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A Sharp Condition for Existence of an
Inertial Manifold

Milan Miklav¢i¢!
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It is shown that a perturbation argument that guarantees persistence of inertial
(invariant and exponentially attracting) manifolds for linear perturbations of
linear evolution equations applies also when the perturbation is nonlinear. This
gives a simple but sharp condition for existence of inertial manifolds for semi-
linear parabolic as well as for some nonlinear hyperbolic equations. Fourier
transform of the explicitly given equation for the tracking solution together with
the Plancherel’s theorem for Banach valued functions are used.

KEY WORDS: Inertial, invariant exponentially attracting manifolds; non-
linear evolution equations.

i. INTRODUCTION

In recent years it has been shown that solutions of many important PDE’s
approach exponentially to a flow on a smooth invariant finite dimensional
manifold. See, for example, Henry [6], Foias et al. [4], Babin and Vishik
[17, Mallet-Paret and Sell [7], Chow and Lu [3], Hale [5], Teman [9],
and references therein. The crucial part often lies in finding an invariant
attracting manifold for the flow in a Hilbert space X generated by

u'+ Au= Flu) (1.1)

where A4 is a sectorial operator [6] in X and F is such that for some
ae[0,1), Be #(X% X)

IF(x)= F(y)I =IB(x—y)|  forall x, yeX®
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here #(X”, X) denotes the space of bounded operators from X* [6] into X.
Various conditions that ensure existence of an inertial (invariant and
attracting) manifold for {1.1) are known, however, since the problem seems
to be a fundamental one, it would be nice to have optimal conditions. Here
a condition that is sharp in a sense is presented.

Let 4> 0 be such that

A+iw is in the resolvent set of 4, p(A4), forall weR

It is well known that 4 has an invariant subspace X, which is the range
of the projection associated with the spectral set in the half-plane Re z < /.
X, is an inertial manifold for i’ + Au=0.1f 2+ iwe p(A4 - B) for all w e R,
the same could be said for the equation u'+ Au= Bu, and one way to
ensure this is by requiring that

|B(A—i—iw) ' <1 forall weR (1.2)
since

(A—B—i—iw) = (A=} —i0) (1= BA—j—iw)"")"

In this paper it is proven that (1.2) is actually also sufficient for the
existence of an inertial manifold for the nonlinear equation (1.1)—
no additional assumptions are needed. In spite of weaker and much
simpler assumptions, the exponential atractivity result presented here
(Theorem 4.1) is actually stronger then the one obtained by Babin and
Vishik [1], Henry [6], Chow and Lu [3], and Foias et al. [4].

The paper is organized as follows. Assumptions, notation, and some
well-known facts are presented in Section 2. Existence and some properties
of the invariant manifold are derived in Section 3. In Section 4 exponential
tracking is proven. Sections 3 and 4 are almost completely independent.
In Section 5 it is shown how to modify assumptions so that the results
of Sections 3 and 4 become applicable also to hyperbolic problems.
A comparison of various ‘assumptions is made in Section 6.

> ASSUMPTIONS AND PRELIMINARIES

" The following is the list of all assumptions that will be in effect in
Sections 3 and 4.

(H1) X is a complex Banach space.

(H2) There exists M,e (0, =) such that if fe C(R\{0}, X) and
1£(-) e L'(R)n L*(R), then

~

J“‘x Hf(l)ﬂzdtéMOJL Hf(o))sz(,uSME)J_ﬂ I /() dt

— -
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where

flw)=—

Jl e 'f(t)dt for weR

(H3) A is a sectorial operator in X, a€ [0, 1), and X* is defined as
usual (Ref. 6, p. 29).

(H4) AeR is such that A+ iw is in the resolvent set of A4 for all
weR.

