a bijection at each step,
we use the following three lemmas. We also use the notational convention
that a digraph in Dk will be denoted by Dk .

Lemma 4.2. fk maps Dk&1 into Dk .

Proof. We need only prove that properties (a)�(d) listed previously are
still satisfied after the algorithm is applied at the k th stage. We proceed to
verify each one in turn.
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(a) Since at the kth step the algorithm will either delete or unorient
the k th arc, this is clear.

(b) Since any arc which would form a cycle if unoriented will be
deleted by the algorithm, this also is clear.

(c) Since unorienting an arc can never destroy an x � v0 path, we
need only consider the case where the algorithm deletes an arc. In fact, if
the arc a= wuw� in Dk&1 was deleted, we need only show that there is still
a w � v0 path.

Now, if the arc a= wuw� in Dk&1 was deleted for the first reason, then we
must have had another (different) w � u path in Dk&1 . Since there was a
u � v0 path in Dk&1 , (in fact, one which did not use the arc a) we can then
extend our other w � u path into a walk containing a w � v0 path in Dk .

If the arc a= wuw� in Dk&1 was deleted for the second reason, again we
need only consider the possibility that for the vertex w, there is no w � v0

path in Dk . But then there is no oriented arc wvw� with u{v, since otherwise
all v � v0 paths must also use the arc a, as there are no w � v0 paths in Dk .
Thus Dk&1 would have a cycle containing w. Contracting all unoriented
arcs from w and repeating this argument as necessary, we see that w would
then be a sink of c(Dk&1)"a, which contradicts our reason for deleting a.

(d) Suppose for the sake of contradiction that the unoriented part of
Dk contains a broken circuit, C"x, where x is the greatest element of the
cycle C. Since the unoriented part of Dk&1 did not contain any broken
circuits, and since the only difference between Dk&1 and Dk is at the k th
arc a, we see that a must be unoriented in Dk and that a # C"x. But then
x is greater than a, and so x is present in Dk in one of its orientations. But
all the other edges in C are also present and unoriented. Hence, C forms
a cycle in Dk , contradicting the previously verified fact that Dk is
acyclic. K

Lemma 4.3. fk is one-to-one.

Proof. Suppose Dk&1 and D$k&1 are two distinct elements of Dk&1

which are both mapped to Dk by the algorithm. Since the algorithm only
affects the k th arc, we note that Dk&1 and D$k&1 (and consequently
c(Dk&1) and c(D$k&1)) must only differ in that arc. Without loss of
generality, we may assume that this arc is a with normal orientation in
Dk&1 and a$ with abnormal orientation in D$k&1 .

We note that Dk was not obtained from Dk&1 and D$k&1 by deletion. For
if a was deleted from Dk&1 for the first reason then D$k&1 has a cycle and
vice versa. And the second reason does not apply to a, which has normal
orientation.
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If the k th arc was unoriented then, by reason II, c(D$k&1)"a$ must have
an additional sink. So if a$= uww� then u must be the extra sink. But this
means that u is also an additional sink in c(Dk&1), contradicting Dk&1 #
Dk&1 . K

Lemma 4.4. fk maps Dk&1 onto Dk .

Proof. Given Dk # Dk we must construct Dk&1 # Dk&1 which maps onto
it. Hence for any digraph, Dk # Dk , we must construct a digraph Dk&1 and
verify that the algorithm does indeed map Dk&1 onto Dk , and that Dk&1

satisfies properties (a)�(d). For all of the following cases, it will be
immediate that the Dk&1 we construct will satisfy properties (a), (b), and
(d), so we will only do the verification of property (c). Let e be the k th
edge of G. There are two cases.

In the first case e is not an edge of Dk . If there exists a unique orienta-
tion a of e in which Dk would remain acyclic, we give e that orientation in
Dk&1 . If both orientations of e would preserve the acyclicity of Dk , then we
choose a to be the abnormal orientation for e in Dk&1 . We note that at
least one of the orientations of e must preserve acyclicity, since otherwise
e completes two different cycles in Dk&1 . These two cycles together would
contain a cycle in Dk , which is a contradiction.

That the algorithm maps the digraph Dk&1 obtained in the previous
paragraph to Dk is obvious when only one orientation of a produces an
acyclic orientation of Dk&1 . However, if both produce acyclic orientations,
we need to check that c(Dk&1)"a has a unique sink at v0 . This is true, since
it is easy to see that c(Dk&1)"a=c(Dk&1"a)=c(Dk). To verify that
c(Dk&1) constructed above still satisfies property (c), we note that adding
an arc cannot destroy any existing paths. So the first case is done.

In the second case we have e present in Dk and so neither orientation
can produce a cycle in Dk&1 . We note that there must be at least one
orientation of e=wu such that there remains an x � v0 path for every
x # Dk&1 . If all x � v0 paths P use the arc a= wuw� for some x, and if all
y � v0 paths Q use a$= uww� for some y, then the x � w portion of P
together with the w � v0 portion of Q contains an x � v0 path avoiding a,
which contradicts our assumption about x.

If there is a unique orientation of e=wu so that there remains an x � v0

path for every x # Dk&1 we choose that one to maintain property (c) for
Dk&1 , say a= wuw� . Using the same argument we used to prove the second
case of (c) in Lemma 4.2, it is easy to verify that the algorithm will take the
Dk&1 so constructed and map it to Dk by unorienting a since c(Dk&1)"a
has an additional sink at w.

In the subcase, where e is present in Dk as an unoriented edge and we
would still retain property (c) with either orientation of e, we will consider
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the digraph Dk&1 obtained from D by giving e the normal orientation, say
a= wuw� . It is clear that the algorithm maps Dk&1 to Dk , since Dk&1 _ a$=
Dk is acyclic and a has the normal orientation. K

5. SOURCES AND SINKS

A source in a digraph is a vertex u0 with all incident arcs directed away
from it. For this section only, we adopt the convention that an isolated
vertex in a graph is neither a source nor a sink. Given an edge u0 v0 # E(G)
we let A(G, u0v0) be the set of all acyclic orientations of G having a unique
source at u0 and a unique sink at v0 . Greene and Zaslavsky [9] also
proved a theorem counting such orientations. If G has at least one edge,
then Crapo's beta invariant [3] is

;(G)=(&1)d&k+1 /$G(1),

where d=|V|, k is the number of components, and the derivative is with
respect to n. We should note that this is not the standard way to define
;(G), but agrees with that definition when |E|�1. Also, the power of
minus one (which is one more than the rank of the cycle matroid for G)
is present to make ;(G) nonnegative, as is implied by the following
theorem.

Theorem 5.1 (Greene and Zaslavsky). Let u0v0 be an edge of G. Then

|A(G, u0v0)|=;(G). (6)

Again, the Greene�Zaslavsky proof used hyperplane arrangements and
our objective is to give a simple bijective proof. First, we need to have a
deletion�contraction recursion for ;(G). To describe it, we need the notion
of a bridge which is an edge e # E such that G"e has more components than G.

Theorem 5.2 (Deletion�Contraction for ;(G)). Suppose that |E|�2
and e is not a bridge. Then

;(G)=;(G"e)+;(G�e).

Proof. By the deletion�contraction rule for the characteristic polynomial,

/$G(1)=/$G"e(1)&/$G�e(1).

Since e is not a bridge, G, G"e, and G�e all have the same number of com-
ponents. Since G�e has one fewer vertices than either G or G"e, multiplying
by the appropriate power of minus one finishes the proof. K
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The corresponding recursion for A(G, u0v0) is as follows.

Lemma 5.3. Fix an edge u0 v0 # E and suppose uv0 # E, u{u0 , v0 , with
corresponding arc a= uv0

w� .