(H5) F:RxX*- X is continuous and such that for some B,,..., B, €
AB(X*, X), we have that

VF(L )= Fib, I < S 1B(x—)|  for (eR, x yeX”
j=1

(H6) [° . lleF(1,0)|? dr < oo for some pu< 4.
(H7) M,X/ sup, g | B(4—A—iw) <1

Observe that if X is any Hilbert space, then (H2) holds with M= 1.
Vagi [10] showed that if M,=1, then X has to be a Hilbert space.
A slightly strengthened version of (H2) would imply that X would have
to be homeomorphic to a Hilbert space. However, the intuitive argument
presented in Section 1 suggests that (H2) is probably not needed. (H2)
is used only in the proofs of Lemmas 3.2 and 4.2.

Various well-known consequences of the above assumptions and some
definitions that are used in Sections 3 and 4 are now presented.

Let o(A) denote the spectrum of 4. Choose a <inf Re 6(A4) and note
that (Ref. 6, p.29) X* is equal to the domain of (4-—a)* |x|,=
(4 —a)*x]|| for xe X™. Since (Ref. 6, p. 26)

[(A—a)*(A—A-iw) | < const.||(4—a)(4 —J—iw) | * (A~ A—iw) |

we have that

sup (4 —a)(A—Ai—iw) ' < oo

weR
Thus, by choosing By=/(4 —a)* with /€ (0, o) small enough, we may
assume that

m

p(Ay=M, Z c;(A)<1

Jj=0
where
¢,(A)=sup ||B(A—i—iw)" | for j=0,1,.,m

weR
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Since A is sectorial we have that p(%) <1 whenever |4 — 7| is small enough.
Observe also that

| F(t, x)— F(t, M)l <Llx—yl, for 1eR, x,yeX’
where

n

L= IB(A—a) "]

Let
o,={zea(A)|[Rez< i}, o,=1{z€0(A)|Rez> 7}

Note that ¢(4)=0, U0, and that ¢, is bounded. Let P, e #A(X) be the
projection associated with ¢, P,=1 —P,, X,=P,;X for i=1,2. Choose
/., 7,€R so that supReog; <4;< s <J,<infRes,. As Henry (Ref. 6,
p. 30), one obtains that

Xy = Z(A), AX = X,

A, = A restricted to Xy, A, e B(X,)

Pe M =e¢ 1P, for 120, i=1,2
o (_"A _)H
- 1=
e~ tE=3 ' for zeC
n=0 n.
e MWx=¢ "x for xeX,, 120

and that there exists M < oo such that for all xe X

e | < Me ™, (=0

e x|l < Mt e x|, t>0

e~ P, xl < Me " xll, 1<0
a (21)

e 1P x|, < Me ™ ""x], <0

e~ P,xl| < Me ™ '||x], 120

e Pyx|, < Mt~ “x], t>0

3. INVARIANT MANIFOLD

For te R define .#(t)= X as follows: xe./#(t) if and only if there
exists ve C((— o0, 0], X7) such that

v(0)=x

p(t)=e """ To(T)+ J[ e“‘“’““”F(S+r, v(s)) ds for —ox<T<r<0
T

0
j o) di <o for p=1.2
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Note that for each 7€ R, x € X?, there exists a unique ue€ C([1, c0), X*)
such that

u(f)=e~A<1~r>x+j e~ AU E(s, u(s))ds  for t>t

T

Therefore if xe.#(t), then there exists ue C(R, X*) such that u(7)=x,
u(t)e #(t) for all te R and

u(t)ze"A<'*T>u(T)+J e~ F(s, u(s)) ds for —0<T<1<o©
T

Thus, .# is an invariant manifold. Obviously, if F is periodic in or
independent of the first variable, the same is true for .#. Some of the
properties of .# that are proved in the rest of this section are gathered in
the following theorem.

Theorem 3.1. There exists a continuous h: Rx X, - X, n X* such that
M(T)={x+h(t,x)|xeX,}  foral teR
Moreover, there exists ¢ < oo such that
Az, x)—h(t, Y. <clx—yl forall 1eR, x,yelX,

Define a normed space Y by

Y= {ueC((—oo, 0], X*)

jo le*v(1)| 7 dt< oo for pzl,Z}

m 172

wy=Y (jo \He’“"B,-v(t)llzdt> for veY

Jj=0

Following Chow and Lu [3], define S: Rx Y x X, - Y by

S(r, v, x)(1) = e~ 'x +J e~ A= P F(s + 1, v(s)) ds
0

+J e,_AA(t—S)PzF(S—{'—T, U(S)) ds

-
for teR, ve Y, xe X, t<0. To see that u= S(z, v, x) € Y, observe that
0

Jeult)l, < M=+ M [ K(=5)0s) ds
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where

0(s) = e | F(s + 1, v(s))| < L{e™v(s)]l, + X F(s+ 1, 0)|

P it 1<0
[ re if >0

Qe L'(—o0,0)n L*(—x,0), Ke L'(R)

The following observation will be come useful:

u(ty=e " Du(T) + J e I E(s+1,0(8)) ds for —oc<T<t<0
T

which follows from the following:

Pou(ty=e "x+ ( e M= P F(s+ 1, v(s)) ds

©0

e"‘”Plu(I)==x+f e!P F(s+t, v(s))ds
0

Pou(t)=e TP u(T)+ | e 1P Fis+71,0(s)) ds
I
qu(z).»_-j e AP (s + 1, 0(s)) ds

Pou(t)y=e """ T Pyu(T) + ‘ e” I P F(s+ 1, T, 0(8)) ds
ST

Lemma 3.2. |S(t, u, x)— S(z. v, X))y < p(4) |Ju— vly for 1eR, xe X,
u, ve Y.

Proof. Let ¢=S(t, u, x)(0)— S(z, v, x)(0)

([)’{ei_remc . if >0
g - e)‘[(S(‘C,Ll,.\')(l)‘“s(fwl.'ax)([)) if 1<0

- if >0
T =0 et (Fe+ 1, u(t)) — Flr+1.v(1)) i 1<0

Note that ge C(R, X7),

() 1/l e LYR) N LAR)
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14

(1) = L) eI~ P £(5) ds +j A== A=) P £(5) ds,

0

0
c=P,c =f e " eP, f(s)ds

-0

For we R, let

1 4 . .
glw)= J e g(t)dt (Bochner integral in X*)

N

A straightforward calculation gives that for all we R,

\/2—7;g(a))~—(A——k+ico)“lc

=j0 e~ g(1) dt

balie 8}

0 K o
— ___J dSJ dl e(;.-zw)(t-«s)e~A1(z»as)Pleuzwsf(s)

- o0 — o

O 0 - . o .
__*__J dS-[ dt€(4~rw)(/~s)e——A(t—s)Pze«-zwsf(S)

— o 5

=j° (A—J+ i)' Pre= f(s) ds

- 00

0 L ;
+ [ (A=d+io) T (1 —eteT ) Pae T f(s) ds

-—C

gw)=(4—2A+io)"" f(o)

) P
Since B, e #(X*, X) for j=0, 1,.., m, we have that B, g= B, ¢ and

oo [~}

[ iBsoras<]” UBgIrd<M[ 1B 8)* do

443

<0

<M [ @) do<iie [ 101 des M3 -]}

which implies the conclusion.

Lemma 3.3. For each xe X,, 1€ R, there exists a unique ve Y so that

S(t, v, x)=0.
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Proof. Uniqueness follows from Lemma 3.2. Define
vy =0, v, =3S(t,0,,X) for n=0
ro(s)=e"(F(t+s, v, ,(5))— F(t+5,0,(5))) for n=0, s<0

Note that for >0, 1 <0,
0 1/2
(j A ur,,<s>\12ds) <lou = vl <P ol

{
€(0, 4 o) = vy (1)) = | €HTIeT TP (s) ds
0

~l
+j e AU Py () ds
e

e (v, o) = v, (I <Kk p", k= M|y (A=A 712+ (Aa—7)"")