D � {D"a # A(G"e, u0 v0)
D�a # A(G�e, u0v0)

if D"a # A(G"e, u0v0)
if D"a � A(G"e, u0v0)

is a bijection between A(G, u0v0) and A(G"e, u0v0)_+ A(G�e, u0v0), where
the vertex of G�e formed by contracting e is labeled v0 .

Proof. We first worry about well-definedness, which is clear in the first
case. As in Lemma 2.2, if D"a � A(G"e, u0v0) then u becomes a source or
a sink in D"a. But if it becomes a source, then it must have also been a
source in D, since the only extra arc is uv0

w� , and this contradicts the fact
that u0 was the unique source. So u must be a sink in D"a which forces
D�a # A(G�e, u0v0) as desired. Now the inverse is obtained as in
Lemma 2.2. K

To complete our induction, we will need a couple of lemmas about how
;(G) and A(G, u0v0) behave in graphs with more than one block. A
cutvertex of G is v # V such that G&v has more components than G.
A block of G is a maximal connected subgraph having no cutvertex.
A block or component is trivial if it is a single (isolated) vertex. It is well
known that if G is connected and has at least two blocks, then G has at
least two endblocks which are blocks containing only one cutvertex of G.

Lemma 5.4. If G has at least two nontrivial blocks then ;(G)=0.

Proof. By definition of ;(G), it suffices to show that /G(n) has n=1 as
a double root. If G is any graph with at least one edge then /G(1)=0. So
if G has two nontrivial components G1 , G2 then /G1

(n) /G2
(n) divides /G(n)

and we have the desired double root. Otherwise, G must be connected with
at least two blocks. Let B be an endblock and let H be the union of all the
other blocks of G so that V(B) & V(H)=[v] for some vertex v. Coloring
first B and then H we see, directly from the definition of /, that
/G(n)=/B(n) /H(n)�n. So again we have a double root. K

Lemma 5.5. If G has at least two nontrivial blocks then for any u0v0 # E
we have |A(G, u0v0)|=0.

Proof. It suffices to show that G must have two vertices not connected
by an edge which are sources or sinks. If G has at least two nontrivial com-
ponents, then this is taken care of by Lemma 2.3. So we can assume G is
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connected and let B, B$ be two endblocks. By Lemma 2.3 again, the orien-
tation of G restricted to B has at least one source and one sink in B. Since
B is only connected to G by a single vertex, at least one of these survives
as a source or a sink in G. Similar considerations apply to B$, so we have
found the pair we seek. K

We can now finish our inductive proof of Theorem 5.1. If G has a loop
or two nontrivial blocks, then both sides of (6) are zero. So we need only
consider the case when G is a nontrivial loopless block. If E(G)=[u0 v0]
then ;(G)=1=|A(G, u0 v0)|. Otherwise u0v0 is not a bridge and we can
apply induction using our two recursions. K

6. OPEN PROBLEMS

In the hope that the reader will be inspired to work on them, we present
some questions raised by this work.

(a) It would be interesting to find proofs of Theorem 5.1 using either
chromatic symmetric functions or a direct bijection. Since ;(G) is an alter-
nating sum, the latter would probably involve the Involution Principle of
Garsia and Milne [6].

(b) There are a number of open problems involving Stanley's sym-
metric function, XG , and the noncommutative analog, YG . We will only
mention one of them here. The reader can consult [7, 13, 14] for other
questions. If T is a tree on d vertices, then it is easy to see that /n(G)=
n(n&1)d&1 so all trees with the same |V | have the same chromatic polyno-
mial. However, it has been verified up to d=9 that XT1

{XT2
if T1 , T2 are

nonisomorphic trees [2], which leads to the following.

Question 6.1 [13]. Does XT distinguish among nonisomorphic trees?

It is easy to see that YG distinguishes between any two nonisomorphic
graphs [7]. (In fact, one can reconstruct G from YG .) But it is still hoped
that noncommutativity could be of some help in investigating this question.
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