Choose ¢e€(0,1) so that e>p and fix Te(—w,0) For n=0,
re (T, 0], we obtain from (3.1)

v’l+2([)—1)’i+l(l‘):gMA“’T)(U”‘*_z(T)—-— U!:—%—I(T))

[ e I F s 1, (5) = Fls £ 7 0,(5))) ds
T

7)— /'.TkI Fn

!.v,l+2(1)—U,]+ I(I)ngM(f— T)'Je""”“

+ ML JT([.._S)“‘JCJ-«U(IV‘S) “0114— ](S) —_ U”(S)Na dS

ng(t— T)_V18,I+8k3 Jl (['— S)—u an—}» I(S) - vn(s)“x ds

T

where k,=Me“ Tk (1+e ), ky=ML(1+e“T)/e. Thus, for n=1,
te(T,0],

(1 —a)

8“”_*‘1 Uy (t)—vn(r)nygkl \N kj_l ;o . ([.‘“7’7)‘/»‘/%~l
e AT TG =)
n F(l-—fl)n o n—nx—1 R |
+ k" F(n_mjrw-s) ellvy(s)ll, ds (32)

and therefore there exists k, < oo such that

o, ()= vl <e" (1 =T)"ks  for nz=1, 1e(T,0]
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Therefore there exists ve C((— oo, 0], X*) such that for all Te (-0, 0),

lim  sup [jo(z) —v,(2)],=0

n= 0 TLr<0

and this implies

jo le*u(1)]12 df < oo

[ ue’*<u(z)—vn(t)>uidz<(-1—p:'1—5‘”‘1"’) for n>0

Since p(1) <1 and v, do not depend on 7 for 7 close to 1 we also have
0 el
[ nerowzdr< oo

and hence ve Y, lv—v,|,— 0 as n— o« and therefore S(z, v, x)=v.
Define 7: Rx X, —» X, X* as follows: choose xe X, 1eR, let ve Y
be such that S(t, v, x)=v and define

h(z, x) = P,u(0) = jo e P, F(s + 7, v(s)) ds = v(0) — x

Note that if F is bounded in X and A, >0, then /4 is bounded in X*

Lemma 34. M (t)={x+h(r,x)|xeX,} forall teR.

Proof. If xeX,, teR, and veY satisfies S(tr,v,x)=v, then
x+ h(t, x) =v(0), and in view of (3.1) we have that x + A(t, x) € A (7).
If v is as in the definition of .# (), then for <0,

0
Po(0) =" Pyu(t)+ | e**P, F(s+7,0(s)) ds

1

P o(t)=e 1P, v(0) +j e=AU=IP F(s+1, 0(s)) ds

(4}
If —o0o<T<1<0, then

t

P,o(t)=e~ A= DP,o(T) +j e~ A=9P. F(s + 1, 0(s)) ds

T
and since the integral converges as T — —oo, the limit of

le= 4= TP, u(T)| < Me == ol D)
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as T — —oo has to exist and since ve Y it has to be 0. Therefore

sz(t)zj e~ =P F(s+1,0(8)) ds for 1<0

and hence v = S(t, v, P,0v(0)), v(0) = P, v(0) + h(z, P,v(0)).

Lemma 3.5. There exists ¢ < o such that
Wh(t, x)—h(t, Y, <cllx— forall teR, x, yelX,
Proof. Choose x, yeX,, teRand let u,veY be such that
S(t,u, x)= u,’ S(t,v, y)=v
d,,d,,.., denote various constants—independent of 7, x, 3. Note that
u—v=>S(t,u v)—S(t.v, y)+e "(x—1)
u—vly<plu—uvly+dx—1yl

lu—v|y<dyllx— vl

rl

e/".l(u(t)__ U(I)) — Q)'IQ;AII(,\'—- },) + e/l(z w,\')e-vAl(r's)Plr(S) ds

Y0
~t

e e TP r(s) ds

-+

Yo

where r(1) = e (F(1 + 7, u(t)) — F(1 + 7, v(r))) for 1<0. Since O I (o))? dt

<lu—uvl3
"0

) — (O M lx =yl + M | e (s ds

7

+Mj et A = ()| ds

<M|x— 1y +dilu—rly<dsx =yl for 1<0

Equation (3.1) implies that for —x <T<1<0,

u(t)—v()=e """ (1) —o(T))
+ (I e~ AV (F(s+ 1, u(s)) — F(s + 1, v(s))) ds
JT

() — o(D)], < M(1—T) *e = 1= Tdyllx =y

F ML (=) e uts) = e(s)1, ds
T
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which implies [see (3.2)] that for some ds we have
lu(t) = oD, < |x =yl (t=T)"*ds  for 1e(T,0]

and since h(t, x)— h(t, ¥)=u(0)—v(0)— x+ y, we are done.
Lemma 3.6. h:Rx X, — X* is continuous.

Remark. Inequality (3.3) below can sometimes imply more regularity
of h.

Proof of Lemma 3.6. Fix 1eR, xe X,. Take ue C(R, X*) such that
u(t)=x+h(t, x), u(t)e #(¢) for te R and for —oo <T <1< 00,

u(t)y=e "= Du(T)+ J[ e"’“;“')F(S, u(s)) ds

T

For ce R, ye X, we have

h(a, y)—h(t, x)=h(a, y)— h(o, x)+ h(o, P u(t)) — h(a, Pu(c))
+ Pyu(o)— Pyu(t)
lh(a, y)—h(z, )| < clly — x| + el P lu(t) — u(o)]
+ 1P| u(o) —u(o)ll, -

(3.3)

Therefore ||h(o, v)—h(t, x)|,»0aso—1, y— x.

4. EXPONENTIAL TRACKING

Choose any te R, ue C([1, c0), X*) such that

u(t)=e”4"“”u(r)+f e~ A= F(su(s))ds  for 1z1

T

The purpose of this section is to prove the following.
Theorem 5.1. There exists a unique ve C(R, X*) such that

v(z):e‘A"'T’v(T)+J e~ I (s, v(s))ds  for —oo<T<t<w®
T N

T

Jm le* (u(t) —v())| F d1+J le*v(r)|| 7 dt < oo for p=172

T —
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Moreover, v(t)e #(t) for all teR and there exists Ce [0, co) which
depends only on M, A, A,, 45, o, L, I, p(A), such that

M o(t) —u(t)l, < Ce’T inf  |x—uw(T)|, forall t<T<t<x
xe H(T)

Theorem 3.1 gives a bound for

Pou(t) = h(t, Pyu(1)) = Py(u(t) = (1)) + h(t, Pyo(1)) = h(z, Pyu(t))

Define u(t)=e """ “u(r) for r <71 and let

[ etptnz <o for p=1,2}

Z= {(p e C(R, X*)

1/2

nt

o= ([ remomra) ot gez

J=0 -

w(t)= —ult)+ e~ IPu(t) + | e Py Fls, u(s)) ds

Ll &

-j e~ M-I P F(s u(s))ds  for 1<t

7

w(t)=e A" u(t)=e T Pyw(r) for t>1

Observe that we Z. Define R: Z -~ Z by

mt

(Rp)(1) = w(1) + J e~ TV PA(F(s, B(s) +uls)) — Fls, u(s))) ds

— U

_ F == P (F(s, ¢(s) + u(s)) — F(s, u(s))) ds
Lemma 4.2. |Rp— Ry |.<p(A)l¢—yl. for ¢,y e Z
Proof. For reR let

g(r) = e ((RP)(1) = (RY)(1))
f(1)=e"(F(1, $(1) + u(t) = F(1, Y (1) + u(1)))

As in the proof of Lemma 3.2,

gw)=(A4—i+iw)" " flw) for weR

b

[ e dis Mo | 1B d@I do< MES [ @ d

_ J—

<M=l
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Lemma 4.3. There exists a unique O € Z such that RO = 0. Moreover,
there exists Ce [0, co) which depends only on M, i, Ay, A5, a, L, I, p(4),
such that

e O, <Ce*”  inf  |Ix—u(T)|, whenever T T<t<
X T)

€.

Proof. Uniqueness follows from Lemma 4.2. Let ¢,=0, ¢,,, = R,
for n>0. Note that for reR, n=0,

e Ve AU Py (5) ds

()= By (1) =

{
—

[v's]
_J 6"(’—S)C’,MAWM”PLI',,(S) (lS

I3

ra(t) = e (F(t, ¢, 41 (1) + u(t)) — F(1, 4,(1) + u(1)))
Let f,(1)=e* |, 1(t) = ¢,(1)], and

MLe'* 1 if <0
K(t): — o A= A2} M
MLt e 2 if >0

and note that

m oo

fn+1(z)<j K(t=s)f,(s)ds  for n>0, teR (4.1)

Define K, =K, K;,, =K+ K, for j> 1 and note that
f‘n‘f-j< Kj * Afn fOI' n 2 O, J> 1

Choose an integer N>1 such that 2N(1—a)>1. Young’s inequality
(Ref. 6, p. 34) gives

K, e L/"(R), q,=2N/(2N —n) for 1<n<2N
Thus, Kye L*(R) and for n =0,

”fn+ NH >'s} S ”K)7H2 an!tz < 1]]("./\/1]21—1 '¢n+l - ¢n‘|:
[ foxnllo <Kullo el p”

Therefore, there exist @ € C(R, X*), de R such that

0= (D). <dp"™"  for nz=N, 1eR
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Using the facts that we can replace A with Z provided that [2—Z] is small

enough and that this change does not effect ¢, and hence @, we see that
there exist d, < o0, ¢ <1, § >0, such that

NO(t)— g (), <de’e for teR, n=N

Thus @ Z, |@ —¢,|.— 0 as n — oo and therefore RO = 6.
To prove the moreover part, choose any T e [7, o), xe H(T). Let
y € Y be such that S(T, y, P, x) =1, hence x =y(0). Define

Y(t—T)—u(t) for t<T

wO(t):{O for t>T

Y, is in general not continuous, however, ¥, =Ry, can clearly be
evaluated, and a long but straightforward calculation gives

e~ M=Dp (u(T)— x) if +<T

‘l/l(t)*l//()(t):{e—""'T’PZ(,\'wu(T)) if >T

and thus , € Z. Define ¢, , = Ry, also for n=> 1.
Since |¢,— @|.— 0 as n — o0, Lemma 4.2 implies

10—y, l.<p" W=yl /(1=p) for n=l
For n>0, re R, define g,(1)=e" |, 1(1) =, (1)] . As above,
gnviSKixg, for n=0, j>=1
Lgms wll e UKW Il < IKA " W ey — W
KUKyl W =] -p" ! for nx=1
Il <UKNlLI gyllap" ="
<SIKLL UKL LI gollap" ™71 for n>N+1
(1) = (D) S IK W IKIL LI (1= p) " gollap” =V !
for N+1<n<j, teR
1O — YD, < TN K L (1= p) i gollap” V!

for n=N+1, teR
For 1> T we have

e 1O()], < 10(1) =y (D + &olt) + 1) + -+ +gn(t)
< UKW KL LI =p) 7l goll»
+ (14 K]+ - + UK 8ol
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Evaluation of [|gol,, lI&oll... gives

O, < Ce* |l x —u(T)], for =T
where
o), <Ce”|x—u(T)|, for (=T

where

C= Kyl Kl LI~ (1 ~p)“‘M\/1/[2(/1-/11)] + 1/[2(4, — 4)]
+ M1+ Kl + - + 1K)

Proof of Theorem 4.1. If ©® e Z is such that RO =60 and v=6 +y,

then a long but obvious calculation shows that this v has the desired
properties.

Suppose that we have v as in Theorem 4.1. Obviously v—ue Z. We
show that v —u = R(v—u) and hence Lemma 4.3 implies uniqueness.
For —oo < T<t< oo we have

Py(v(t) —u(t))= — Pyu(t) +e "= P,o(T)

n j Lo~ Py(F(s, vls)) — Fls, u(s))) ds
+ Ji e M POF(s, u(s)) ds

letting 7 — —oo, we obtain (as in the proof of Lemma 3.4)

Paolt)—u() = — Pault)+ [ "= P,F(s, u(s)) ds

—

+J[ e NI PL(F(s, v(s)) — F(s, u(s))) ds  (4.2)

—

If t<r<T, then

Py(o(T)—u(T))=e~ """ P(v(t) — u(1))

+ JT e T3 P (F(s, v(s)) — F(s, u(s))) ds

1

P (o(t)—u(t))=e=T'P (o(T) — u(T))

.
_J e MU P (FLs. e(s)) = Fls, u(s))) ds

!
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letting 7 — oo we obtain that for 1> 1,

Pyo(0) —u(0))= — [ eTAMIIP(Fls, v(5) — Fls, u(s)) ds - (43)

7

If t <, then
P(u()—u(t))= — Pyu(t)+ e~ """ P (v(t) —u(t)) + e~ Pru(t)

_J e“‘A‘(["S)PlF(S’ U(S)) ds

4

and (4.3) implies

= —Pu(t)+e "I P u(r) ~—J e MU= PUF(s, u(s)) ds

7

__fx e MU P (F(s, v(s)) — F(s, u(s))) ds

I

= Pow(t)— jx e= MU= P (F(s, v(s)) — F(s, u(s))) ds

t

this, (4.2), and (4.3) imply that v —u = R(v —u).

5. HYPERBOLIC EXTENSION

The assumption used so far that 4 is a sectorial operator can be
weakened by requiring that — A4 is the generator of a strongly continuous
semigroup and thus the theory becomes applicable to hyperbolic problems.
In this case the condition that 4 + iw is in the resolvent set of A4 for all real
w does not guarantee existence of subspaces with bounds on the semigroup
as presented in Section 2—therefore we have to postulate them. With these
changes and « =0 (hence X* =X, |-]|,= |-, the results in Sections 3 and
4 apply unchanged. For the sake of clarity let me state explicitly all
assumptions needed in this case.

(V1) X is a complex Banach space.

(V2) There exists Mye (0, oc) such that if feC(R\{0}, X) and
I f() e LY(R) ~ L*(R), then

e L

[T wr@Prdas s, | 1f @) do<as | o) dr



xistence of an Inertial Manifold 453

where
" 1 = :
flw)= j e " (1) dt for weR
J2nY -
(V3) —A is the generator of a strongly continuous semigroup e ',
t=0, on X.

(V4d) X=X, ®X,withe "X, =X,,e " "X,cX, for t 20, and there
exist M, < oo and — o0 < Ay <A, < oo such that

le”xl<Me=*x| for 120, xeX;

x| <Mye*'llex|  for 120, xeX,

(V5) F. RxX—-X is continuous and such that for some
B,,...,B, € #(X), we have that

m

[F(t, x)=F(t, I< Y, IB{x—p)ll  for teR, x,yeX
j=1
(V6) Jre(ly, ) and [ |e"F(1,0)|*dt < co for some p< i
(V7) MyXj sup,glB(d—i—io)” ' <l

j=1
Observe that (V4) implies that there exist projections P, P,e ZA(X)
uch that P, X=X, Pe "=e¢ P, for i=1,2, t20, and P, +P,=1.
V4) also implies that ¢~ "' is invertible on X, hence, it can be extended
> a strongly continuous group defined by

— At

" (e for t=0
B(X =
(Xi)se {(e’“)" for 1<0

‘or ze C with 4, <Re z < 4,, one can easily show that z is in the resolvent
ot of A and that, for all xe X,

: 0
(A—z) ' P x= _)f e TP x dt

(A4 ——z)"‘Pz.\'zj ) e~ e Pyox dt
0

1Pl IPall )

[(4—=2)" HS‘MI (Rez—/}q /y—Rez

As in Section 2 let Bo=1-1 with /€ (0, o0) so small that

m

p(L)y=M, Z c;(A)<1

j=0
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where
¢;(L)=sup ||B(4—A—in)""| for j=0,1,.,m

we R

(V6), (V7~), and p(A) <1 also remain valid if 4 is replaced with 7, provided
that |4 — 4| is small enough. Note that

| F(t, x)— F(t, y)| < Lllx— »l for teR, x,yeX

where

m

L=73 |B
j=0

Now =0, X*=2X, |-ll,=-]. Clearly, one can find a <4, and M <o so
that the bounds (2.1) hold.

Theorem 5.1. In Sections 3 and 4 everything remains valid under the
above assumptions (V1)-(V7) and with the above notation.

Observe also that proofs of Lemmas 3.3, 3.5, and 4.3 can be simplified
when o < 1/2.

6. Examples. The following examples are presented for comparison

purposes.

Example 6.1. Assume that A is a self-adjoint operator in a Hilbert
space X and that

the spectrum of A is contained in (a, 4,1 v [4,, %)

for some —oc <a<i, <i,<oo. A can have a continunous spectrum.
Observe that if e [0, 1) and A€ (4, 4,), then

sup [[(A — @) (A — i — iw) | < max {“‘f’f”x “‘2“’?“} 6.1)

b B
we R /.._‘/..1 /\,2-/“

Fix o€ [0, 1) and assume that F: Rx X*— X is continuous and that for
some Le [0, c0),

1F(t, x)-F(t, I S LI(A=a)*(x-p)I|  for 1eR, x, ye Z((A-a)*) = X"

Using (6.1) with A€ (4,, 4,) that minimizes the right-hand side of (6.1), we
see that all assumptions (H1)-(H7) are satisfied if

jo e F(z, 0)]|* dr < o0
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nd : .
L((A,—a)*+ (A, =a)*)<i,— 4, (6.2)

In the literature the conditions corresponding to (6.2) are much more
wolved (see (5.1) of Chow and Lu [3], (5.3) of Foias er al. [4],
p. 143-150 of Henry [6], p.423 of Temam [9]). Their expressions
ecome singular as ¢ — 1 («<1/2 of Temam [9]. Mowever, it was known
8] that if «=0, then (6.2) i1s sufficient for the existence of an inertial
1anifold when the spectrum of A consists of eigenvalues only—which is
ssumed also by Foias et al. [4] and Temam [9]. No assumptions on the
ange of F are made here, however, if one has that F: X**# — X* for some
>0, then one may want to use X’ instead of X for the basic space.

Example 6.2. Consider

u,=u .+ f(x, t,u,u,), O<x<m >0

(6.3)
u(0, Yy=u(r, t)=0

here 1[0, 1) xRxCxC — C is continuous and such that, for some
4 < o0, L,< oo, we have that for all values of arguments,

etz z0) = f(x s, 8 S Lylzy — syl + Loz, — 55

et X=L*0,n), Au= —u" for weHy0,n)n H*0, %), B,u=L,u,
Lu=L,u' for ye H'(0,n), xe[1/2,1), A= (n*+(n+ 1)?)/2. By using
3.1), (H7) becomes
L, n+1
+ L
n+1/2 n+1/2

<1
hus if L, <1 and

0 bid
J dzj dx |e“f(x, 1,0, 0)]? < o0

— 0

v some real p, then all assumption (H1)-(H7) can be satisfied by
10o0sing n large enough. Existence of an invariant manifold for sufficiently
nall L, has been shown by Brunovsky and Terescak (1989).
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